1932

Abstract

Genomic testing enables clinical management to be tailored to individual cancer patients based on the molecular alterations present within cancer cells. Genomic sequencing results can be applied to detect and classify cancer, predict prognosis, and target therapies. Next-generation sequencing has revolutionized the field of cancer genomics by enabling rapid and cost-effective sequencing of large portions of the genome. With this technology, precision oncology is quickly becoming a realized paradigm for managing the treatment of cancer patients. However, many challenges must be overcome to efficiently implement the transition of next-generation sequencing from research applications to routine clinical practice, including using specimens commonly available in the clinical setting; determining how to process, store, and manage large amounts of sequencing data; determining how to interpret and prioritize molecular findings; and coordinating health professionals from multiple disciplines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012418-012735
2020-01-24
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathmechdis-012418-012735.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012418-012735&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lu YF, Goldstein DB, Angrist M, Cavalleri G 2014. Personalized medicine and human genetic diversity. Cold Spring Harb. Perspect. Med. 4:a008581
    [Google Scholar]
  2. 2. 
    Garrido P, Aldaz A, Vera R, Calleja MA, de Álava E et al. 2018. Proposal for the creation of a national strategy for precision medicine in cancer: a position statement of SEOM, SEAP, and SEFH. Clin. Transl. Oncol. 20:443–47
    [Google Scholar]
  3. 3. 
    Yan B, Hu Y, Ng C, Ban KH, Tan TW et al. 2016. Coverage analysis in a targeted amplicon-based next-generation sequencing panel for myeloid neoplasms. J. Clin. Pathol. 69:801–4
    [Google Scholar]
  4. 4. 
    Spencer DH, Abel HJ, Lockwood CM, Payton JE, Szankasi P et al. 2013. Detection of FLT3 internal tandem duplication in targeted, short-read-length, next-generation sequencing data. J. Mol. Diagn. 15:81–93
    [Google Scholar]
  5. 5. 
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA et al. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350:2129–39
    [Google Scholar]
  6. 6. 
    Linardou H, Dahabreh IJ, Bafaloukos D, Kosmidis P, Murray S 2009. Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nat. Rev. Clin. Oncol. 6:352–66
    [Google Scholar]
  7. 7. 
    Popat S, Mok T, Yang JC, Wu YL, Lungershausen J et al. 2014. Afatinib in the treatment of EGFR mutation-positive NSCLC—a network meta-analysis. Lung Cancer 85:230–38
    [Google Scholar]
  8. 8. 
    Saxon JA, Sholl LM, Janne PA 2017. EGFR L858M/L861Q cis mutations confer selective sensitivity to afatinib. J. Thorac. Oncol. 12:884–89
    [Google Scholar]
  9. 9. 
    Yang JC, Sequist LV, Geater SL, Tsai CM, Mok TS et al. 2015. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol 16:830–38
    [Google Scholar]
  10. 10. 
    Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L et al. 2013. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368:2385–94
    [Google Scholar]
  11. 11. 
    Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K et al. 2014. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 371:2167–77
    [Google Scholar]
  12. 12. 
    Ou SH, Ahn JS, De Petris L, Govindan R, Yang JC et al. 2016. Alectinib in crizotinib-refractory ALK-rearranged non-small-cell lung cancer: a phase II global study. J. Clin. Oncol. 34:661–68
    [Google Scholar]
  13. 13. 
    Soria JC, Tan DSW, Chiari R, Wu YL, Paz-Ares L et al. 2017. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 389:917–29
    [Google Scholar]
  14. 14. 
    Shaw AT, Kim DW, Mehra R, Tan DS, Felip E et al. 2014. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med. 370:1189–97
    [Google Scholar]
  15. 15. 
    Kim DW, Tiseo M, Ahn MJ, Reckamp KL, Hansen KH et al. 2017. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase–positive non-small-cell lung cancer: a randomized, multicenter phase II trial. J. Clin. Oncol. 35:2490–98
    [Google Scholar]
  16. 16. 
    Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ et al. 2014. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 371:1963–71
    [Google Scholar]
  17. 17. 
