1932

Abstract

In this review, I assess a variety of constraint-based formal frameworks that can treat variable phenomena, such as well-formedness intuitions, outputs in free variation, and lexical frequency-matching. The idea behind this assessment is that data in gradient linguistics fall into natural mathematical patterns, which I call . The key signatures treated here are the , going from zero to one probability, and the , which combines two or more sigmoids. I argue that these signatures appear repeatedly in linguistics, and I adduce examples from phonology, syntax, semantics, sociolinguistics, phonetics, and language change. I suggest that the ability to generate these signatures is a trait that can help us choose between rival frameworks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-linguistics-031220-013128
2022-01-14
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/linguistics/8/1/annurev-linguistics-031220-013128.html?itemId=/content/journals/10.1146/annurev-linguistics-031220-013128&mimeType=html&fmt=ahah

Literature Cited

  1. AnderBois S, Brasoveanu A, Henderson R. 2012. The pragmatics of quantifier scope: a corpus study. Proceedings of Sinn und Bedeutung 1615–28 Cambridge, MA: MIT Press
    [Google Scholar]
  2. Anttila A 1997. Deriving variation from grammar: a study of Finnish genitives. Variation, Change and Phonological Theory F Hinskens, R van Hout, L Wetzels 35–68 Amsterdam: John Benjamins
    [Google Scholar]
  3. Anttila A, Magri G. 2017. Does MaxEnt overgenerate? Implicational universals in maximum entropy grammar. Proceedings of the 2017 Annual Meeting on Phonology G Gallagher, M Gouskova, S Heng Yin Washington, DC: Linguist. Soc. Am https://doi.org/10.3765/amp.v5i0.4260
    [Crossref] [Google Scholar]
  4. Anttila A, Magri G, Borgeson S 2019. Equiprobable mappings in weighted constraint grammars. Proceedings of the 16th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology G Nicolai, R Cotterell 125–34 Stroudsburg, PA: Assoc. Comput. Linguist.
    [Google Scholar]
  5. Baayen RH. 2008. Analyzing Linguistic Data: A Practical Introduction to Statistics Using R Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  6. Bailey C-JN. 1973. Variation and Linguistic Theory Washington, DC: Cent. Appl. Linguist.
    [Google Scholar]
  7. Battista J, Badcock DR, McKendrick AM. 2011. Migraine increases centre-surround suppression for drifting visual stimuli. PLOS ONE 6:4e18211
    [Google Scholar]
  8. Beaudot WHA. 1996. Adaptive spatiotemporal filtering by a neuromorphic model of the vertebrate retina. Proceedings of 3rd IEEE International Conference on Image Processing 1427–30 New York: IEEE
    [Google Scholar]
  9. Berko J. 1958. The child's learning of English morphology. Word 14:150–77
    [Google Scholar]
  10. Blythe RA, Croft W. 2012. S-curves and the mechanisms of propagation in language change. Language 88:269–304
    [Google Scholar]
  11. Bod R, Hay J, Jannedy S 2003. Probabilistic Linguistics Cambridge, MA: MIT Press
    [Google Scholar]
  12. Boersma P. 1998. Functional Phonology: Formalizing the Interactions Between Articulatory and Perceptual Drives The Hague, Neth: Holland Acad. Graph.
    [Google Scholar]
  13. Boersma P, Pater J 2016. Convergence properties of a gradual learning algorithm for Harmonic Grammar. Harmonic Grammar and Harmonic Serialism J McCarthy, J Pater 389–434 London: Equinox
    [Google Scholar]
  14. Bresnan J, Cueni A, Nikitina T, Baayen RH 2007. Predicting the dative alternation. Cognitive Foundations of Interpretation G Boume, I Krämer, J Zwarts 69–94 Amsterdam: R. Neth. Acad. Sci.
