1932

Abstract

Many physical, social, and psychological changes occur during aging that raise the risk of developing chronic diseases, frailty, and dependency. These changes adversely affect the gut microbiota, a phenomenon known as microbe-aging. Those microbiota alterations are, in turn, associated with the development of age-related diseases. The gut microbiota is highly responsive to lifestyle and dietary changes, displaying a flexibility that also provides anactionable tool by which healthy aging can be promoted. This review covers, firstly, the main lifestyle and socioeconomic factors that modify the gut microbiota composition and function during healthy or unhealthy aging and, secondly, the advances being made in defining and promoting healthy aging, including microbiome-informed artificial intelligence tools, personalized dietary patterns, and food probiotic systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034458
2024-06-28
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034458.html?itemId=/content/journals/10.1146/annurev-food-072023-034458&mimeType=html&fmt=ahah

Literature Cited

  1. Agus A, Planchais J, Sokol H. 2018.. Gut microbiota regulation of tryptophan metabolism in health and disease. . Cell Host Microbe 23:(6):71624
    [Crossref] [Google Scholar]
  2. Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, et al. 2021.. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. . Nat. Med. 27:(2):32132
    [Crossref] [Google Scholar]
  3. Athari Nik Azm S, Djazayeri A, Safa M, Azami K, Ahmadvand B, et al. 2018.. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1–42) injected rats. . Appl. Physiol. Nutr. Metab. 43:(7):71826
    [Crossref] [Google Scholar]
  4. Axelrod CL, Brennan CJ, Cresci G, Paul D, Hull M, et al. 2019.. UCC118 supplementation reduces exercise-induced gastrointestinal permeability and remodels the gut microbiome in healthy humans. . Physiol. Rep. 7:(22):e14276
    [Crossref] [Google Scholar]
  5. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. 2011.. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. . Brain Behav. Immun. 25:(3):397407
    [Crossref] [Google Scholar]
  6. Bakir-Gungor B, Hacılar H, Jabeer A, Nalbantoglu OU, Aran O, Yousef M. 2022.. Inflammatory bowel disease biomarkers of human gut microbiota selected via different feature selection methods. . PeerJ 10::e13205
    [Crossref] [Google Scholar]
  7. Bárcena C, Valdés-Mas R, Mayoral P, Garabaya C, Durand S, et al. 2019.. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. . Nat. Med. 25:(8):123442
    [Crossref] [Google Scholar]
  8. Barichella M, Pacchetti C, Bolliri C, Cassani E, Iorio L, et al. 2016.. Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT. . Neurology 87:(12):127480
    [Crossref] [Google Scholar]
  9. Bennett G, Malone M, Sauther ML, Cuozzo FP, White B, et al. 2016.. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). . Am. J. Primatol. 78:(8):88392
    [Crossref] [Google Scholar]
  10. Berry SE, Valdes AM, Drew DA, Asnicar F, Mazidi M, et al. 2020.. Human postprandial responses to food and potential for precision nutrition. . Nat. Med. 26:(6):96473
    [Crossref] [Google Scholar]
  11. Biagi E, Rampelli S, Turroni S, Quercia S, Candela M, Brigidi P. 2017.. The gut microbiota of centenarians: signatures of longevity in the gut microbiota profile. . Mech. Ageing Dev. 165:(Pt. B):18084
    [Crossref] [Google Scholar]
  12. Cacioppo JT, Cacioppo S. 2018.. The growing problem of loneliness. . Lancet 391:(10119):426
    [Crossref] [Google Scholar]
  13. Cacioppo JT, Cacioppo S, Capitanio JP, Cole SW. 2015.. The neuroendocrinology of social isolation. . Annu. Rev. Psychol. 66::73367
    [Crossref] [Google Scholar]
  14. Cacioppo JT, Patrick W. 2009.. Loneliness: Human Nature and the Need for Social Connection. New York:: W.W. Norton. Reprint ed .