    Mazieres J, Zalcman G, Crino L, Biondani P, Barlesi F et al. 2015. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J. Clin. Oncol. 33:992–99
    [Google Scholar]
  18. 18. 
    Planchard D, Besse B, Groen HJM, Souquet PJ, Quoix E et al. 2016. Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant metastatic non–small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 17:984–93
    [Google Scholar]
  19. 19. 
    Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B et al. 2017. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol 18:1307–16
    [Google Scholar]
  20. 20. 
    Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X et al. 2015. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov 5:850–59
    [Google Scholar]
  21. 21. 
    Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N et al. 2015. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov 5:842–49
    [Google Scholar]
  22. 22. 
    Suryavanshi M, Shah A, Kumar D, Panigrahi MK, Metha A, Batra U 2017. MET amplification and response to MET inhibitors in stage IV lung adenocarcinoma. Oncol. Res. Treat. 40:198–202
    [Google Scholar]
  23. 23. 
    Drilon A, Subbiah V, Oxnard GR, Bauer TM, Velcheti V et al. 2018. A phase 1 study of LOXO-292, a potent and highly selective RET inhibitor, in patients with RET-altered cancers. J. Clin. Oncol. 36:Suppl.102
    [Google Scholar]
  24. 24. 
    Subbiah V, Gainor JF, Rahal R, Brubaker JD, Kim JL et al. 2018. Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov 8:836–49
    [Google Scholar]
  25. 25. 
    Drilon AE, Liu S, Doebele R, Rodriguez C, Fakih M et al. 2017. A phase 1b study of RXDX-105, a VEGFR-sparing potent RET inhibitor, in RETi-naïve patients with RET fusion–positive NSCLC. Ann. Oncol. 28:Suppl. 5v605–49
    [Google Scholar]
  26. 26. 
    Li BT, Shen R, Buonocore D, Olah ZT, Ni A et al. 2018. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J. Clin. Oncol. 36:2532–37
    [Google Scholar]
  27. 27. 
    Ettinger DS, Wood DE, Airsner DL, Wallace A, Bauman J et al. 2019. NCCN Clinical Practice Guidelines in Oncology: non–small cell lung cancer. Version 5.2019. Natl. Compr. Cancer Netw. https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf
    [Google Scholar]
  28. 28. 
    Int. Hum. Genome Consort 2004. Finishing the euchromatic sequence of the human genome. Nature 431:931–45
    [Google Scholar]
  29. 29. 
    Govindan R, Ding L, Griffith M, Subramanian J, Dees ND et al. 2012. Genomic landscape of non–small cell lung cancer in smokers and never-smokers. Cell 150:1121–34
    [Google Scholar]
  30. 30. 
    Wang Z, Gerstein M, Snyder M 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57–63
    [Google Scholar]
  31. 31. 
    Esteller M. 2011. Non-coding RNAs in human disease. Nat. Rev. Genet. 12:861–74
    [Google Scholar]
  32. 32. 
    Chen X, Ba Y, Ma L, Cai X, Yin Y et al. 2008. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006
    [Google Scholar]
  33. 33. 
    Volinia S, Galasso M, Sana ME, Wise TF, Palatini J et al. 2012. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. PNAS 109:3024–29
    [Google Scholar]
  34. 34. 
    Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S et al. 2012. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 31:978–91
    [Google Scholar]
  35. 35. 
    de Leng WW, Gadellaa-van Hooijdonk CG, Barendregt-Smouter FA, Koudijs MJ, Nijman I et al. 2016. Targeted next generation sequencing as a reliable diagnostic assay for the detection of somatic mutations in tumours using minimal DNA amounts from formalin fixed paraffin embedded material. PLOS ONE 11:e0149405
    [Google Scholar]
  36. 36. 
    Aarthy R, Mani S, Velusami S, Sundarsingh S, Rajkumar T 2015. Role of circulating cell-free DNA in cancers. Mol. Diagn. Ther. 19:339–50
    [Google Scholar]
  37. 37. 
    Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA et al. 2015. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126:9–16
    [Google Scholar]
  38. 38. 
    Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA et al. 2014. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371:2477–87
    [Google Scholar]
  39. 39. 