    [Google Scholar]
  15. Bresnan J, Ford M 2010. Predicting syntax: processing dative constructions in American and Australian varieties of English. Language 86:168–213
    [Google Scholar]
  16. Bresnan J, Hay J. 2008. Gradient grammar: an effect of animacy on the syntax of give in New Zealand and American English. Lingua 118:245–59
    [Google Scholar]
  17. Cedergren HJ, Sankoff D. 1974. Variable rules: performance as a statistical reflection of competence. Language 50:333–55
    [Google Scholar]
  18. Chambers JK, Schilling N 2013. The Handbook of Language Variation and Change Oxford, UK: Wiley-Blackwell, 2nd ed..
    [Google Scholar]
  19. Coetzee AW, Kawahara S. 2013. Frequency biases in phonological variation. Nat. Lang. Linguist. Theory 31:47–89
    [Google Scholar]
  20. Cramer JS. 2002. The origins of logistic regression Tinbergen Inst. Discuss. Pap. 02-119/4 Tinbergen Inst., Amsterdam
    [Google Scholar]
  21. de Lacy P. 2004. Markedness conflation in Optimality Theory. Phonology 21:145–99
    [Google Scholar]
  22. Ernestus M, Baayen RH. 2003. Predicting the unpredictable: interpreting neutralized segments in Dutch. Language 79:5–38
    [Google Scholar]
  23. Fechner G. 1966 (1860. Elements of Psychophysics trans. HE Adler Amsterdam: Bonset
    [Google Scholar]
  24. Flemming E, Cho H 2017. The phonetic specification of contour tones: evidence from the Mandarin rising tone. Phonology 34:1–40
    [Google Scholar]
  25. Ganong F. 1980. Phonetic categorization in auditory word perception. J. Exp. Psychol.: Hum. Percept. Perform. 6:110–25
    [Google Scholar]
  26. Goldberg Y. 2017. Neural Network Methods for Natural Language Processing San Rafael, CA: Morgan and Claypool
    [Google Scholar]
  27. Goldwater S, Johnson M. 2003. Learning OT constraint rankings using a Maximum Entropy model. Proceedings of the Stockholm Workshop on ‘Variation Within Optimality Theory, ed. J Spenader, A Eriksson, Ö Dahl 113–22 Stockholm: Stockholm Univ.
    [Google Scholar]
  28. Hayes B. 2017. Varieties of Noisy Harmonic Grammar. Proceedings of the 2016 Annual Meeting on Phonology K Jesney, C O'Hara, C Smith, R Walker Washington, DC: Linguist. Soc. Am https://doi.org/10.3765/amp.v4i0.3997
    [Crossref] [Google Scholar]
  29. Hayes B, Schuh R 2019. Metrical structure and sung rhythm of the Hausa rajaz. Language 95:e253–99
    [Google Scholar]
  30. Hayes B, Wilson C 2008. A maximum entropy model of phonotactics and phonotactic learning. Linguist. Inq. 39:379–440
    [Google Scholar]
  31. Hayes B, Zuraw K, Siptar P, Londe Z. 2009. Natural and unnatural constraints in Hungarian vowel harmony. Language 85:822–63
    [Google Scholar]
  32. Irvine A, Dredze M. 2017. Harmonic Grammar, Optimality Theory, and syntax learnability: an empirical exploration of Czech word order. arXiv:1702.05793 [cs.CL]
  33. Jäger G 2007. Maximum entropy models and Stochastic Optimality Theory. Architectures, Rules, and Preferences: Variations on Themes by Joan W. Bresnan A Zaenen, J Simpson, TH King, J Grimshaw, J Maling, C Manning 467–79 Stanford, CA: CSLI Publ.