    [Google Scholar]
  15. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. 2015.. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. . Cell Metab. 22:(4):65868
    [Crossref] [Google Scholar]
  16. Candela M, Biagi E, Brigidi P, O'Toole PW, De Vos WM. 2014.. Maintenance of a healthy trajectory of the intestinal microbiome during aging: a dietary approach. . Mech. Ageing Dev. 136–137::7075
    [Crossref] [Google Scholar]
  17. Cannarella LAT, Mari NL, Alcântara CC, Iryioda TMV, Costa NT, et al. 2021.. Mixture of probiotics reduces inflammatory biomarkers and improves the oxidative/nitrosative profile in people with rheumatoid arthritis. . Nutrition 89::111282
    [Crossref] [Google Scholar]
  18. Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, et al. 2017.. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. . Neurobiol. Aging 49::6068
    [Crossref] [Google Scholar]
  19. Cenit MC, Sanz Y, Codoñer-Franch P. 2017.. Influence of gut microbiota on neuropsychiatric disorders. . World J. Gastroenterol. 23:(30):548698
    [Crossref] [Google Scholar]
  20. Cerro ED-D, Lambea M, Félix J, Salazar N, Gueimonde M, De la Fuente M. 2022.. Daily ingestion of Akkermansia mucciniphila for one month promotes healthy aging and increases lifespan in old female mice. . Biogerontology 23:(1):3552
    [Crossref] [Google Scholar]
  21. Chittim CL, Irwin SM, Balskus EP. 2018.. Deciphering human gut microbiota–nutrient interactions: a role for biochemistry. . Biochemistry 57:(18):256777
    [Crossref] [Google Scholar]
  22. Cho I, Blaser MJ. 2012.. The human microbiome: at the interface of health and disease. . Nat. Rev. Genet. 13:(4):26070
    [Crossref] [Google Scholar]
  23. Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, et al. 2011.. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. . PNAS 108:(Suppl. 1):458691
    [Crossref] [Google Scholar]
  24. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, et al. 2012.. Gut microbiota composition correlates with diet and health in the elderly. . Nature 488:(7410):17884
    [Crossref] [Google Scholar]
  25. Collino S, Montoliu I, Martin F-PJ, Scherer M, Mari D, et al. 2013.. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. . PLOS ONE 8:(3):e56564
    [Crossref] [Google Scholar]
  26. Cortés-Martín A, Selma MV, Tomás-Barberán FA, González-Sarrías A, Espín JC. 2020.. Where to look into the puzzle of polyphenols and health? The postbiotics and gut microbiota associated with human metabotypes. . Mol. Nutr. Food Res. 64:(9):e1900952
    [Crossref] [Google Scholar]
  27. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, et al. 2019.. The microbiota-gut-brain axis. . Physiol. Rev. 99:(4):18772013
    [Crossref] [Google Scholar]
  28. Cryan JF, O'Riordan KJ, Sandhu K, Peterson V, Dinan TG. 2020.. The gut microbiome in neurological disorders. . Lancet Neurol. 19:(2):17994
    [Crossref] [Google Scholar]
  29. Cunningham M, Azcarate-Peril MA, Barnard A, Benoit V, Grimaldi R, et al. 2021.. Shaping the future of probiotics and prebiotics. . Trends Microbiol. 29:(8):66785
    [Crossref] [Google Scholar]
  30. Davinelli S, Scapagnini G. 2022.. Interactions between dietary polyphenols and aging gut microbiota: a review. . Biofactors 48:(2):27484
    [Crossref] [Google Scholar]
  31. Dill-McFarland KA, Tang Z-Z, Kemis JH, Kerby RL, Chen G, et al. 2019.. Close social relationships correlate with human gut microbiota composition. . Sci. Rep. 9:(1):703
    [Crossref] [Google Scholar]
  32. Dinan TG, Stanton C, Long-Smith C, Kennedy P, Cryan JF, et al. 2019.. Feeding melancholic microbes: MyNewGut recommendations on diet and mood. . Clin. Nutr. 38:(5):19952001
    [Crossref] [Google Scholar]
  33. Donati Zeppa S, Agostini D, Gervasi M, Annibalini G, Amatori S, et al. 2020.. Mutual interactions among exercise, sport supplements and microbiota. . Nutrients 12:(1):17
    [Crossref] [Google Scholar]
  34. Finch CE. 2007.. The Biology of Human Longevity: Inflammation, Nutrition, and Aging in the Evolution of Lifespans. Burlington, MA:: Academic Press. , 1st ed..
