1932

Abstract

Duplication events are regarded as sources of evolutionary novelty, but our understanding of general trends for the long-term trajectory of additional genomic material is still lacking. Organisms with a history of whole genome duplication (WGD) offer a unique opportunity to study potential trends in the context of gene retention and/or loss, gene and network dosage, and changes in gene expression. In this review, we discuss the prevalence of polyploidy across the tree of life, followed by an overview of studies investigating genome evolution and gene expression. We then provide an overview of methods in network biology, phylogenomics, and population genomics that are critical for advancing our understanding of evolution post-WGD, highlighting the need for models that can accommodate polyploids. Finally, we close with a brief note on the importance of random processes in the evolution of polyploids with respect to neutral versus selective forces, ancestral polymorphisms, and the formation of autopolyploids versus allopolyploids.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-121415-032302
2018-11-02
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/es/49/1/annurev-ecolsys-121415-032302.html?itemId=/content/journals/10.1146/annurev-ecolsys-121415-032302&mimeType=html&fmt=ahah

Literature Cited

  1. Almal SH, Padh H 2012. Implications of gene copy-number variation in health and diseases. J. Hum. Genet. 57:16–13
    [Google Scholar]
  2. Arabidopsis Interactome Mapp. Consort 2011. Evidence for network evolution in an Arabidopsis interactome map. Science 333:601–7
    [Google Scholar]
  3. Avise JC, Robinson TJ 2008. Hemiplasy: a new term in the lexicon of phylogenetics. Syst. Biol. 57:503–7
    [Google Scholar]
  4. Baldrich P, Beric A, Meyers BC 2018. Despacito: the slow evolutionary changes in plant microRNA. Curr. Opin. Plant Biol. 42:16–22
    [Google Scholar]
  5. Barker MS, Husband BC, Pires JC 2016. Spreading Winge and flying high: the evolutionary importance of polyploidy after a century of study. Am. J. Bot. 103:71139–45
    [Google Scholar]
  6. Bastide P, Solís-Lemus C, Kriebel R, Sparks KW, Ané C 2018. Phylogenetic comparative methods on phylogenetic networks with reticulations. Syst. Biol. 67:800–20
    [Google Scholar]
  7. Beissinger TM, Wang L, Crosby K, Durvasula A, Hufford MB, Ross-Ibarra J 2016. Recent demography drives changes in linked selection across the maize genome. Nat. Plants 2:16084
    [Google Scholar]
  8. Bekaert M, Edger PP, Pires JC, Conant GC 2011. Two-phase resolution of polyploidy in the Arabidopsis metabolic network gives rise to relative followed by absolute dosage constraints. Plant Cell 23:51719–28
    [Google Scholar]
  9. Birchler JA, Johnson AF, Veitia RA 2016. Kinetics genetics: incorporating the concept of genomic balance into an understanding of quantitative traits. Plant Sci 245:128–34
    [Google Scholar]
  10. Birchler JA, Riddle NC, Auger DL, Veitia RA 2005. Dosage balance in gene regulation: biological implications. Trends Genet 21:219–26
    [Google Scholar]
  11. Birchler JA, Veitia RA 2007. The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:2395–402
    [Google Scholar]
  12. Birchler JA, Veitia RA 2012. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. PNAS 109:3714746–53
    [Google Scholar]
  13. Blischak PD, Kubatko LS, Wolfe AD 2016. Accounting for genotype uncertainty in the estimation of allele frequencies in autopolyploids. Mol. Ecol. Resour. 16:3742–54
    [Google Scholar]
  14. Blischak PD, Kubatko LS, Wolfe AD 2018. SNP genotyping and parameter estimation in polyploids using low-coverage sequence data. Bioinformatics 34:407–15
    [Google Scholar]
  15. Bowman JL, Kohchi T, Yamamoto KT, Jenkins J, Shu S et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:2287–304
    [Google Scholar]
  16. Bradburd GS, Ralph PL, Coop GM 2016. A spatial framework for understanding population structure and admixture. PLOS Genet 12:1e1005703
    [Google Scholar]
  17. Campbell MA, Ganley AR, Gabaldón T, Cox MP 2016. The case of the missing ancient fungal polyploids. Am. Nat. 188:6602–14
    [Google Scholar]
  18. Chae L, Lee I, Shin J, Rhee SY 2012. Towards understanding how molecular networks evolve in plants. Curr. Opin. Plant Biol. 15:177–184