    Xie M, Lu C, Wang J, McLellan MD, Johnson KJ et al. 2014. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20:1472–78
    [Google Scholar]
  40. 40. 
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA et al. 2009. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360:765–73
    [Google Scholar]
  41. 41. 
    Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J et al. 2009. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J. Clin. Oncol. 27:4150–54
    [Google Scholar]
  42. 42. 
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, eds. 2016. WHO Classification of Tumours of the Central Nervous System Lyon, France: IARC (Int. Agency Res. Cancer). Revis. , 4th ed..
    [Google Scholar]
  43. 43. 
    Tallman MS, Wang ES, Altman JK, Appelbaum FR, Bhatt VR et al. 2019. NCCN Clinical Practice Guidelines in Oncology: acute myeloid leukemia. Version 3.2019. Natl. Compr. Cancer Netw. https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf
    [Google Scholar]
  44. 44. 
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P et al. 2011. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364:2507–16
    [Google Scholar]
  45. 45. 
    Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF et al. 2012. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367:1694–703
    [Google Scholar]
  46. 46. 
    Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R et al. 2013. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med. 369:1023–34
    [Google Scholar]
  47. 47. 
    Peeters M, Price TJ, Cervantes A, Sobrero AF, Ducreux M et al. 2010. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J. Clin. Oncol. 28:4706–13
    [Google Scholar]
  48. 48. 
    Guo J, Si L, Kong Y, Flaherty KT, Xu X et al. 2011. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J. Clin. Oncol. 29:2904–9
    [Google Scholar]
  49. 49. 
    Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman RA et al. 2011. KIT as a therapeutic target in metastatic melanoma. JAMA 305:2327–34
    [Google Scholar]
  50. 50. 
    Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M et al. 2013. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J. Clin. Oncol. 31:3182–90
    [Google Scholar]
  51. 51. 
    Coit DG, Thompson JA, Albertini MR, Algazi A, Andtbacka R et al. 2019. NCCN Clinical Practice Guidelines in Oncology: cutaneous melanoma. Version 2.2019. Natl. Compr. Cancer Netw. https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf
    [Google Scholar]
  52. 52. 
    Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR et al. 2017. Osimertinib or platinum-pemetrexed in EGFR T790M–positive lung cancer. N. Engl. J. Med. 376:629–40
    [Google Scholar]
  53. 53. 
    Le DT, Durham JN, Smith KN, Wang H, Bartlett BR et al. 2017. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–13
    [Google Scholar]
  54. 54. 
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V et al. 2015. Cancer immunology: mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 348:124–28
    [Google Scholar]
  55. 55. 
    Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R et al. 2016. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol. 34:2206–11
    [Google Scholar]
  56. 56. 
    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM et al. 2014. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371:2189–99
    [Google Scholar]
  57. 57. 
    Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C et al. 2015. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–11
    [Google Scholar]
  58. 58. 
    Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M et al. 2015. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33:244–50
    [Google Scholar]
  59. 59. 
    Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H et al. 2015. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373:1697–708
    [Google Scholar]
  60. 60. 
    Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H et al. 2017. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 18:75–87
    [Google Scholar]
  61. 61. 
    Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S et al. 2016. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. 375:2154–64
    [Google Scholar]
  62. 62. 
    Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ 2009. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin. Pharmacol. Ther. 86:97–100
    [Google Scholar]
  63. 63. 
    Redig AJ, Janne PA. 2015. Basket trials and the evolution of clinical trial design in an era of genomic medicine. J. Clin. Oncol. 33:975–77
    [Google Scholar]
  64. 64. 
    Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN et al. 2018. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N. Engl. J. Med. 378:731–39
    [Google Scholar]
  65. 65. 
    Younes A, Berry DA. 2012. From drug discovery to biomarker-driven clinical trials in lymphoma. Nat. Rev. Clin. Oncol. 9:643–53
    [Google Scholar]
  66. 66. 
    Hughes T, Deininger M, Hochhaus A, Branford S, Radich J et al. 2006. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108:28–37
    [Google Scholar]
  67. 67. 