    [Google Scholar]
  35. Finch CE, Kirkwood TBL, eds. 2000.. Chance, Development, and Aging. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  36. Fisette A, Sergi D, Breton-Morin A, Descôteaux S, Martinoli M-G. 2022.. New insights on the role of bioactive food derivatives in neurodegeneration and neuroprotection. . Curr. Pharm. Des. 28:(37):306881
    [Crossref] [Google Scholar]
  37. Fragomeno M, Assad S, Mobili P, Peruzzo PJ, Minnaard J, Pérez PF. 2021.. Biomodification of acenocoumarol by bifidobacteria. . FEMS Microbiol. Lett. 368:(18):fnab125
    [Crossref] [Google Scholar]
  38. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. 2017.. Inflammaging and “garb-aging. .” Trends Endocrinol. Metab. 28:(3):199212
    [Crossref] [Google Scholar]
  39. García-Villalba R, Tomás-Barberán FA, Iglesias-Aguirre CE, Giménez-Bastida JA, González-Sarrías A, et al. 2023.. Ellagitannins, urolithins, and neuroprotection: human evidence and the possible link to the gut microbiota. . Mol. Aspects Med. 89::101109
    [Crossref] [Google Scholar]
  40. Ghannam RB, Techtmann SM. 2021.. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. . Comput. Struct. Biotechnol. J. 19::1092107
    [Crossref] [Google Scholar]
  41. Ghosh TS, Shanahan F, O'Toole PW. 2022.. The gut microbiome as a modulator of healthy ageing. . Nat. Rev. Gastroenterol. Hepatol. 19:(9):56584
    [Crossref] [Google Scholar]
  42. Greene M, Steinman MA, McNicholl IR, Valcour V. 2014.. Polypharmacy, drug-drug interactions, and potentially inappropriate medications in older adults with human immunodeficiency virus infection. . J. Am. Geriatr. Soc. 62:(3):44753
    [Crossref] [Google Scholar]
  43. Huang S, Haiminen N, Carrieri A-P, Hu R, Jiang L, et al. 2020.. Human skin, oral, and gut microbiomes predict chronological age. . mSystems 5:(1):e00630-19
    [Crossref] [Google Scholar]
  44. Hughes RL, Holscher HD. 2021.. Fueling gut microbes: a review of the interaction between diet, exercise, and the gut microbiota in athletes. . Adv. Nutr. 12:(6):2190215
    [Crossref] [Google Scholar]
  45. Hwang Y-H, Park S, Paik J-W, Chae S-W, Kim D-H, et al. 2019.. Efficacy and safety of Lactobacillus plantarum C29-fermented soybean (DW2009) in individuals with mild cognitive impairment: a 12-week, multi-center, randomized, double-blind, placebo-controlled clinical trial. . Nutrients 11:(2):305
    [Crossref] [Google Scholar]
  46. Ibrahim A, Ali RAR, Manaf MRA, Ahmad N, Tajurruddin FW, et al. 2020.. Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson's disease: a randomised controlled trial. . PLOS ONE 15:(12):e0244680
    [Crossref] [Google Scholar]
  47. Iglesias-Aguirre CE, García-Villalba R, Beltrán D, Frutos-Lisón MD, Espín JC, et al. 2023.. Gut bacteria involved in ellagic acid metabolism to yield human urolithin metabotypes revealed. . J. Agric. Food Chem. 71:(9):402935
    [Crossref] [Google Scholar]
  48. Imhann F, Bonder MJ, Vich Vila A, Fu J, Mujagic Z, et al. 2016.. Proton pump inhibitors affect the gut microbiome. . Gut 65:(5):74048
    [Crossref] [Google Scholar]
  49. Jacobs DR, Orlich MJ. 2014.. Diet pattern and longevity: Do simple rules suffice? A commentary. . Am. J. Clin. Nutr. 100:(1):313S19S
    [Crossref] [Google Scholar]
  50. Johnson KV-A, Foster KR. 2018.. Why does the microbiome affect behaviour?. Nat. Rev. Microbiol. 16:(10):64755
    [Crossref] [Google Scholar]
  51. Kashtanova DA, Klimenko NS, Strazhesko ID, Starikova EV, Glushchenko OE, et al. 2020.. A cross-sectional study of the gut microbiota composition in Moscow long-livers. . Microorganisms 8:(8):1162
    [Crossref] [Google Scholar]