    [Google Scholar]
  19. Cheng F, Sun C, Wu J, Schnable J, Woodhouse MR et al. 2016. Epigenetic regulation of subgenome dominance following a whole genome triplication in Brassica rapa. New Phytol 211:1288–99
    [Google Scholar]
  20. Cheng F, Wu J, Cai X, Liang J, Freeling M, Wang X 2018. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 4:258–68
    [Google Scholar]
  21. Cheng F, Wu J, Fang L, Sun S, Liu B et al. 2012. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLOS ONE 7:5e36442
    [Google Scholar]
  22. Cheng JY, Mailund T, Nielsen R 2017. Fast admixture analysis and population tree estimation for SNP and NGS data. Bioinformatics 33:142148–55
    [Google Scholar]
  23. Chifman J, Kubatko LS 2014. Quartet inference from SNP data under the coalescent model. Bioinformatics 30:233317–24
    [Google Scholar]
  24. Coate JE, Song MJ, Bombarely A, Doyle JJ 2016. Expression-level support for gene dosage sensitivity in three Glycine subgenus Glycine polyploids and their diploid progenitors. New Phytol 212:31083–93
    [Google Scholar]
  25. Conant GC. 2014. Comparative genomics as a time machine: How relative gene dosage and metabolic requirements shaped the time-dependent resolution of yeast polyploidy. Mol. Biol. Evol. 31:123184–93
    [Google Scholar]
  26. Conant GC, Birchler JA, Pires JC 2014. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr. Opin. Plant Biol. 19:91–98
    [Google Scholar]
  27. Conant GC, Wolfe KH 2006. Functional partitioning of yeast co-expression networks after genome duplication. PLOS Genet 4:e109
    [Google Scholar]
  28. Conant GC, Wolfe KH 2007. Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol. Syst. Biol. 3:129
    [Google Scholar]
  29. Conant GC, Wolfe KH 2008a. Probabilistic cross-species inference of orthologous genomic regions created by whole-genome duplication in yeast. Genetics 179:31681–92
    [Google Scholar]
  30. Conant GC, Wolfe KH 2008b. Turning a hobby into a job: How duplicated genes find new functions. Nat. Rev. Genet. 9:12938–50
    [Google Scholar]
  31. Cornille A, Salcedo A, Kryvokhyzha D, Glémin S, Holm K et al. 2016. Genomic signature of successful colonization of Eurasia by the allopolyploid shepherd's purse (Capsella bursa-pastoris). Mol. Ecol. 25:2616–29
    [Google Scholar]
  32. de Quieroz K 2007. Species concepts and species delimitation. Syst. Biol. 56:879–86
    [Google Scholar]
  33. De Smet R, Sabaghian E, Li Z, Saeys Y, Van de Peer Y 2017. Coordinated functional divergence of genes after genome duplication in Arabidopsis thaliana. Plant Cell 29:112786–800
    [Google Scholar]
  34. Degnan JH, Rosenberg NA 2009. Gene tree discordance, phylogenetic inference, and the multispecies coalescent. Trends Ecol. Evol. 24:332–40
    [Google Scholar]
  35. Ding M, Chen ZJ 2018. Epigenetic perspective on the evolution and domestication of polyploid plants and crops. Curr. Opin. Plant Biol. 42:37–48
    [Google Scholar]
  36. Dodsworth S, Chase MW, Leitch AR 2015. Is post-polyploidization diploidization the key to the evolutionary success of angiosperms. Bot. J. Linn. Soc. 180:11–5
    [Google Scholar]
  37. Dubin MJ, Scheid OM, Becker C 2018. Transposons: a blessing curse. Curr. Opin. Plant Biol. 42:23–29
    [Google Scholar]
  38. Dufresne F, Stift M, Vergilino R, Mable BK 2014. Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol. Ecol. 23:40–69
    [Google Scholar]
  39. Dunn CW, Zapata F, Munro C, Siebert S, Hejnol A 2018. Pairwise comparisons across species are problematic when analyzing functional genomic data. PNAS 115:E409–17
    [Google Scholar]
  40. Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. PNAS 112:278362–66
    [Google Scholar]
  41. Edger PP, McKain MR, Bird KA, VanBuren R 2018. Subgenome assignment in allopolyploids: challenges and future directions. Curr. Opin. Plant Biol. 42:76–80
    [Google Scholar]
  42. Edger PP, Smith R, McKain MR, Cooley AM, Vallejo-Marin M et al. 2017. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkey flower. Plant Cell 29:92150–67 Subgenome dominance of gene expression levels occurs immediately after hybridization between divergent species in monkey flowers.