    Baccarani M, Pileri S, Steegmann JL, Muller M, Soverini S, Dreyling M 2012. Chronic myeloid leukemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 23:Suppl. 7vii72–77
    [Google Scholar]
  68. 68. 
    Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A et al. 2003. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 349:1423–32
    [Google Scholar]
  69. 69. 
    Saglio G, Fava C. 2012. Practical monitoring of chronic myelogenous leukemia: when to change treatment. J. Natl. Compr. Cancer Netw. 10:121–29
    [Google Scholar]
  70. 70. 
    Milojkovic D, Apperley J. 2009. Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin. Cancer Res. 15:7519–27
    [Google Scholar]
  71. 71. 
    Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T et al. 2011. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 118:1208–15
    [Google Scholar]
  72. 72. 
    Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V et al. 1998. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 12:2006–14
    [Google Scholar]
  73. 73. 
    Bruggemann M, Droese J, Bolz I, Luth P, Pott C et al. 2000. Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia 14:1419–25
    [Google Scholar]
  74. 74. 
    Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC et al. 2000. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 14:1426–35
    [Google Scholar]
  75. 75. 
    Wood B, Wu D, Crossley B, Dai Y, Williamson D et al. 2018. Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL. Blood 131:1350–59
    [Google Scholar]
  76. 76. 
    Logan AC, Vashi N, Faham M, Carlton V, Kong K et al. 2014. Immunoglobulin and T cell receptor gene high-throughput sequencing quantifies minimal residual disease in acute lymphoblastic leukemia and predicts post-transplantation relapse and survival. Biol. Blood Marrow Transplant. 20:1307–13
    [Google Scholar]
  77. 77. 
    Pulsipher MA, Carlson C, Langholz B, Wall DA, Schultz KR et al. 2015. IgH-V(D)J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk ALL patients. Blood 125:3501–8
    [Google Scholar]
  78. 78. 
    Wu D, Emerson RO, Sherwood A, Loh ML, Angiolillo A et al. 2014. Detection of minimal residual disease in B lymphoblastic leukemia by high-throughput sequencing of IGH. Clin. Cancer Res. 20:4540–48
    [Google Scholar]
  79. 79. 
    Wu D, Sherwood A, Fromm JR, Winter SS, Dunsmore KP et al. 2012. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci. Transl. Med. 4:134ra63
    [Google Scholar]
  80. 80. 
    Kotrova M, Muzikova K, Mejstrikova E, Novakova M, Bakardjieva-Mihaylova V et al. 2015. The predictive strength of next-generation sequencing MRD detection for relapse compared with current methods in childhood ALL. Blood 126:1045–47
    [Google Scholar]
  81. 81. 
    Grimwade D, Jovanovic JV, Hills RK, Nugent EA, Patel Y et al. 2009. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J. Clin. Oncol. 27:3650–58
    [Google Scholar]
  82. 82. 
    Platzbecker U, Avvisati G, Cicconi L, Thiede C, Paoloni F et al. 2017. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia: final results of the randomized Italian-German APL0406 trial. J. Clin. Oncol. 35:605–12
    [Google Scholar]
  83. 83. 
    Yin JA, O'Brien MA, Hills RK, Daly SB, Wheatley K, Burnett AK 2012. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood 120:2826–35
    [Google Scholar]
  84. 84. 
    Willekens C, Blanchet O, Renneville A, Cornillet-Lefebvre P, Pautas C et al. 2016. Prospective long-term minimal residual disease monitoring using RQ-PCR in RUNX1-RUNX1T1-positive acute myeloid leukemia: results of the French CBF-2006 trial. Haematologica 101:328–35
    [Google Scholar]
  85. 85. 
    Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A et al. 2016. Assessment of minimal residual disease in standard-risk AML. N. Engl. J. Med. 374:422–33
    [Google Scholar]
  86. 86. 
    Shayegi N, Kramer M, Bornhauser M, Schaich M, Schetelig J et al. 2013. The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood 122:83–92
    [Google Scholar]
  87. 87. 