  52. Kashyap PC, Chia N, Nelson H, Segal E, Elinav E. 2017.. Microbiome at the frontier of personalized medicine. . Mayo Clin. Proc. 92:(12):185564
    [Crossref] [Google Scholar]
  53. Katz DL, Meller S. 2014.. Can we say what diet is best for health?. Annu. Rev. Public Health 35::83103
    [Crossref] [Google Scholar]
  54. Keohane DM, Woods T, O'Connor P, Underwood S, Cronin O, et al. 2019.. Four men in a boat: ultra-endurance exercise alters the gut microbiome. . J. Sci. Med. Sport. 22:(9):105964
    [Crossref] [Google Scholar]
  55. Kiousi DE, Kouroutzidou AZ, Neanidis K, Matthaios D, Pappa A, Galanis A. 2022.. Evaluating the role of probiotics in the prevention and management of age-related diseases. . Int. J. Mol. Sci. 23:(7):3628
    [Crossref] [Google Scholar]
  56. Klemera P, Doubal S. 2006.. A new approach to the concept and computation of biological age. . Mech. Ageing Dev. 127:(3):24048
    [Crossref] [Google Scholar]
  57. Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, et al. 2017.. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. . Sci. Rep. 7::13510
    [Crossref] [Google Scholar]
  58. Kong F, Hua Y, Zeng B, Ning R, Li Y, Zhao J. 2016.. Gut microbiota signatures of longevity. . Curr. Biol. 26:(18):R83233
    [Crossref] [Google Scholar]
  59. Krivanek TJ, Gale SA, McFeeley BM, Nicastri CM, Daffner KR. 2021.. Promoting successful cognitive aging: a ten-year update. . J. Alzheimer's Dis. 81:(3):871920
    [Crossref] [Google Scholar]
  60. Kulkarni AS, Gubbi S, Barzilai N. 2020.. Benefits of metformin in attenuating the hallmarks of aging. . Cell Metab. 32:(1):1530
    [Crossref] [Google Scholar]
  61. Kwon G, Lee J, Lim Y-H. 2016.. Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system. . Sci. Rep. 6::31713
    [Crossref] [Google Scholar]
  62. Lach G, Schellekens H, Dinan TG, Cryan JF. 2018.. Anxiety, depression, and the microbiome: a role for gut peptides. . Neurotherapeutics 15:(1):3659
    [Crossref] [Google Scholar]
  63. LaPierre N, Ju CJ-T, Zhou G, Wang W. 2019.. MetaPheno: a critical evaluation of deep learning and machine learning in metagenome-based disease prediction. . Methods 166::7482
    [Crossref] [Google Scholar]
  64. Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, et al. 2014.. Longitudinal analysis of microbial interaction between humans and the indoor environment. . Science 345:(6200):104852
    [Crossref] [Google Scholar]
  65. Lee H, Lee Y, Kim J, An J, Lee S, et al. 2018.. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. . Gut Microbes 9:(2):15565
    [Crossref] [Google Scholar]
  66. Leelakanok N, Holcombe AL, Lund BC, Gu X, Schweizer ML. 2017.. Association between polypharmacy and death: a systematic review and meta-analysis. . J. Am. Pharm. Assoc. 57:(6):72938.e10
    [Crossref] [Google Scholar]
  67. Li X, Cai Z, Liu J, Wang N, Zhu X, et al. 2023.. Antiobesity effect of L-arabinose via ameliorating insulin resistance and modulating gut microbiota in obese mice. . Nutrition 111::112041
    [Crossref] [Google Scholar]
  68. Lin H, Peddada SD. 2020.. Analysis of microbial compositions: a review of normalization and differential abundance analysis. . npj Biofilms Microbiomes 6:(1):60
    [Crossref] [Google Scholar]
  69. Lo C, Marculescu R. 2019.. MetaNN: accurate classification of host phenotypes from metagenomic data using neural networks. . BMC Bioinform. 20:(Suppl. 12):314
    [Crossref] [Google Scholar]
  70. Lovat LB. 1996.. Age related changes in gut physiology and nutritional status. . Gut 38:(3):3069
    [Crossref] [Google Scholar]
  71. Lunken GR, Golding L, Schick A, Majdoubi A, Lavoie PM, Vallance BA. 2023.. Gut microbiome and dietary fibre intake strongly associate with IgG function and maturation following SARS-CoV-2 mRNA vaccination. . Gut 73:(1):20810