    [Google Scholar]
  43. Emery M, Willis MMS, Hao Y, Barry K, Oakgrove K et al. 2018. Preferential retention of genes from one parental genome after polyploidy illustrates the nature and scope of the genomic conflicts induced by hybridization. PLOS Genet 14:e1007267Using the phylogenomic framework in the software POInT, the authors recover a signal of biased fractionation in Arabidopsis, grasses, and yeast.
    [Google Scholar]
  44. Excoffier L, Dupanloup I, Huerta-Sánchez E, Susa VC, Foll M 2013. Robust demographic inference from genomic and SNP data. PLOS Genet 9:10e1003905
    [Google Scholar]
  45. Freeling M. 2009. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 60:433–53
    [Google Scholar]
  46. Freeling M, Scanlon MJ, Fowler JE 2015. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. Curr. Opin. Genet. Dev. 35:110–18This article discusses the importance of distinguishing between fractionation and subfunctionalization in polyploid genome evolution.
    [Google Scholar]
  47. Freeling M, Thomas BC 2006. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:7805–14
    [Google Scholar]
  48. Gaeta RT, Pires JC 2010. Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:118–28
    [Google Scholar]
  49. Gallagher JP, Grover CE, Hu G, Wendel JF 2016. Insights into the ecology and evolution of polyploid plants through network analysis. Mol. Ecol. 25:112644–60
    [Google Scholar]
  50. Gardiner L-J, Joynson R, Omony J, Rusholme-Pilcher R, Olohan L et al. 2017. Hidden variation in polyploid wheat drives local adaptation. bioRxiv 217828. https://doi.org/10.1101/217828
    [Crossref]
  51. Gerstein AC, Lim H, Berman J, Hickman MA 2017. Ploidy tug-of-war: Evolutionary and genetic environments influence the rate of ploidy drive in a human fungal pathogen. Evolution 71:41025–38
    [Google Scholar]
  52. Golicz AA, Bayer PE, Barker GC, Edger PP, Kim HR et al. 2016. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun 7:13390
    [Google Scholar]
  53. Gordon SP, Contreras-Moreira B, Woods DP, Des Marais DL, Burgess D et al. 2017. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 8:12184Gene content variation in Brachypodium is associated with different functions, evolutionary rates, and genomic positions.
    [Google Scholar]
  54. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD 2009. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLOS Genet 5:10e1000695
    [Google Scholar]
  55. Hahn MW, Nakhleh L 2016. Irrational exuberance for resolved species trees. Evolution 70:7–17
    [Google Scholar]
  56. He Z, Wang L, Harper AL, Havlickova L, Pradhan AK et al. 2017. Extensive homoeologous genome exchanges in allopolyploid crops revealed by mRNAseq-based visualization. Plant Biotechnol. J. 15:5594–604
    [Google Scholar]
  57. Hejase HA, Vande Pol N, Bonito GM, Edger PP, Liu KJ 2017. Coal-Miner: a statistical method for GWA studies of quantitative traits with complex evolutionary origins. ACM-BCB 2017—Proceedings of the ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics107–14 New York: Assoc. Comput. Mach.