    [Google Scholar]
  34. Jesney K. 2007. The locus of variation in weighted constraint grammars Paper presented at the Workshop on Variation, Gradience and Frequency in Phonology Stanford, CA: July 6–8
    [Google Scholar]
  35. Johnson DE. 2009. Getting off the GoldVarb standard: introducing Rbrul for mixed-effects variable rule analysis. Lang. Linguist. Compass 3:359–83
    [Google Scholar]
  36. Johnson K. 2011. Quantitative Methods in Linguistics New York: Wiley
    [Google Scholar]
  37. Jurafsky D. 2003. Probabilistic modeling in psycholinguistics: linguistic comprehension and production. See Bod et al. 2003 39–96
  38. Jurafsky D, Martin JH. 2021. Speech and Language Processing Stanford, CA: Stanford Univ./Boulder, CO: Univ. Colo https://web.stanford.edu/∼jurafsky/slp3/ , 3rd ed.. draft
    [Google Scholar]
  39. Kaisse EM. 1985. Connected Speech: The Interaction of Syntax and Phonology San Diego, CA: Academic
    [Google Scholar]
  40. Kaplan A. 2022. Categorical and gradient ungrammaticality in optional processes. Language In press
    [Google Scholar]
  41. Kawahara S. 2020. A wug-shaped curve in sound symbolism: the case of Japanese Pokémon names. Phonology 37:383–418
    [Google Scholar]
  42. Kawahara S. 2022. Testing MaxEnt with sound symbolism: a stripy wug-shaped curve in Japanese Pokémon names. Language In press
    [Google Scholar]
  43. Kluender KR, Diehl RL, Wright BA. 1988. Vowel-length differences before voiced and voiceless consonants: an auditory explanation. J. Phon. 16:153–69
    [Google Scholar]
  44. Kroch A. 1989. Reflexes of grammar in patterns of language change. Lang. Var. Change 1:199–244
    [Google Scholar]
  45. Labov W. 1969. Contraction, deletion, and inherent variability of the English copula. Language 45:715–62
    [Google Scholar]
  46. Lau JH, Clark A, Lappin S 2017. Grammaticality, acceptability, and probability: a probabilistic view of linguistic knowledge. Cogn. Sci. 41:1202–41
    [Google Scholar]
  47. Liberman M, Pierrehumbert J 1984. Intonational invariance under changes in pitch range and length. Language Sound Structure M Aronoff, RT Oehrle 157–223 Cambridge, MA: MIT Press
    [Google Scholar]
  48. Linzen T, Jaeger TF. 2016. Uncertainty and expectation in sentence processing: evidence from subcategorization distributions. Cogn. Sci. 40:1382–1411
    [Google Scholar]
  49. Massaro DW, Cohen MM. 1983. Phonological context in speech perception. Percept. Psychophys. 34:338–48
    [Google Scholar]
  50. McCarthy J, Prince A 1995. Faithfulness and reduplicative identity. University of Massachusetts Occasional Papers in Linguistics 18: Papers in Optimality Theory J Beckman, S Urbanczyk, LW Dickey 249–384 Amherst, MA: Grad. Linguist. Stud. Assoc.
    [Google Scholar]
  51. McMurray B, Aslin RN, Tanenhaus MK, Spivey MJ, Subik D. 2008. Gradient sensitivity to within-category variation in words and syllables. J. Exp. Psychol.: Hum. Percept. Perform. 34:1609–31
    [Google Scholar]
  52. McMurray B, Tanenhaus MK, Aslin RN, Spivey MJ. 2003. Probabilistic constraint satisfaction at the lexical/phonetic interface: evidence for gradient effects of within-category VOT on lexical access. J. Psycholinguist. Res. 32:77–97
    [Google Scholar]
  53. McPherson L, Hayes B. 2016. Relating application frequency to morphological structure: the case of Tommo So vowel harmony. Phonology 33:125–67
    [Google Scholar]
  54. Mendoza-Denton N, Hay J, Jannedy S. 2003. Probabilistic sociolinguistics: beyond the variable rule. See Bod et al. 2003 97–138
  55. Moore-Cantwell C, Pater J. 2016. Gradient exceptionality in Maximum Entropy Grammar with lexically specific constraints. Catalan J. Linguist. 15:53–66