    [Crossref] [Google Scholar]
  72. Lushchak O, Piskovatska V, Strilbytska O, Kindrat I, Stefanyshyn N, et al. 2021.. Aspirin as a potential geroprotector: experimental data and clinical evidence. . Adv. Exp. Med. Biol. 1286::14561
    [Crossref] [Google Scholar]
  73. Ma H, Wang X, Xue Q, Li X, Liang Z, et al. 2023.. Cardiovascular health and life expectancy among adults in the United States. . Circulation 147:(15):113746
    [Crossref] [Google Scholar]
  74. Maher RL, Hanlon J, Hajjar ER. 2014.. Clinical consequences of polypharmacy in elderly. . Expert Opin. Drug Saf. 13:(1):5765
    [Crossref] [Google Scholar]
  75. Makki K, Deehan EC, Walter J, Bäckhed F. 2018.. The impact of dietary fiber on gut microbiota in host health and disease. . Cell Host Microbe 23:(6):70515
    [Crossref] [Google Scholar]
  76. Marcos-Zambrano LJ, Karaduzovic-Hadziabdic K, Loncar Turukalo T, Przymus P, Trajkovik V, et al. 2021.. Applications of machine learning in human microbiome studies: a review on feature selection, biomarker identification, disease prediction and treatment. . Front. Microbiol. 12::634511
    [Crossref] [Google Scholar]
  77. Marttinen M, Ala-Jaakkola R, Laitila A, Lehtinen MJ. 2020.. Gut microbiota, probiotics and physical performance in athletes and physically active individuals. . Nutrients 12:(10):2936
    [Crossref] [Google Scholar]
  78. Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Martin M, de la Vega-Correa L, et al. 2022.. Microbiota alterations in proline metabolism impact depression. . Cell Metab. 34:(5):681701.e10
    [Crossref] [Google Scholar]
  79. Meng HYH, Mak CCH, Mak WY, Zuo T, Ko H, Chan FKL. 2022.. Probiotic supplementation demonstrates therapeutic potential in treating gut dysbiosis and improving neurocognitive function in age-related dementia. . Eur. J. Nutr. 61:(4):170134
    [Crossref] [Google Scholar]
  80. Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, et al. 2017.. Neurotransmitters: the critical modulators regulating gut-brain axis. . J. Cell. Physiol. 232:(9):235972
    [Crossref] [Google Scholar]
  81. Molinero N, Antón-Fernández A, Hernández F, Ávila J, Bartolomé B, Moreno-Arribas MV. 2023.. Gut microbiota, an additional hallmark of human aging and neurodegeneration. . Neuroscience 518::14161
    [Crossref] [Google Scholar]
  82. Morita H, Kano C, Ishii C, Kagata N, Ishikawa T, et al. 2023.. Bacteroides uniformis and its preferred substrate, α-cyclodextrin, enhance endurance exercise performance in mice and human males. . Sci. Adv. 9:(4):eadd2120
    [Crossref] [Google Scholar]
  83. Muralidharan J, Moreno-Indias I, Bulló M, Lopez JV, Corella D, et al. 2021.. Effect on gut microbiota of a 1-y lifestyle intervention with Mediterranean diet compared with energy-reduced Mediterranean diet and physical activity promotion: PREDIMED-Plus Study. . Am. J. Clin. Nutr. 114:(3):114858
    [Crossref] [Google Scholar]
  84. Nakagawa H, Shiozaki T, Kobatake E, Hosoya T, Moriya T, et al. 2016.. Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. . Aging Cell 15:(2):22736
    [Crossref] [Google Scholar]
  85. Nakamura E, Miyao K, Ozeki T. 1988.. Assessment of biological age by principal component analysis. . Mech. Ageing Dev. 46:(1–3):118
    [Crossref] [Google Scholar]
  86. Ni Y, Yang X, Zheng L, Wang Z, Wu L, et al. 2019.. Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota. . Mol. Nutr. Food Res. 63:(22):e1900603
    [Crossref] [Google Scholar]
  87. Nilsson AG, Sundh D, Bäckhed F, Lorentzon M. 2018.. Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double-blind, clinical trial. . J. Intern. Med. 284:(3):30717