    [Google Scholar]
  58. Hermansen RA, Hvidsten TR, Sandve SR, Liberles DA 2016. Extracting functional trends from whole genome duplication events using comparative genomics. Biol. Proceed. Online 18:11
    [Google Scholar]
  59. Holland PWH. 1999. Gene duplication: past, present and future. Semin. Cell Dev. Biol. 10:541–47
    [Google Scholar]
  60. Hollister JD, Gaut BS 2009. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–28
    [Google Scholar]
  61. Homouz D, Kudlicki AS 2013. The 3D organization of the yeast genome correlates with co-expression and reflects functional relations between genes. PLOS ONE 8:e54699
    [Google Scholar]
  62. Horvath R, Slotte T 2017. The role of small RNA-based epigenetic silencing for purifying selection on transposable elements in Capsella grandiflora. Genome Biol. Evol 9:102911–20
    [Google Scholar]
  63. Hughes TE, Langdale JA, Kelly S 2014. The impact of widespread regulatory neofunctionalization on homeolog gene evolution following whole-genome duplication in maize. Genome Res 24:81348–55
    [Google Scholar]
  64. Hurgobin B, Golicz AA, Bayer PE, Chan CK, Tirnaz S et al. 2017. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol. J. 16:1265–74
    [Google Scholar]
  65. Jiao W, Yuan J, Jiang S, Liu Y, Wang L et al. 2018. Asymmetrical changes of gene expression, small RNAs and chromatin in two resynthesized wheat allotetraploids. Plant J 93:5828–42
    [Google Scholar]
  66. Jighly A, Lin Z, Forster JW, Spangenberg GC, Hayes BJ, Daetwyler HD 2018. Insights into population genetics and evolution of polyploids and their ancestors. Mol. Ecol. Resour. 18:1157–72
    [Google Scholar]
  67. Jones GR. 2017. Bayesian phylogenetic analysis for diploid and allotetraploid species networks. bioRxiv 129361. https://www.biorxiv.org/content/early/2017/04/21/129361
  68. Kamneva OK, Rosenberg NA 2017. Simulation-based evaluation of hybridization network reconstruction methods in the presence of incomplete lineage sorting. Evol. Bioinform. Online 13:1176934317691935
    [Google Scholar]
  69. Kamneva OK, Syring J, Liston A, Rosenberg NA 2017. Evaluating allopolyploid origins in strawberries (Fragaria) using haplotypes generated from target capture sequencing. BMC Evol. Biol. 17:1180Using the program PhyloNet, the authors infer complex phylogenetic relationships in allopolyploid strawberries.
    [Google Scholar]
  70. Khaitovich P, Paabo S, Weiss G 2005. Toward a neutral evolutionary model of gene expression. Genetics 170:2929–39
    [Google Scholar]
  71. Khaitovich P, Weiss G, Lachmann M, Hellmann I, Enard W et al. 2004. A neutral model of transcriptome evolution. PLOS Biol 2:5e132
    [Google Scholar]
  72. Kingman JCF. 1982. On the genealogy of large populations. J. Appl. Stat. 19:27–43
    [Google Scholar]
  73. Kondrashov FA, Kondrashov AS 2006. Role of selection in fixation of gene duplications. J. Theor. Biol. 239:2141–51
    [Google Scholar]
  74. Kryvokhyzha D, Holm K, Chen J, Cornille A, Glémin S et al. 2016. The influence of population structure on gene expression and flowering time variation in the ubiquitous weed Capsella bursa-pastoris (Brassicaceae). Mol. Ecol. 25:51106–21
    [Google Scholar]
  75. Kuang MC, Hutchins PD, Russell JD, Coon JJ, Hittinger CT 2016. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network. eLife 5:e19027
    [Google Scholar]
  76. Landis JB, Soltis DE, Li Z, Marx HE, Barker MS et al. 2018. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 105:348–63
    [Google Scholar]
  77. Lashermes P, Hueber Y, Combes MC, Severac D, Dereeper A 2016. Inter-genomic DNA exchanges and homeologous gene silencing shaped the nascent allopolyploid coffee genome (Coffea arabica L.). G3 6:92937–48
    [Google Scholar]
