1932

Abstract

Diet exerts a major influence upon host immune function and the gastrointestinal microbiota. Although components of the human diet (including carbohydrates, fats, and proteins) are essential sources of nutrition for the host, they also influence immune function directly through interaction with innate and cell-mediated immune regulatory mechanisms. Regulation of the microbiota community structure also provides a mechanism by which food components influence host immune regulatory processes. Here, we consider the complex interplay between components of the modern (Western) diet, the microbiota, and host immunity in the context of obesity and metabolic disease, inflammatory bowel disease, and infection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-052720-011032
2022-03-25
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/food/13/1/annurev-food-052720-011032.html?itemId=/content/journals/10.1146/annurev-food-052720-011032&mimeType=html&fmt=ahah

Literature Cited

  1. Aeberli I, Gerber PA, Hochuli M, Kohler S, Haile SR et al. 2011. Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. Am. J. Clin. Nutr. 94:479–85
    [Google Scholar]
  2. Al Nabhani Z, Dulauroy S, Lecuyer E, Polomack B, Campagne P et al. 2019. Excess calorie intake early in life increases susceptibility to colitis in adulthood. Nat. Metab. 1:1101–9
    [Google Scholar]
  3. An D, Oh SF, Olszak T, Neves JF, Avci FY et al. 2014. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156:123–33
    [Google Scholar]
  4. An J, Zhao X, Wang Y, Noriega J, Gewirtz AT, Zou J. 2021. Western-style diet impedes colonization and clearance of Citrobacter rodentium. PLOS Pathog. 17:e1009497
    [Google Scholar]
  5. Ananthakrishnan AN, Bernstein CN, Iliopoulos D, Macpherson A, Neurath MF et al. 2018. Environmental triggers in IBD: a review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 15:39–49
    [Google Scholar]
  6. Armet AM, Deehan EC, Thone JV, Hewko SJ, Walter J. 2020. The effect of isolated and synthetic dietary fibers on markers of metabolic diseases in human intervention studies: a systematic review. Adv. Nutr. 11:420–38
    [Google Scholar]
  7. Aron-Wisnewsky J, Clement K, Nieuwdorp M 2019. Fecal microbiota transplantation: a future therapeutic option for obesity/diabetes?. Curr. Diabetes Rep. 19:51
    [Google Scholar]
  8. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–55
    [Google Scholar]
  9. Badeanlou L, Furlan-Freguia C, Yang G, Ruf W, Samad F. 2011. Tissue factor-protease-activated receptor 2 signaling promotes diet-induced obesity and adipose inflammation. Nat. Med. 17:1490–97
    [Google Scholar]
  10. Beaumont M, Andriamihaja M, Armand L, Grauso M, Jaffrezic F et al. 2017a. Epithelial response to a high-protein diet in rat colon. BMC Genom. 18:116
    [Google Scholar]
  11. Beaumont M, Portune KJ, Steuer N, Lan A, Cerrudo V et al. 2017b. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am. J. Clin. Nutr. 106:1005–19
    [Google Scholar]
  12. Becattini S, Littmann ER, Carter RA, Kim SG, Morjaria SM et al. 2017. Commensal microbes provide first line defense against Listeria monocytogenes infection. J. Exp. Med. 214:1973–89
    [Google Scholar]
  13. Begley M, Gahan CG, Hill C. 2005. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29:625–51
    [Google Scholar]
  14. Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A et al. 2016. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531:53–58
    [Google Scholar]
  15. Bian X, Chi L, Gao B, Tu P, Ru H, Lu K 2017. Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Front. Physiol. 8:487
    [Google Scholar]
  16. Blaak EE, Canfora EE, Theis S, Frost G, Groen AK et al. 2020. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 11:411–55
    [Google Scholar]
  17. Bradshaw PC, Seeds WA, Miller AC, Mahajan VR, Curtis WM. 2020. COVID-19: proposing a ketone-based metabolic therapy as a treatment to blunt the cytokine storm. Oxid. Med. Cell Longev. 2020:6401341
    [Google Scholar]