    [Crossref] [Google Scholar]
  88. Norman K, Haß U, Pirlich M. 2021.. Malnutrition in older adults—recent advances and remaining challenges. . Nutrients 13:(8):2764
    [Crossref] [Google Scholar]
  89. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, et al. 2016.. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. . BMC Microbiol. 16::90
    [Crossref] [Google Scholar]
  90. Oh M, Zhang L. 2020.. DeepMicro: deep representation learning for disease prediction based on microbiome data. . Sci. Rep. 10:(1):6026
    [Crossref] [Google Scholar]
  91. Oren A, Garrity GM. 2021.. Valid publication of the names of forty-two phyla of prokaryotes. . Int. J. Syst. Evol. Microbiol. 71:(10):ijsem.0.005056
    [Google Scholar]
  92. O'Toole PW, Jeffery IB. 2015.. Gut microbiota and aging. . Science 350:(6265):121415
    [Crossref] [Google Scholar]
  93. Park MR, Oh S, Son SJ, Park D-J, Oh S, et al. 2015.. Bacillus licheniformis isolated from traditional Korean food resources enhances the longevity of Caenorhabditis elegans through serotonin signaling. . J. Agric. Food Chem. 63:(47):1022733
    [Crossref] [Google Scholar]
  94. Pasolli E, Truong DT, Malik F, Waldron L, Segata N. 2016.. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. . PLOS Comput. Biol. 12:(7):e1004977
    [Crossref] [Google Scholar]
  95. Petermann-Rocha F, Deo S, Celis-Morales C, Ho FK, Bahuguna P, et al. 2023.. An opportunity for prevention: associations between the Life's Essential 8 score and cardiovascular incidence using prospective data from UK Biobank. . Curr. Probl. Cardiol. 48:(4):101540
    [Crossref] [Google Scholar]
  96. Prince MJ, Harwood RH, Blizard RA, Thomas A, Mann AH. 1997.. Social support deficits, loneliness and life events as risk factors for depression in old age. The Gospel Oak Project VI. . Psychol. Med. 27:(2):32332
    [Crossref] [Google Scholar]
  97. Radjabzadeh D, Bosch JA, Uitterlinden AG, Zwinderman AH, Ikram MA, et al. 2022.. Gut microbiome-wide association study of depressive symptoms. . Nat. Commun. 13:(1):7128
    [Crossref] [Google Scholar]
  98. Ramne S, Brunkwall L, Ericson U, Gray N, Kuhnle GGC, et al. 2021.. Gut microbiota composition in relation to intake of added sugar, sugar-sweetened beverages and artificially sweetened beverages in the Malmö Offspring Study. . Eur. J. Nutr. 60:(4):208797
    [Crossref] [Google Scholar]
  99. Rampelli S, Soverini M, D'Amico F, Barone M, Tavella T, et al. 2020.. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. . mSystems 5:(2):e00124-20
    [Crossref] [Google Scholar]
  100. Régnier M, Van Hul M, Knauf C, Cani PD. 2021.. Gut microbiome, endocrine control of gut barrier function and metabolic diseases. . J. Endocrinol. 248:(2):R6782
    [Crossref] [Google Scholar]
  101. Rook GAW, Raison CL, Lowry CA. 2014.. Microbial “old friends”, immunoregulation and socioeconomic status. . Clin. Exp. Immunol. 177:(1):112
    [Crossref] [Google Scholar]
  102. Routasalo PE, Savikko N, Tilvis RS, Strandberg TE, Pitkälä KH. 2006.. Social contacts and their relationship to loneliness among aged people: a population-based study. . Gerontology 52:(3):18187
    [Crossref] [Google Scholar]
  103. Santoro A, Zhao J, Wu L, Carru C, Biagi E, Franceschi C. 2020.. Microbiomes other than the gut: inflammaging and age-related diseases. . Semin. Immunopathol. 42:(5):589605
    [Crossref] [Google Scholar]
  104. Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, et al. 2019.. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. . Nat. Med. 25:(7):11049
    [Crossref] [Google Scholar]
  105. Sindhunata DP, Meijnikman AS, Gerdes VEA, Nieuwdorp M. 2022.. Dietary fructose as a metabolic risk factor. . Am. J. Physiol. Cell Physiol. 323:(3):C84756