    Krönke J, Schlenk RF, Jensen KO, Tschürtz F, Corbacioglu A et al. 2011. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German–Austrian acute myeloid leukemia study group. J. Clin. Oncol. 29:2709–16
    [Google Scholar]
  88. 88. 
    Balsat M, Renneville A, Thomas X, de Botton S, Caillot D et al. 2017. Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: a study by the Acute Leukemia French Association Group. J. Clin. Oncol. 35:185–93
    [Google Scholar]
  89. 89. 
    Jongen-Lavrencic M, Grob T, Hanekamp D, Kavelaars FG, Al Hinai A et al. 2018. Molecular minimal residual disease in acute myeloid leukemia. N. Engl. J. Med. 378:1189–99
    [Google Scholar]
  90. 90. 
    Morita K, Kantarjian HM, Wang F, Yan Y, Bueso-Ramos C et al. 2018. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J. Clin. Oncol. 36:1788–97
    [Google Scholar]
  91. 91. 
    Diehl F, Schmidt K, Choti MA, Romans K, Goodman S et al. 2008. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14:985–90
    [Google Scholar]
  92. 92. 
    Tie J, Wang Y, Tomasetti C, Li L, Springer S et al. 2016. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl. Med. 8:346ra92
    [Google Scholar]
  93. 93. 
    Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H et al. 2017. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov 7:1394–403
    [Google Scholar]
  94. 94. 
    Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR et al. 2012. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–40
    [Google Scholar]
  95. 95. 
    Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O'Connell A et al. 2014. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin. Cancer Res. 20:1698–705
    [Google Scholar]
  96. 96. 
    De Mattos-Arruda L, Weigelt B, Cortes J, Won HH, Ng CK et al. 2014. Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Ann. Oncol. 25:1729–35
    [Google Scholar]
  97. 97. 
    Lynch HT, Smyrk T, Lynch J, Fitzgibbons R Jr, Lanspa S, McGinn T 1995. Update on the differential diagnosis, surveillance and management of hereditary non-polyposis colorectal cancer. Eur. J. Cancer 31:1039–46
    [Google Scholar]
  98. 98. 
    Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM et al. 2017. Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. Arch. Pathol. Lab. Med. 141:625–57
    [Google Scholar]
  99. 99. 
    Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA et al. 2014. Guidelines on Genetic Evaluation and Management of Lynch Syndrome: a consensus statement by the US Multi-Society Task Force on Colorectal Cancer. Am. J. Gastroenterol. 109:1159–79
    [Google Scholar]
  100. 100. 
    Abu-Rustum NR, Yashar CM, Bean S, Bradley K, Campos SM et al. 2019. NCCN Clinical Practice Guidelines in Oncology: uterine neoplasms. Version 3.2019. Natl. Compr. Cancer Netw. https://www.nccn.org/professionals/physician_gls/pdf/uterine.pdf
    [Google Scholar]
  101. 101. 
    Morikawa T, Shima K, Kuchiba A, Yamauchi M, Tanaka N et al. 2012. No evidence for interference of H&E staining in DNA testing: usefulness of DNA extraction from H&E-stained archival tissue sections. Am. J. Clin. Pathol. 138:122–29
    [Google Scholar]
  102. 102. 
    Rabien A, Kristiansen G. 2016. Tissue microdissection. Methods Mol. Biol. 1381:39–52
    [Google Scholar]
  103. 103. 
    Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S 2015. Laser capture microdissection: big data from small samples. Histol. Histopathol. 30:1255–69
    [Google Scholar]
  104. 104. 
    Geiersbach K, Adey N, Welker N, Elsberry D, Malmberg E et al. 2016. Digitally guided microdissection aids somatic mutation detection in difficult to dissect tumors. Cancer Genet 209:42–49
    [Google Scholar]
  105. 105. 
    Hardingham JE, Grover P, Winter M, Hewett PJ, Price TJ, Thierry B 2015. Detection and clinical significance of circulating tumor cells in colorectal cancer—20 years of progress. Mol. Med. 21:Suppl. 1S25–31
    [Google Scholar]
  106. 106. 
    Alva A, Friedlander T, Clark M, Huebner T, Daignault S et al. 2015. Circulating tumor cells as potential biomarkers in bladder cancer. J. Urol. 194:790–98
    [Google Scholar]
  107. 107. 