    [Google Scholar]
  56. Morrison GS 2007. Logistic regression modelling for first and second language perception data. Segmental and Prosodic Issues in Romance Phonology MJ Solé, P Prieto, J Mascaró 219–36 Amsterdam: John Benjamins
    [Google Scholar]
  57. Prince A, Smolensky P 2004. Optimality Theory: Constraint Interaction in Generative Grammar Oxford, UK: Blackwell
    [Google Scholar]
  58. Rousseau P, Sankoff D 1978. Advances in variable rule methodology. Linguistic Variation: Models and Methods D Sankoff 57–69 New York: Academic
    [Google Scholar]
  59. Ryan K. 2019. Prosodic Weight: Categories and Continua Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  60. Sankoff D, Labov W 1979. On the uses of variable rules. Lang. Soc 8:189–222
    [Google Scholar]
  61. Sankoff GS. 1972. A quantitative paradigm for studying communicative competence Paper presented at the Conference on the Ethnography of Speaking Austin, TX:
    [Google Scholar]
  62. Scholes R. 1965. Phonotactic Grammaticality The Hague, Neth: Mouton
    [Google Scholar]
  63. Smith BW, Pater J 2020. French schwa and gradient cumulativity. Glossa 5:24
    [Google Scholar]
  64. Smolensky P 1986. Information processing in dynamical systems: foundations of Harmony Theory. Parallel Distributed Processing JL McClelland, DE Rumelhart, PDP Research Group 390–431 Cambridge, MA: MIT Press
    [Google Scholar]
  65. Szmrecsanyi B, Grafmiller J, Bresnan J, Rosenbach A, Tagliamonte S, Todd S 2017. Spoken syntax in a comparative perspective: the dative and genitive alternation in varieties of English. Glossa 2:86
    [Google Scholar]
  66. Tagliamonte SA, Baayen RH. 2012. Models, forests and trees of York English: was/were variation as a case study for statistical practice. Lang. Var. Change 34:135–78
    [Google Scholar]
  67. Treutwein B, Strasburger H. 1999. Fitting the psychometric function. Percept. Psychophys. 61:87–106
    [Google Scholar]
  68. Velldal E, Oepen S 2005. Maximum entropy models for realization ranking. Proceedings of the 10th Machine Translation Summit J-I Tsujii 109–16 Tokyo, Jpn: Asia-Pac. Assoc. Mach. Transl.
    [Google Scholar]
  69. Wilson C. 2006. Learning phonology with substantive bias: an experimental and computational investigation of velar palatalization. Cogn. Sci. 30:945–82
    [Google Scholar]
  70. Wilson C. 2014. Tutorial on Maximum Entropy models Lecture presented at the Annual Meeting on Phonology, Mass. Inst. Technol. Cambridge, MA: Sept. 19
    [Google Scholar]
  71. Wolfram W, Fasold RW 1974. The Study of Social Dialects in American English Englewood Cliffs, NJ: Prentice Hall
    [Google Scholar]
  72. Zimmermann R. 2017. Formal and quantitative approaches to the study of syntactic change: three case studies from the history of English PhD Diss., Univ. Geneva Geneva:
    [Google Scholar]
  73. Zuraw K. 2000. Patterned exceptions in phonology PhD Diss., Univ. Calif. Los Angeles:
    [Google Scholar]
  74. Zuraw K. 2003. Probability in language change. See Bod et al. 2003 139–76
  75. Zuraw K. 2010. A model of lexical variation and the grammar with application to Tagalog nasal substitution. Nat. Lang. Linguist. Theory 28:417–72
    [Google Scholar]
  76. Zuraw K, Hayes B. 2017. Intersecting constraint families: an argument for Harmonic Grammar. Language 93:497–548
    [Google Scholar]
  77. Zymet J. 2018. Lexical propensities in phonology: corpus and experimental evidence, grammar, and learning PhD Diss., Univ. Calif. Los Angeles:
    [Google Scholar]
/content/journals/10.1146/annurev-linguistics-031220-013128
Loading
/content/journals/10.1146/annurev-linguistics-031220-013128
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error