  18. Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh HJ et al. 2016. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol. 2:16215
    [Google Scholar]
  19. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L et al. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205–8
    [Google Scholar]
  20. Caesar R, Reigstad CS, Backhed HK, Reinhardt C, Ketonen M et al. 2012. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61:1701–7
    [Google Scholar]
  21. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F. 2015. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22:658–68
    [Google Scholar]
  22. Campos-Perez W, Martinez-Lopez E. 2021. Effects of short chain fatty acids on metabolic and inflammatory processes in human health. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866:5158900
    [Google Scholar]
  23. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–72
    [Google Scholar]
  24. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A et al. 2009. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–103
    [Google Scholar]
  25. Cenac N, Garcia-Villar R, Ferrier L, Larauche M, Vergnolle N et al. 2003. Proteinase-activated receptor-2-induced colonic inflammation in mice: possible involvement of afferent neurons, nitric oxide, and paracellular permeability. J. Immunol. 170:4296–300
    [Google Scholar]
  26. Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. 2017. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66:1414–27
    [Google Scholar]
  27. Chen J, Li J, Yiu JHC, Lam JKW, Wong CM et al. 2017. TRIF-dependent Toll-like receptor signaling suppresses Scd1 transcription in hepatocytes and prevents diet-induced hepatic steatosis. Sci. Signal. 10:491eaal3336
    [Google Scholar]
  28. Cimen I, Kocaturk B, Koyuncu S, Tufanli O, Onat UI et al. 2016. Prevention of atherosclerosis by bioactive palmitoleate through suppression of organelle stress and inflammasome activation. Sci. Transl. Med. 8:358ra126
    [Google Scholar]
  29. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM et al. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–84
    [Google Scholar]
  30. Costea PI, Hildebrand F, Arumugam M, Backhed F, Blaser MJ et al. 2018. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 3:8–16
    [Google Scholar]
  31. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N et al. 2013. Dietary intervention impact on gut microbial gene richness. Nature 500:585–88
    [Google Scholar]
  32. Cox SR, Lindsay JO, Fromentin S, Stagg AJ, McCarthy NE et al. 2020. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial. Gastroenterology 158:176–88.e7
    [Google Scholar]
  33. Craciun S, Balskus EP 2012. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. PNAS 109:21307–12
    [Google Scholar]
  34. Creely SJ, McTernan PG, Kusminski CM, Fisher FM, Da Silva NF et al. 2007. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292:E740–47
    [Google Scholar]
  35. Cruz-Chamorro L, Puertollano E, de Cienfuegos GA, Puertollano MA, de Pablo MA. 2011. Acquired resistance to Listeria monocytogenes during a secondary infection in a murine model fed dietary lipids. Nutrition 27:1053–60
    [Google Scholar]
  36. Dahl WJ, Rivero Mendoza D, Lambert JM 2020. Diet, nutrients and the microbiome. Prog. Mol. Biol. Transl. Sci. 171:237–63
    [Google Scholar]
  37. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63
    [Google Scholar]
  38. Deehan EC, Yang C, Perez-Munoz ME, Nguyen NK, Cheng CC et al. 2020. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe 27:389–404.e6
    [Google Scholar]
  39. Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A 2014. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 7:12–18
    [Google Scholar]
  40. Depommier C, Everard A, Druart C, Plovier H, Van Hul M et al. 2019. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25:1096–103
    [Google Scholar]
  41. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H et al. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487:104–8