    Yu N, Zhou J, Cui F, Tang X 2015. Circulating tumor cells in lung cancer: detection methods and clinical applications. Lung 193:157–71
    [Google Scholar]
  108. 108. 
    Lianidou ES, Strati A, Markou A 2014. Circulating tumor cells as promising novel biomarkers in solid cancers. Crit. Rev. Clin. Lab. Sci. 51:160–71
    [Google Scholar]
  109. 109. 
    Narayan A, Carriero NJ, Gettinger SN, Kluytenaar J, Kozak KR et al. 2012. Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error-suppressed multiplexed deep sequencing. Cancer Res 72:3492–98
    [Google Scholar]
  110. 110. 
    Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y et al. 2014. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6:224ra24
    [Google Scholar]
  111. 111. 
    Higgins MJ, Jelovac D, Barnathan E, Blair B, Slater S et al. 2012. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin. Cancer Res. 18:3462–69
    [Google Scholar]
  112. 112. 
    Rothe F, Laes JF, Lambrechts D, Smeets D, Vincent D et al. 2014. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann. Oncol. 25:1959–65
    [Google Scholar]
  113. 113. 
    Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM et al. 2013. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368:1199–209
    [Google Scholar]
  114. 114. 
    Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E et al. 2014. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat. Med. 20:430–35
    [Google Scholar]
  115. 115. 
    Newman AM, Bratman SV, To J, Wynne JF, Eclov NC et al. 2014. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20:548–54
    [Google Scholar]
  116. 116. 
    Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F et al. 2014. Library construction for next-generation sequencing: overviews and challenges. BioTechniques 56:61–64
    [Google Scholar]
  117. 117. 
    Williams HL, Walsh K, Diamond A, Oniscu A, Deans ZC 2018. Validation of the Oncomine™ focus panel for next-generation sequencing of clinical tumour samples. Virchows Arch 473:489–503
    [Google Scholar]
  118. 118. 
    Ikegawa S, Mabuchi A, Ogawa M, Ikeda T 2002. Allele-specific PCR amplification due to sequence identity between a PCR primer and an amplicon: Is direct sequencing so reliable. ? Hum. Genet. 110:606–8
    [Google Scholar]
  119. 119. 
    Zheng Z, Liebers M, Zhelyazkova B, Cao Y, Panditi D et al. 2014. Anchored multiplex PCR for targeted next-generation sequencing. Nat. Med. 20:1479–84
    [Google Scholar]
  120. 120. 
    Wommack KE, Bhavsar J, Ravel J 2008. Metagenomics: Read length matters. Appl. Environ. Microbiol. 74:1453–63
    [Google Scholar]
  121. 121. 
    Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM 2007. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143
    [Google Scholar]
  122. 122. 
    Minoche AE, Dohm JC, Himmelbauer H 2011. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol 12:R112
    [Google Scholar]
  123. 123. 
    Ewing B, Green P. 1998. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–94
    [Google Scholar]
  124. 124. 
    Do H, Dobrovic A. 2015. Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin. Chem. 61:64–71
    [Google Scholar]
  125. 125. 
    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–45
    [Google Scholar]
  126. 126. 
    Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J et al. 2011. Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 27:2518–28
    [Google Scholar]
  127. 127. 
    Sboner A, Habegger L, Pflueger D, Terry S, Chen DZ et al. 2010. FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biol 11:R104
    [Google Scholar]
  128. 128. 
    McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G et al. 2011. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLOS Comput. Biol. 7:e1001138
    [Google Scholar]
  129. 129. 
    Kinsella M, Harismendy O, Nakano M, Frazer KA, Bafna V 2011. Sensitive gene fusion detection using ambiguously mapping RNA-Seq read pairs. Bioinformatics 27:1068–75
    [Google Scholar]
  130. 130. 
    Kim D, Salzberg SL. 2011. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12:R72
    [Google Scholar]
  131. 131. 