  78. Lee KM, Coop G 2017. Distinguishing among modes of convergent adaptation using population genomic data. Genetics 207:41591–619
    [Google Scholar]
  79. Li W-H. 1980. Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fish. Genetics 95:237–58
    [Google Scholar]
  80. Li Z, Defoort J, Tasdighian S, Maere S, Van de Peer Y, De Smet R 2016. Gene duplicability of core genes is highly consistent across all angiosperms. Plant Cell 28:2326–44
    [Google Scholar]
  81. Li Z, Tiley GP, Galuska SR, Reardon CR, Kidder TI, 2018. Multiple large-scale gene and genome duplications during the evolution of hexapods. PNAS 115:184713–18
    [Google Scholar]
  82. Lien S, Koop BF, Sandve SR, Miller JR, Kent MP et al. 2016. The Atlantic salmon genome provides insights into rediploidization. Nature 533:7602200–5
    [Google Scholar]
  83. Limborg MT, Larson WA, Seeb LW, Seeb JE 2017. Screening of duplicated loci reveals hidden divergence patterns in a complex salmonid genome. Mol. Ecol. 26:174509–22
    [Google Scholar]
  84. Lopez-Nieves S, Yang Y, Timoneda A, Wang M, Feng T et al. 2018. Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales. New Phytol 217:2896–908Orthologs of a tyrosine-insensitive pigmentation locus associate with the evolution and loss of betalain production.
    [Google Scholar]
  85. Lynch M, Marinov GK 2015. The bioenergetic costs of a gene. PNAS 112:5115690–95
    [Google Scholar]
  86. Mable BK. 2001. Ploidy evolution in the yeast Saccharomyces cerevisiae: a test of the nutrient limitation hypothesis. J. Evol. Biol. 14:157–70
    [Google Scholar]
  87. Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M et al. 2005. Modeling gene and genome duplications in eukaryotes. PNAS 102:155454–59
    [Google Scholar]
  88. Makino T, McLysaght A 2010. Ohnologs in the human genome are dosage balanced and frequently associated with disease. PNAS 18:9270–74
    [Google Scholar]
  89. Mandáková T, Lysak MA 2018. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 42:55–65
    [Google Scholar]
  90. Marad DA, Burskirk SW, Lang GI 2018. Altered access to beneficial mutations slows adaptation and biases fixed mutations in diploids. Nat. Ecol. Evol. 2:882–89
    [Google Scholar]
  91. Marcet-Houben M, Gabaldón T 2015. Beyond the whole-genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the baker's yeast lineage. PLOS Biol 13:e1002220
    [Google Scholar]
  92. Mayfield-Jones D, Washburn JD, Arias T, Edger PP, Pires JC, Conant GC 2013. Watching the grin fade: tracing the effects of polyploidy on different evolutionary time scales. Semin. Cell Dev. Biol. 24:4320–31
    [Google Scholar]
  93. Meirmans PG, Liu S, van Tienderen PH 2018. The analysis of polyploid genetic data. J. Hered. 109:3283–96
    [Google Scholar]
  94. Mendes FK, Hahn MW 2016. Gene tree discordance causes apparent substitution rate variation. Syst. Biol. 65:711–21
    [Google Scholar]
  95. Mirarab S, Warnow T 2015. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31:12i44–52
    [Google Scholar]
  96. Moriyama Y, Koshiba-Takeuchi K 2018. Significance of whole-genome duplications on the emergence of evolutionary novelties. Brief. Funct. Genomics In press. https://doi.org/10.1093/bfgp/ely007
    [Crossref] [Google Scholar]
  97. Nakatani Y, McLysaght A 2017. Genomes as documents of evolutionary history: a probabilistic macrosynteny model for the reconstruction of ancestral genomes. Bioinformatics 33:14i369–78
    [Google Scholar]
  98. Nei M, Roychoudhury AK 1973. Probability of fixation of nonfunctional genes at duplicate loci. Am. Nat. 107:362–72
    [Google Scholar]
  99. Nguepjop JR, Tossim H-A, Bell JM, Rami J-F, Sharma S et al. 2016. Evidence of genomic exchanges between homeologous chromosomes in a cross of peanut with newly synthesized allotetraploid hybrid. Front. Plant Sci. 7:1635