    [Google Scholar]
  42. Draper LA, Ryan FJ, Dalmasso M, Casey PG, McCann A et al. 2020. Autochthonous faecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation. BMC Biol. 18:173
    [Google Scholar]
  43. Ebersbach T, Jorgensen JB, Heegaard PM, Lahtinen SJ, Ouwehand AC et al. 2010. Certain dietary carbohydrates promote Listeria infection in a guinea pig model, while others prevent it. Int. J. Food Microbiol. 140:218–24
    [Google Scholar]
  44. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. PNAS 110:9066–71
    [Google Scholar]
  45. Fan R, Kim J, You M, Giraud D, Toney AM et al. 2020. α-Linolenic acid-enriched butter attenuated high fat diet-induced insulin resistance and inflammation by promoting bioconversion of n-3 PUFA and subsequent oxylipin formation. J. Nutr. Biochem. 76:108285
    [Google Scholar]
  46. Fritsch J, Garces L, Quintero MA, Pignac-Kobinger J, Santander AM et al. 2021. Low-fat, high-fiber diet reduces markers of inflammation and dysbiosis and improves quality of life in patients with ulcerative colitis. Clin. Gastroenterol. Hepatol. 19:1189–99.e30
    [Google Scholar]
  47. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S et al. 2016. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22:1187–91
    [Google Scholar]
  48. Gonzalez FJ, Jiang C, Patterson AD. 2016. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. Gastroenterology 151:845–59
    [Google Scholar]
  49. Gonzalez Olmo BM, Butler MJ, Barrientos RM. 2021. Evolution of the human diet and its impact on gut microbiota, immune responses, and brain health. Nutrients 13:1196
    [Google Scholar]
  50. Guban J, Korver DR, Allison GE, Tannock GW 2006. Relationship of dietary antimicrobial drug administration with broiler performance, decreased population levels of Lactobacillus salivarius, and reduced bile salt deconjugation in the ileum of broiler chickens. Poult. Sci. 85:2186–94
    [Google Scholar]
  51. Gulhane M, Murray L, Lourie R, Tong H, Sheng YH et al. 2016. High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Sci. Rep. 6:28990
    [Google Scholar]
  52. He Z, Hao W, Kwek E, Lei L, Liu J et al. 2019. Fish oil is more potent than flaxseed oil in modulating gut microbiota and reducing trimethylamine-N-oxide-exacerbated atherogenesis. J. Agric. Food Chem. 67:13635–47
    [Google Scholar]
  53. Heeney DD, Gareau MG, Marco ML. 2018. Intestinal Lactobacillus in health and disease, a driver or just along for the ride?. Curr. Opin. Biotechnol. 49:140–47
    [Google Scholar]
  54. Her JY, Lee Y, Kim SJ, Heo G, Choo J et al. 2021. Blockage of protease-activated receptor 2 exacerbates inflammation in high-fat environment partly through autophagy inhibition. Am. J. Physiol. Gastrointest. Liver Physiol. 320:G30–42
    [Google Scholar]
  55. Hou YC, Chu CC, Ko TL, Yeh CL, Yeh SL. 2013. Effects of alanyl-glutamine dipeptide on the expression of colon-inflammatory mediators during the recovery phase of colitis induced by dextran sulfate sodium. Eur. J. Nutr. 52:1089–98
    [Google Scholar]
  56. Hung TV, Suzuki T 2018. Dietary fermentable fibers attenuate chronic kidney disease in mice by protecting the intestinal barrier. J. Nutr. 148:552–61
    [Google Scholar]
  57. Hyun E, Andrade-Gordon P, Steinhoff M, Vergnolle N 2008. Protease-activated receptor-2 activation: a major actor in intestinal inflammation. Gut 57:1222–29
    [Google Scholar]
  58. Ibuki M, Kovacs-Nolan J, Fukui K, Kanatani H, Mine Y. 2011. β 1–4 mannobiose enhances Salmonella-killing activity and activates innate immune responses in chicken macrophages. Vet. Immunol. Immunopathol. 139:289–95
    [Google Scholar]
  59. Ilich JZ, Kelly OJ, Kim Y, Spicer MT 2014. Low-grade chronic inflammation perpetuated by modern diet as a promoter of obesity and osteoporosis. Arh. Hig. Rada Toksikol. 65:139–48c
    [Google Scholar]
  60. Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G et al. 2006. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. PNAS 103:3920–25
    [Google Scholar]