    Mullaney JM, Mills RE, Pittard WS, Devine SE 2010. Small insertions and deletions (INDELs) in human genomes. Hum. Mol. Genet. 19:R131–36
    [Google Scholar]
  132. 132. 
    Albers CA, Lunter G, MacArthur DG, McVean G, Ouwehand WH, Durbin R 2011. Dindel: accurate indel calls from short-read data. Genome Res 21:961–73
    [Google Scholar]
  133. 133. 
    Kay Ye, Schulz MH, Long Q, Apweiler R, Ning Z 2009. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25:2865–71
    [Google Scholar]
  134. 134. 
    Ghoneim DH, Myers JR, Tuttle E, Paciorkowski AR 2014. Comparison of insertion/deletion calling algorithms on human next-generation sequencing data. BMC Res. Notes 7:864
    [Google Scholar]
  135. 135. 
    Li S, Li R, Li H, Lu J, Li Y et al. 2013. SOAPindel: efficient identification of indels from short paired reads. Genome Res 23:195–200
    [Google Scholar]
  136. 136. 
    den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS et al. 2016. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum. Mutat. 37:564–69
    [Google Scholar]
  137. 137. 
    Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR et al. 1998. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–57
    [Google Scholar]
  138. 138. 
    Pinol V, Castells A, Andreu M, Castellvi-Bel S, Alenda C et al. 2005. Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA 293:1986–94
    [Google Scholar]
  139. 139. 
    Salipante SJ, Scroggins SM, Hampel HL, Turner EH, Pritchard CC 2014. Microsatellite instability detection by next generation sequencing. Clin. Chem. 60:1192–99
    [Google Scholar]
  140. 140. 
    Hempelmann JA, Scroggins SM, Pritchard CC, Salipante SJ 2015. MSIplus for integrated colorectal cancer molecular testing by next-generation sequencing. J. Mol. Diagn. 17:705–14
    [Google Scholar]
  141. 141. 
    Kautto EA, Bonneville R, Miya J, Yu L, Krook MA et al. 2017. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget 8:7452–63
    [Google Scholar]
  142. 142. 
    Huang MN, McPherson JR, Cutcutache I, Teh BT, Tan P, Rozen SG 2015. MSIseq: software for assessing microsatellite instability from catalogs of somatic mutations. Sci. Rep. 5:13321
    [Google Scholar]
  143. 143. 
    Aaltonen LA, Peltomaki P, Leach FS, Sistonen P, Pylkkanen L et al. 1993. Clues to the pathogenesis of familial colorectal cancer. Science 260:812–16
    [Google Scholar]
  144. 144. 
    Garofalo A, Sholl L, Reardon B, Taylor-Weiner A, Amin-Mansour A et al. 2016. The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine. Genome Med 8:79
    [Google Scholar]
  145. 145. 
    Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM et al. 2017. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34
    [Google Scholar]
  146. 146. 
    Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM et al. 2017. Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 19:341–65
    [Google Scholar]
  147. 147. 
    Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI et al. 2017. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: a Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 19:4–23
    [Google Scholar]
  148. 148. 
    Oxnard GR, Miller VA, Robson ME, Azzoli CG, Pao W et al. 2012. Screening for germline EGFR T790M mutations through lung cancer genotyping. J. Thorac. Oncol. 7:1049–52
    [Google Scholar]
  149. 149. 
    Bozic I, Antal T, Ohtsuki H, Carter H, Kim D et al. 2010. Accumulation of driver and passenger mutations during tumor progression. PNAS 107:18545–50
    [Google Scholar]
  150. 150. 
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H et al. 2015. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372:2509–20
    [Google Scholar]
  151. 151. 
    MD Anderson Cancer Cent Personalized cancer therapy: knowledge base for precision oncology. MD Anderson Cancer Center https://pct.mdanderson.org/
    [Google Scholar]
  152. 152. 
    Ghazani AA, Oliver NM, Pierre JP St, Garofalo A, Rainville IR et al. 2017. Assigning clinical meaning to somatic and germ-line whole-exome sequencing data in a prospective cancer precision medicine study. Genet. Med. 19:787–95
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012418-012735
Loading
/content/journals/10.1146/annurev-pathmechdis-012418-012735
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error