    [Crossref] [Google Scholar]
  106. Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, et al. 2017.. Influence of diet on the gut microbiome and implications for human health. . J. Transl. Med. 15:(1):73
    [Crossref] [Google Scholar]
  107. Solfrizzi V, Custodero C, Lozupone M, Imbimbo BP, Valiani V, et al. 2017.. Relationships of dietary patterns, foods, and micro- and macronutrients with Alzheimer's disease and late-life cognitive disorders: a systematic review. . J. Alzheimer's Dis. 59:(3):81549
    [Crossref] [Google Scholar]
  108. Tan AH, Lim S-Y, Chong KK, A Manap MAA, Hor JW, et al. 2021.. Probiotics for constipation in Parkinson disease: a randomized placebo-controlled study. . Neurology 96:(5):e77282
    [Crossref] [Google Scholar]
  109. Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, et al. 2017.. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. . Cell Host Microbe 21:(4):45566.e4
    [Crossref] [Google Scholar]
  110. Tomás-Barberán FA, Selma MV, Espín JC. 2016.. Interactions of gut microbiota with dietary polyphenols and consequences to human health. . Curr. Opin. Clin. Nutr. Metab. Care 19:(6):47176
    [Crossref] [Google Scholar]
  111. Topçuoğlu BD, Lesniak NA, Ruffin MT, Wiens J, Schloss PD. 2020.. A framework for effective application of machine learning to microbiome-based classification problems. . mBio 11:(3):e00434-20
    [Crossref] [Google Scholar]
  112. Tropini C, Moss EL, Merrill BD, Ng KM, Higginbottom SK, et al. 2018.. Transient osmotic perturbation causes long-term alteration to the gut microbiota. . Cell 173:(7):174254.e17
    [Crossref] [Google Scholar]
  113. Tu M-Y, Chen H-L, Tung Y-T, Kao C-C, Hu F-C, Chen C-M. 2015.. Short-term effects of kefir-fermented milk consumption on bone mineral density and bone metabolism in a randomized clinical trial of osteoporotic patients. . PLOS ONE 10:(12):e0144231
    [Crossref] [Google Scholar]
  114. Tuikhar N, Keisam S, Labala RK, Imrat Ramakrishnan P, et al. 2019.. Comparative analysis of the gut microbiota in centenarians and young adults shows a common signature across genotypically non-related populations. . Mech. Ageing Dev. 179::2335
    [Crossref] [Google Scholar]
  115. Tung J, Barreiro LB, Burns MB, Grenier J-C, Lynch J, et al. 2015.. Social networks predict gut microbiome composition in wild baboons. . eLife 4::e05224
    [Crossref] [Google Scholar]
  116. United Nations. 2020.. World population ageing 2019. Rep. , U. N., New York:. https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Report.pdf
    [Google Scholar]
  117. Vaiserman AM, Koliada AK, Marotta F. 2017.. Gut microbiota: a player in aging and a target for anti-aging intervention. . Ageing Res. Rev. 35::3645
    [Crossref] [Google Scholar]
  118. Veiga P, Suez J, Derrien M, Elinav E. 2020.. Moving from probiotics to precision probiotics. . Nat. Microbiol. 5:(7):87880
    [Crossref] [Google Scholar]
  119. Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. 2016.. Variable responses of human microbiomes to dietary supplementation with resistant starch. . Microbiome 4:(1):33
    [Crossref] [Google Scholar]
  120. Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F, et al. 2020.. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. . Nat. Commun. 11:(1):362
    [Crossref] [Google Scholar]
  121. Voitenko VP, Tokar AV. 1983.. The assessment of biological age and sex differences of human aging. . Exp. Aging Res. 9:(4):23944
    [Crossref] [Google Scholar]
  122. Vriesman MH, Koppen IJN, Camilleri M, Di Lorenzo C, Benninga MA. 2020.. Management of functional constipation in children and adults. . Nat. Rev. Gastroenterol. Hepatol. 17:(1):2139