  61. Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S et al. 2011. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141:1773–81
    [Google Scholar]
  62. Jantchou P, Morois S, Clavel-Chapelon F, Boutron-Ruault MC, Carbonnel F. 2010. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am. J. Gastroenterol. 105:2195–201
    [Google Scholar]
  63. Joyce SA, Kamil A, Fleige L, Gahan CGM. 2019. The cholesterol-lowering effect of oats and oat beta glucan: modes of action and potential role of bile acids and the microbiome. Front. Nutr. 6:171
    [Google Scholar]
  64. Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF et al. 2014. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. PNAS 111:7421–26
    [Google Scholar]
  65. Keewan E, Narasimhulu CA, Rohr M, Hamid S, Parthasarathy S 2020. Are fried foods unhealthy? The dietary peroxidized fatty acid, 13-HPODE, induces intestinal inflammation in vitro and in vivo. Antioxidants 9:10926
    [Google Scholar]
  66. Kim CJ, Kovacs-Nolan JA, Yang C, Archbold T, Fan MZ, Mine Y 2010. L-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis. J. Nutr. Biochem. 21:468–75
    [Google Scholar]
  67. Kim KS, Hong SW, Han D, Yi J, Jung J et al. 2016. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351:858–63
    [Google Scholar]
  68. Kleessen B, Hartmann L, Blaut M. 2003. Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J. Nutr. 89:597–606
    [Google Scholar]
  69. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E et al. 2013. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19:576–85
    [Google Scholar]
  70. Kong C, Yan X, Liu Y, Huang L, Zhu Y et al. 2021. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal Transduct. Target. Ther. 6:154
    [Google Scholar]
  71. Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K et al. 2016. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 7:10410
    [Google Scholar]
  72. Kreuzer M, Hardt WD. 2020. How food affects colonization resistance against enteropathogenic bacteria. Annu. Rev. Microbiol. 74:787–813
    [Google Scholar]
  73. Kunisawa J, Hashimoto E, Inoue A, Nagasawa R, Suzuki Y et al. 2014. Regulation of intestinal IgA responses by dietary palmitic acid and its metabolism. J. Immunol. 193:1666–71
    [Google Scholar]
  74. Kuzma JN, Cromer G, Hagman DK, Breymeyer KL, Roth CL et al. 2016. No differential effect of beverages sweetened with fructose, high-fructose corn syrup, or glucose on systemic or adipose tissue inflammation in normal-weight to obese adults: a randomized controlled trial. Am. J. Clin. Nutr. 104:306–14
    [Google Scholar]
  75. Lang JM, Pan C, Cantor RM, Tang WHW, Garcia-Garcia JC et al. 2018. Impact of individual traits, saturated fat, and protein source on the gut microbiome. mBio 9:e01604–18
    [Google Scholar]
  76. Las Heras V, Clooney AG, Ryan FJ, Cabrera-Rubio R, Casey PG et al. 2019. Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Microbiome 7:7
    [Google Scholar]
  77. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–46
    [Google Scholar]
  78. Lecomte M, Couedelo L, Meugnier E, Plaisancie P, Letisse M et al. 2016. Dietary emulsifiers from milk and soybean differently impact adiposity and inflammation in association with modulation of colonic goblet cells in high-fat fed mice. Mol. Nutr. Food Res. 60:609–20
    [Google Scholar]
  79. Lee JY, Ye J, Gao Z, Youn HS, Lee WH et al. 2003. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J. Biol. Chem. 278:37041–51
    [Google Scholar]
  80. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–23
    [Google Scholar]
  81. Li F, Jiang C, Krausz KW, Li Y, Albert I et al. 2013. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4:2384
    [Google Scholar]
  82. Li Z, Rava M, Bedard A, Dumas O, Garcia-Aymerich J et al. 2017. Cured meat intake is associated with worsening asthma symptoms. Thorax 72:206–12
    [Google Scholar]
  83. Liao CY, Song MJ, Gao Y, Mauer AS, Revzin A, Malhi H. 2018. Hepatocyte-derived lipotoxic extracellular vesicle sphingosine 1-phosphate induces macrophage chemotaxis. Front. Immunol. 9:2980