    [Google Scholar]
  100. Novikova, Hohmann N, Van de Peer Y 2018. Polyploid Arabidopsis species originating around recent glaciation maxima. Curr. Opin. Plant Biol. 42:8–15
    [Google Scholar]
  101. Ohno S. 1970. Evolution by Gene Duplication New York: Springer
    [Google Scholar]
  102. Osborn TC, Butrille DV, Sharp AG, Pickering KJ, Parkin IAP et al. 2003. Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics 165:1569–77
    [Google Scholar]
  103. O'Toole ÁN, Hurst LD, McLysaght A 2018. Faster evolving primate genes are more likely to duplicate. Mol. Biol. Evol. 35:1107–18
    [Google Scholar]
  104. Papp B, Pal C, Hurst LD 2003. Dosage sensitivity and the evolution of gene families in yeast. Nature 424:6945194–97
    [Google Scholar]
  105. Pasquier J, Braasch I, Batzel P, Cabau C, Montfor J et al. 2017. Evolution of gene expression after whole-genome duplication: new insights from the spotted gar genome. J. Exp. Zool. B Mol. Dev. Evol. 328:7709–21
    [Google Scholar]
  106. Pennell MW, Harmon LJ 2013. An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Ann. N.Y. Acad. Sci. 1289:90–105
    [Google Scholar]
  107. Pires JC, Conant GC 2016. Robust yet fragile: expression noise, protein misfolding, and gene dosage in the evolution of genomes. Annu. Rev. Genet. 50:113–31
    [Google Scholar]
  108. Pires JC, Zhao J, Schranz ME, Leon EJ, Quijada PA et al. 2004. Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol. J. Linn. Soc. 82:675–88
    [Google Scholar]
  109. Powell JJ, Fitzgerald TL, Stiller J, Berkman PJ, Gardiner DM et al. 2017. The defense associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias. Plant Biotechnol. J. 15:4533–43
    [Google Scholar]
  110. Qi X, An H, Ragsdale AP, Hall TE, Gutenkunst RN et al. 2017. Genomic inferences of domestication events are corroborated by written records in Brassica rapa. Mol. Ecol 26:133373–88
    [Google Scholar]
  111. Racimo F, Berg JJ, Pickrell JK 2018. Detecting polygenic adaptation in admixture graphs. Genetics 208:41565–84
    [Google Scholar]
  112. Ren L, Cui J, Wang J, Tan H, Li W et al. 2017. Analyzing homoeolog expression provides insights into the rediploidization event in gynogenetic hybrids of Carassius auratus red var. × Cyprinus carpio. Sci. Rep. 7:113679
    [Google Scholar]
  113. Renny-Byfield S, Rodgers-Melnick E, Ross-Ibarra J 2017. Gene fractionation and function in the ancient subgenomes of maize. Mol. Biol. Evol. 34:81825–32
    [Google Scholar]
  114. Rice AM, McLysaght A 2017a. Dosage-sensitive genes in evolution and disease. BMC Biol 15:78
    [Google Scholar]
  115. Rice AM, McLysaght A 2017b. Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat. Commun. 8:14366
    [Google Scholar]
  116. Robertson FM, Gundappa MK, Grammes F, Hvidsten TR, Redmond AK et al. 2017. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biol 18:111
    [Google Scholar]
  117. Rodriguez F, Arkhipova IR 2018. Transposable elements and polyploid evolution in animals. Curr. Opin. Genet. Dev. 49:115–23
    [Google Scholar]
  118. Rohlfs RV, Nielsen R 2015. Phylogenetic ANOVA: the expression variance and evolution model for quantitative trait evolution. Syst. Biol. 64:5695–708
    [Google Scholar]
  119. Roman H, Phillips MM, Sands SM 1955. Studies of polyploid Saccharomyces. I. Tetraploid segregation. Genetics 40:546–61
    [Google Scholar]
  120. Ruprecht C, Proost S, Hernandez-Coronado M, Ortiz-Ramirez C, Lang D et al. 2017a. Phylogenomic analysis of gene co-expression networks reveals the evolution of functional modules. Plant J 90:3447–65
    [Google Scholar]