    [Crossref] [Google Scholar]
  123. Wassan JT, Wang H, Browne F, Zheng H. 2019.. Phy-PMRFI: phylogeny-aware prediction of metagenomic functions using random forest feature importance. . IEEE Trans. Nanobiosci. 18:(3):27382
    [Crossref] [Google Scholar]
  124. Weersma RK, Zhernakova A, Fu J. 2020.. Interaction between drugs and the gut microbiome. . Gut 69:(8):151019
    [Crossref] [Google Scholar]
  125. Willett W, Rockström J, Loken B, Springmann M, Lang T, et al. 2019.. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. . Lancet 393:(10170):44792
    [Crossref] [Google Scholar]
  126. Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J, et al. 2021.. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. . Nat. Metab. 3:(2):27486
    [Crossref] [Google Scholar]
  127. Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, et al. 2019.. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. . Nat. Med. 25:(4):67989
    [Crossref] [Google Scholar]
  128. Wolters M, Ahrens J, Romaní-Pérez M, Watkins C, Sanz Y, et al. 2019.. Dietary fat, the gut microbiota, and metabolic health: a systematic review conducted within the MyNewGut project. . Clin. Nutr. 38:(6):250420
    [Crossref] [Google Scholar]
  129. Wu L, Zeng T, Zinellu A, Rubino S, Kelvin DJ, Carru C. 2019a.. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. . mSystems 4:(4):e00325-19
    [Crossref] [Google Scholar]
  130. Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, et al. 2019.. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. . Nat. Med. 25:(6):96876
    [Crossref] [Google Scholar]
  131. Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng Q-J, Zhang W. 2020.. Role of dietary nutrients in the modulation of gut microbiota: a narrative review. . Nutrients 12:(2):381
    [Crossref] [Google Scholar]
  132. Zamani B, Golkar HR, Farshbaf S, Emadi-Baygi M, Tajabadi-Ebrahimi M, et al. 2016.. Clinical and metabolic response to probiotic supplementation in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. . Int. J. Rheum. Dis. 19:(9):86979
    [Crossref] [Google Scholar]
  133. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, et al. 2015.. Personalized nutrition by prediction of glycemic responses. . Cell 163:(5):107994
    [Crossref] [Google Scholar]
  134. Zhang X, Coker OO, Chu ES, Fu K, Lau HCH, et al. 2021.. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. . Gut 70:(4):76174
    [Crossref] [Google Scholar]
  135. Zhao R, Coker OO, Wu J, Zhou Y, Zhao L, et al. 2020.. Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. . Gastroenterology 159:(3):96983.e4
    [Crossref] [Google Scholar]
  136. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, et al. 2016.. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. . Science 352:(6285):56569
    [Crossref] [Google Scholar]
  137. Zhong F, Xu Y, Lai H-Y, Yang M, Cheng L, et al. 2022.. Effects of combined aerobic and resistance training on gut microbiota and cardiovascular risk factors in physically active elderly women: a randomized controlled trial. . Front. Physiol. 13::1004863
    [Crossref] [Google Scholar]
  138. Zhong X, Powell C, Phillips CM, Millar SR, Carson BP, et al. 2021.. The influence of different physical activity behaviours on the gut microbiota of older Irish adults. . J. Nutr. Health Aging 25:(7):85461
    [Crossref] [Google Scholar]
  139. Zhu Q, Li B, He T, Li G, Jiang X. 2020.. Robust biomarker discovery for microbiome-wide association studies. . Methods 173::4451
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034458
Loading
/content/journals/10.1146/annurev-food-072023-034458
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error