    [Google Scholar]
  84. Liu TC, Kern JT, Jain U, Sonnek NM, Xiong S et al. 2021. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host Microbe 29:988–1001.e6
    [Google Scholar]
  85. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S et al. 2020. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients?. Nutrients 12:51474
    [Google Scholar]
  86. Mah AT, Van Landeghem L, Gavin HE, Magness ST, Lund PK. 2014. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1. Endocrinology 155:3302–14
    [Google Scholar]
  87. McCarty MF, DiNicolantonio JJ. 2015. An increased need for dietary cysteine in support of glutathione synthesis may underlie the increased risk for mortality associated with low protein intake in the elderly. Age 37:596
    [Google Scholar]
  88. Meyer KA, Shea JW. 2017. Dietary choline and betaine and risk of CVD: a systematic review and meta-analysis of prospective studies. Nutrients 9:7711
    [Google Scholar]
  89. Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D 2012. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb. Pathog. 53:100–8
    [Google Scholar]
  90. Mocanu V, Zhang Z, Deehan EC, Kao DH, Hotte N et al. 2021. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Nat. Med. 27:71272–79
    [Google Scholar]
  91. Muehlmann LA, Zanatta AL, Farias CL, Bieberbach EW, Mazzonetto AC et al. 2010. Dietary supplementation with soybean lecithin increases pulmonary PAF bioactivity in asthmatic rats. J. Nutr. Biochem. 21:532–37
    [Google Scholar]
  92. Myles IA. 2014. Fast food fever: reviewing the impacts of the Western diet on immunity. Nutr. J. 13:61
    [Google Scholar]
  93. Naimi S, Viennois E, Gewirtz AT, Chassaing B 2021. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 9:66
    [Google Scholar]
  94. Nistal E, Caminero A, Herran AR, Perez-Andres J, Vivas S et al. 2016. Study of duodenal bacterial communities by 16S rRNA gene analysis in adults with active celiac disease vs non-celiac disease controls. J. Appl. Microbiol. 120:1691–700
    [Google Scholar]
  95. Nobs SP, Zmora N, Elinav E. 2020. Nutrition regulates innate immunity in health and disease. Annu. Rev. Nutr. 40:189–219
    [Google Scholar]
  96. Ochi T, Feng Y, Kitamoto S, Nagao-Kitamoto H, Kuffa P et al. 2016. Diet-dependent, microbiota-independent regulation of IL-10-producing lamina propria macrophages in the small intestine. Sci. Rep. 6:27634
    [Google Scholar]
  97. Ohue-Kitano R, Yasuoka Y, Goto T, Kitamura N, Park SB et al. 2018. α-Linolenic acid-derived metabolites from gut lactic acid bacteria induce differentiation of anti-inflammatory M2 macrophages through G protein-coupled receptor 40. FASEB J. 32:304–18
    [Google Scholar]
  98. Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK et al. 2012. Fucose sensing regulates bacterial intestinal colonization. Nature 492:113–17
    [Google Scholar]
  99. Passos ME, Alves HH, Momesso CM, Faria FG, Murata G et al. 2016. Differential effects of palmitoleic acid on human lymphocyte proliferation and function. Lipids Health Dis. 15:217
    [Google Scholar]
  100. Peng L, Li ZR, Green RS, Holzman IR, Lin J. 2009. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 139:1619–25
    [Google Scholar]
  101. Pillon NJ, Chan KL, Zhang S, Mejdani M, Jacobson MR et al. 2016. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release. Am. J. Physiol. Endocrinol. Metab. 311:E825–35
    [Google Scholar]
  102. Plovier H, Everard A, Druart C, Depommier C, Van Hul M et al. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23:107–13
    [Google Scholar]
  103. Ramne S, Drake I, Ericson U, Nilsson J, Orho-Melander M et al. 2020. Identification of inflammatory and disease-associated plasma proteins that associate with intake of added sugar and sugar-sweetened beverages and their role in type 2 diabetes risk. Nutrients 12:103129
    [Google Scholar]
  104. Regnier M, Van Hul M, Knauf C, Cani PD 2021. Gut microbiome, endocrine control of gut barrier function and metabolic diseases. J. Endocrinol. 248:R67–82