  121. Ruprecht C, Vaid N, Proost S, Persson S, Mutwil M 2017b. Beyond genomics: studying evolution with gene coexpression networks. Trends Plant Sci 22:298–307
    [Google Scholar]
  122. Sankoff D, Zheng C, Wong B 2012. A model for biased fractionation after whole genome duplication. BMC Genomics 13:Suppl. 1S8
    [Google Scholar]
  123. Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH 2006. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440:341–45
    [Google Scholar]
  124. Scannell DR, Frank AC, Conant GC, Byrne KP, Woolfit M, Wolfe KP 2007. Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. PNAS 104:8397–402
    [Google Scholar]
  125. Schnable JC, Springer NM, Freeling M 2011. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. PNAS 108:104069–74
    [Google Scholar]
  126. Schrider DR, Kern AD 2018. Supervised machine learning for population genetics: a new paradigm. Trends Genet 34:301–12 https://doi.org/10.1016/j.tig.2017.12.005
    [Crossref] [Google Scholar]
  127. Scienski K, Fay JC, Conant GC 2015. Patterns of gene conversion in duplicated yeast histones suggest strong selection on a coadapted macromolecular complex. Genome Biol. Evol. 7:123249–58
    [Google Scholar]
  128. Sémon M, Wolfe KH 2007. Rearrangement rate following the whole-genome duplication in teleosts. Mol. Biol. Evol. 24:860–67
    [Google Scholar]
  129. Sheehan S, Song YS 2016. Deep learning for population genetic inference. PLOS Comput. Biol. 12:3e1004845
    [Google Scholar]
  130. Smith SA, Brown JW, Yang Y, Bruenn R, Drummond CP et al. 2017. Disparity, diversity, and duplications in the Caryophyllales. New Phytol 217:2836–54
    [Google Scholar]
  131. Solís-Lemus C, Ané C 2016. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLOS Genet 12:3e1005896
    [Google Scholar]
  132. Solís-Lemus C, Bastide P, Ané C 2017. PhyloNetworks: a package for phylogenetic networks. Mol. Biol. Evol. 34:123292–98
    [Google Scholar]
  133. Soltis DE, Visger CJ, Marchant DB, Soltis PS 2016. Polyploidy: pitfalls and paths to a paradigm. Am. J. Bot. 103:71146–66
    [Google Scholar]
  134. Soltis PS, Soltis DE 2016. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30:159–65
    [Google Scholar]
  135. Stebbins GL. 1951. Variation and Evolution in Plants New York: Columbia Univ. Press
    [Google Scholar]
  136. Stein A, Coriton O, Rousseau-Geutin M, Samans B, Schiessl SV et al. 2017. Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus. Plant Biotechnol. J. 15:111478–89
    [Google Scholar]
  137. Sun Y, Wu Y, Yang C, Sun S, Lin X et al. 2017. Segmental allotetraploidy generates extensive homoeologous expression rewiring and phenotypic diversity at the population level in rice. Mol. Ecol. 26:205451–66
    [Google Scholar]
  138. Szöllősi GJ, Tannier E, Daubin V, Boussau B 2015. The inference of gene trees with species trees. Syst. Biol. 64:1e42–62
    [Google Scholar]
  139. Tasdighian S, Van Bel M, Li Z, Van de Peer Y, Carretero-Paulet L, Maere S 2017. Reciprocally retained genes in the angiosperm lineage show the hallmarks of dosage balance sensitivity. Plant Cell 29:112766–85Reciprocally retained genes have constraints on sequence, function, and expression divergence in angiosperms.
    [Google Scholar]
  140. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.”. PNAS 102:13950–55
    [Google Scholar]
  141. Thévenin A, Eib-Dor E, Ozery-Flato M, Shamir R 2014. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome. Nucleic Acids Res 42:9854–61
    [Google Scholar]
  142. Thomas GWC, Ather SH, Hahn MW 2017. Gene-tree reconciliation with MUL-trees to resolve polyploidy events. Syst. Biol. 66:61007–18This article introduces GRAMPA, a method for inferring polyploidy events using multilabeled tree reconciliation.