    [Google Scholar]
  105. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214
    [Google Scholar]
  106. Rinninella E, Cintoni M, Raoul P, Lopetuso LR, Scaldaferri F et al. 2019a. Food components and dietary habits: keys for a healthy gut microbiota composition. Nutrients 11:102393
    [Google Scholar]
  107. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD et al. 2019b. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7:114
    [Google Scholar]
  108. Ryan PM, Stanton C, Caplice NM 2017. Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions. Diabetol. Metab. Syndr. 9:102
    [Google Scholar]
  109. Saez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A. 2016. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int. J. Mol. Sci. 17:6928
    [Google Scholar]
  110. Sanchez A, Reeser JL, Lau HS, Yahiku PY, Willard RE et al. 1973. Role of sugars in human neutrophilic phagocytosis. Am. J. Clin. Nutr. 26:1180–84
    [Google Scholar]
  111. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A et al. 2019. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51:600–5
    [Google Scholar]
  112. Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M et al. 2016. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167:1125–36.e8
    [Google Scholar]
  113. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–39
    [Google Scholar]
  114. Skye SM, Zhu W, Romano KA, Guo CJ, Wang Z et al. 2018. Microbial transplantation with human gut commensals containing CutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circ. Res. 123:1164–76
    [Google Scholar]
  115. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–73
    [Google Scholar]
  116. Sorensen LB, Raben A, Stender S, Astrup A. 2005. Effect of sucrose on inflammatory markers in overweight humans. Am. J. Clin. Nutr. 82:421–27
    [Google Scholar]
  117. Souza CO, Teixeira AA, Biondo LA, Silveira LS, Calder PC, Rosa Neto JC. 2017. Palmitoleic acid reduces the inflammation in LPS-stimulated macrophages by inhibition of NFκB, independently of PPARs. Clin. Exp. Pharmacol. Physiol. 44:566–75
    [Google Scholar]
  118. Statovci D, Aguilera M, MacSharry J, Melgar S 2017. The impact of Western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front. Immunol. 8:838
    [Google Scholar]
  119. Staudacher HM, Lomer MCE, Farquharson FM, Louis P, Fava F et al. 2017. A diet low in FODMAPs reduces symptoms in patients with irritable bowel syndrome and a probiotic restores Bifidobacterium species: a randomized controlled trial. Gastroenterology 153:936–47
    [Google Scholar]
  120. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA et al. 2014. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514:181–86
    [Google Scholar]
  121. Sun M, Wu W, Chen L, Yang W, Huang X et al. 2018. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun. 9:3555
    [Google Scholar]
  122. Sunderhauf A, Pagel R, Kunstner A, Wagner AE, Rupp J et al. 2020. Saccharin supplementation inhibits bacterial growth and reduces experimental colitis in mice. Nutrients 12:41122
    [Google Scholar]
  123. Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG et al. 2016. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 15:2809–24
    [Google Scholar]
  124. Tao L, Yi Y, Chen Y, Zhang H, Orning P et al. 2021. RIP1 kinase activity promotes steatohepatitis through mediating cell death and inflammation in macrophages. Cell Death Differ. 28:1418–33
    [Google Scholar]
  125. Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E et al. 2018. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359:1376–83
    [Google Scholar]
  126. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20:159–66
    [Google Scholar]
  127. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31
    [Google Scholar]
  128. Ufnal M, Zadlo A, Ostaszewski R 2015. TMAO: a small molecule of great expectations. Nutrition 31:1317–23
    [Google Scholar]