    [Google Scholar]
  143. Thompson A, Zakon HH, Kirkpatrick M 2016. Compensatory drift and the evolutionary dynamics of dosage-sensitive duplicate genes. Genetics 202:765–74
    [Google Scholar]
  144. Van de Peer Y, Mizrachi E, Marchal K 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18:7411–24
    [Google Scholar]
  145. van Hoek MJ, Hogeweg P 2009. Metabolic adaptation after whole genome duplication. Mol. Biol. Evol. 26:112441–53
    [Google Scholar]
  146. Van Iersel L, Jones M, Scornavacca C 2018. Improved maximum parsimony methods for phylogenetic networks. Syst. Biol. 67:518–42
    [Google Scholar]
  147. Vicient CM, Casacuberta JM 2017. Impact of transposable elements on polyploid plant genomes. Ann. Bot. 120:2195–207
    [Google Scholar]
  148. Wagner A. 2007. Energy costs constrain the evolution of gene expression. J. Exp. Zool. B Mol. Dev. Evol. 308:322–24
    [Google Scholar]
  149. Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, Hufford MB 2017. The interplay of demography and selection during maize domestication and expansion. Genome Biol 18:1215
    [Google Scholar]
  150. Washburn JD, Bird KA, Conant GC, Pires JC 2016. Convergent evolution and the origin of complex phenotypes in the age of systems biology. Int. J. Plant Sci. 177:305–18
    [Google Scholar]
  151. Wen D, Nakhleh L 2017. Co-estimating reticulate phylogenies and gene trees from multi-locus sequence data. Syst. Biol. 67:439–57
    [Google Scholar]
  152. Wen D, Yu Y, Zhu J, Nakhleh L 2018. Inferring phylogenetic networks using PhyloNet. Syst. Biol. 67:735–40
    [Google Scholar]
  153. Wendel JF, Lisch D, Hu G, Mason AS 2018. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr. Opin. Genet. Dev. 49:1–7
    [Google Scholar]
  154. Wisecaver JH, Borowsky AT, Tzin V, Jander G, Kliebenstein DJ, Rokas A 2017. A global co-expression network approach for connecting genes to specialized metabolic pathways in plants. Plant Cell 29:5944–59Analyzing gene co-expression networks outperforms bioinformatic predictions for identifying specialized metabolite pathways in plants.
    [Google Scholar]
  155. Xie T, Yang QY, Wang XT, McLysaght A, Zhang HY 2016. Spatial colocalization of human ohnolog pairs acts to maintain dosage-balance. Mol. Biol. Evol. 33:92368–75
    [Google Scholar]
  156. Xiong Z, Gaeta RT, Pires JC 2011. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. PNAS 108:197908–13
    [Google Scholar]
  157. Yanai I, Korbel JO, Boue S, McWeeney SK, Bork P, Lercher MJ 2006. Similar gene expression profiles do not imply similar tissue functions. Trends Genet 22:3132–38
    [Google Scholar]
  158. Yang J, Liu D, Wang X, Ji C, Cheng F et al. 2016. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 48:101225–32
    [Google Scholar]
  159. Zhan SH, Drori M, Goldberg EE, Otto SP, Mayrose I 2016. Phylogenetic evidence for cladogenetic polyploidization in land plants. Am. J. Bot. 103:71252–58
    [Google Scholar]
  160. Zhao M, Zhang B, Lisch D, Ma J 2017. Patterns and consequences of subgenome differentiation provide insights into the nature of paleopolyploidy in plants. Plant Cell 29:2974–94
    [Google Scholar]
  161. Zhu Y, Lin Z, Nakhleh L 2013. Evolution after whole-genome duplication: a network perspective. G3 3:2049–57
    [Google Scholar]
  162. Zohren J, Wang N, Kardailsky I, Borrell JS, Joecker A et al. 2016. Unidirectional diploid-tetraploid introgression among British birch trees with shifting ranges shown by restriction site-associated markers. Mol. Ecol. 25:112413–26
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-121415-032302
Loading
/content/journals/10.1146/annurev-ecolsys-121415-032302
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error