  129. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X et al. 2011. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–58
    [Google Scholar]
  130. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K et al. 2011. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17:179–88
    [Google Scholar]
  131. Viennois E, Chassaing B. 2021. Consumption of select dietary emulsifiers exacerbates the development of spontaneous intestinal adenoma. Int. J. Mol. Sci. 22:52602
    [Google Scholar]
  132. Viennois E, Merlin D, Gewirtz AT, Chassaing B. 2017. Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis. Cancer Res. 77:27–40
    [Google Scholar]
  133. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS et al. 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–16.e7
    [Google Scholar]
  134. Wang X, de Carvalho Ribeiro M, Iracheta-Vellve A, Lowe P, Ambade A et al. 2019. Macrophage-specific hypoxia-inducible factor-1α contributes to impaired autophagic flux in nonalcoholic steatohepatitis. Hepatology 69:545–63
    [Google Scholar]
  135. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63
    [Google Scholar]
  136. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW et al. 2006. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–89
    [Google Scholar]
  137. Winesett DE, Ulshen MH, Hoyt EC, Mohapatra NK, Fuller CR, Lund PK. 1995. Regulation and localization of the insulin-like growth factor system in small bowel during altered nutrient status. Am. J. Physiol. Gastrointest. Liver Physiol. 268:G631–40
    [Google Scholar]
  138. Witjes JJ, Smits LP, Pekmez CT, Prodan A, Meijnikman AS et al. 2020. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatol. Commun. 4:1578–90
    [Google Scholar]
  139. Witkowski M, Weeks TL, Hazen SL. 2020. Gut microbiota and cardiovascular disease. Circ. Res. 127:553–70
    [Google Scholar]
  140. Wolfe RR, Cifelli AM, Kostas G, Kim IY 2017. Optimizing protein intake in adults: interpretation and application of the recommended dietary allowance compared with the acceptable macronutrient distribution range. Adv. Nutr. 8:266–75
    [Google Scholar]
  141. Wotzka SY, Kreuzer M, Maier L, Arnoldini M, Nguyen BD et al. 2019. Escherichia coli limits Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice. Nat. Microbiol. 4:2164–74
    [Google Scholar]
  142. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–8
    [Google Scholar]
  143. Wu W, Sun M, Chen F, Cao AT, Liu H et al. 2017. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 10:946–56
    [Google Scholar]
  144. Wu X, Poulsen KL, Sanz-Garcia C, Huang E, McMullen MR et al. 2020. MLKL-dependent signaling regulates autophagic flux in a murine model of non-alcohol-associated fatty liver and steatohepatitis. J. Hepatol. 73:616–27
    [Google Scholar]
  145. Yang W, Yu T, Huang X, Bilotta AJ, Xu L et al. 2020. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun. 11:4457
    [Google Scholar]
  146. Yoon HS, Cho CH, Yun MS, Jang SJ, You HJ et al. 2021. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 6:563–73
    [Google Scholar]
  147. Zhao L, Zhang F, Ding X, Wu G, Lam YY et al. 2018. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359:1151–56
    [Google Scholar]
  148. Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM et al. 2017. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J. Immunol. 199:2976–84
    [Google Scholar]
  149. Zhou Q, Pang G, Zhang Z, Yuan H, Chen C et al. 2021. Association between gut Akkermansia and metabolic syndrome is dose-dependent and affected by microbial interactions: a cross-sectional study. Diabetes Metab. Syndr. Obes. 14:2177–88
    [Google Scholar]
  150. Zhou W, Ramachandran D, Mansouri A, Dailey MJ. 2018. Glucose stimulates intestinal epithelial crypt proliferation by modulating cellular energy metabolism. J. Cell Physiol. 233:3465–75
    [Google Scholar]
/content/journals/10.1146/annurev-food-052720-011032
Loading
/content/journals/10.1146/annurev-food-052720-011032
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error