1932

Abstract

Obligately intracytosolic rickettsiae that cycle between arthropod and vertebrate hosts cause human diseases with a spectrum of severity, primarily by targeting microvascular endothelial cells, resulting in endothelial dysfunction. Endothelial cells and mononuclear phagocytes have important roles in the intracellular killing of rickettsiae upon activation by the effector molecules of innate and adaptive immunity. In overwhelming infection, immunosuppressive effects contribute to the severity of illness. –host cell interactions involve host cell receptors for rickettsial ligands that mediate cell adhesion and, in some instances, trigger induced phagocytosis. Rickettsiae interact with host cell actin to effect both cellular entry and intracellular actin-based mobility. The interaction of rickettsiae with the host cell also involves rickettsial evasion of host defense mechanisms and exploitation of the intracellular environment. Signal transduction events exemplify these effects. An intriguing frontier is the array of rickettsial noncoding RNA molecules and their potential effects on the pathogenesis and transmission of rickettsial diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012418-012800
2019-01-24
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/14/1/annurev-pathmechdis-012418-012800.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012418-012800&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Weisburg WG, Dobson ME, Samuel JE, Dasch GA, Mallavia LP et al. 1989. Phylogenetic diversity of the rickettsiae. J. Bacteriol. 171:4202–6
    [Google Scholar]
  2. 2.  Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK et al. 2008. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLOS ONE 3:e2018
    [Google Scholar]
  3. 3.  Bouyer DH, Stenos J, Crocquet-Valdes P, Moron CG, Popov VL et al. 2001. Rickettsia felis: molecular characterization of a new member of the spotted fever group. Int. J. Syst. Evol. Microbiol 51:339–47
    [Google Scholar]
  4. 4.  Labruna MB, Walker DH 2014. Rickettsia felis and changing paradigms about pathogenic rickettsiae. Emerg. Infect. Dis. 20:1768–69
    [Google Scholar]
  5. 5.  Parola P, Musso D, Raoult D 2016. Rickettsia felis: the next mosquito-borne outbreak?. Lancet Infect. Dis. 16:1112–13
    [Google Scholar]
  6. 6.  Maina AN, Knobel DL, Jiang J, Halliday J, Feikin DR et al. 2012. Rickettsia felis infection in febrile patients, western Kenya, 2007–2010. Emerg. Infect. Dis. 18:328–31
    [Google Scholar]
  7. 7.  Ricketts HT 1991. Some aspects of Rocky Mountain spotted fever as shown by recent investigations. Rev. Infect. Dis. 13:1227–40
    [Google Scholar]
  8. 8.  Paddock CD, Finley RW, Wright CS, Robinson HN, Schrodt BJ et al. 2008. Rickettsia parkeri rickettsiosis and its clinical distinction from Rocky Mountain spotted fever. Clin. Infect. Dis. 47:1188–96
    [Google Scholar]
  9. 9.  Shapiro MR, Fritz CL, Tait K, Paddock CD, Nicholson WL et al. 2010. Rickettsia 364D: a newly recognized cause of eschar-associated illness in California. Clin. Infect. Dis. 50:541–48
    [Google Scholar]
  10. 10.  Blanton LS, Walker DH 2017. Flea-borne rickettsioses and rickettsiae. Am. J. Trop. Med. Hyg. 96:53–56
    [Google Scholar]
  11. 11.  Chapman AS, Swerdlow DL, Dato VM, Anderson AD, Moodie CE et al. 2009. Cluster of sylvatic epidemic typhus cases associated with flying squirrels, 2004–2006. Emerg. Infect. Dis. 15:1005–11
    [Google Scholar]
  12. 12.  Raoult D, Fournier PE, Fenollar F, Jensenius M, Prioe T et al. 2001. Rickettsia africae, a tick-borne pathogen in travelers to sub-Saharan Africa. N. Engl. J. Med. 344:1504–10
    [Google Scholar]
  13. 13.  Dumler JS, Walker DH 2005. Rocky Mountain spotted fever—changing ecology and persisting virulence. N. Engl. J. Med. 353:551–53
    [Google Scholar]
  14. 14.  Walker DH 1989. Rocky Mountain spotted fever: a disease in need of microbiological concern. Clin. Microbiol. Rev. 2:227–40
    [Google Scholar]
  15. 15.  Oteo JA, Ibarra V, Blanco JR, Martinez de Artola V, Marquez FJ et al. 2004. Dermacentor-borne necrosis erythema and lymphadenopathy: clinical and epidemiological features of a new tick-borne disease. Clin. Microbiol. Infect. 10:327–31
    [Google Scholar]
  16. 16.  Silva-Pinto A, Santos Mde L, Sarmento A 2014. Tick-borne lymphadenopathy, an emerging disease. Ticks Tick-Borne Dis 5:656–59
    [Google Scholar]
  17. 17.  Walker DH, Paddock CD, Dumler JS 2008. Emerging and re-emerging tick-transmitted rickettsial and ehrlichial infections. Med. Clin. North Am. 92:1345–61
    [Google Scholar]
  18. 18.  Kazimirova M, Stibraniova I 2013. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front. Cell. Infect. Microbiol. 3:43
    [Google Scholar]
  19. 19.  Spencer RR, Parker RR 1923. Rocky Mountain spotted fever: infectivity of fasting and recently fed ticks. Public Health Rep 38:333–39
    [Google Scholar]
  20. 20.  Walker DH, Hudnall SD, Szaniawski WK, Feng HM 1999. Monoclonal antibody-based immunohistochemical diagnosis of rickettsialpox: The macrophage is the principal target. Mod. Pathol. 12:529–33
    [Google Scholar]
  21. 21.  Fournier PE, Gouriet F, Brouqui P, Lucht F, Raoult D 2005. Lymphangitis-associated rickettsiosis, a new rickettsiosis caused by Rickettsia sibirica mongolotimonae: seven new cases and review of the literature. Clin. Infect. Dis. 40:1435–44
    [Google Scholar]
  22. 22.  Walker DH, Gear JH 1985. Correlation of the distribution of Rickettsia conorii, microscopic lesions, and clinical features in South African tick bite fever. Am. J. Trop. Med. Hyg. 34:361–71
    [Google Scholar]
  23. 23.  Walker DH, Parks FM, Betz TG, Taylor JP, Muehlberger JW 1989. Histopathology and immunohistologic demonstration of the distribution of Rickettsia typhi in fatal murine typhus. Am. J. Clin. Pathol. 91:720–24
    [Google Scholar]
  24. 24.  Walker DH, Herrero-Herrero JI, Ruiz-Beltran R, Bullon-Sopelana A, Ramos-Hidalgo A 1987. The pathology of fatal Mediterranean spotted fever. Am. J. Clin. Pathol. 87:669–72
    [Google Scholar]
  25. 25.  Valbuena G, Bradford W, Walker DH 2003. Expression analysis of the T-cell-targeting chemokines CXCL9 and CXCL10 in mice and humans with endothelial infections caused by rickettsiae of the spotted fever group. Am. J. Pathol. 163:1357–69
    [Google Scholar]
  26. 26.  Herrero-Herrero JI, Walker DH, Ruiz-Beltran R 1987. Immunohistochemical evaluation of the cellular immune response to Rickettsia conorii in taches noires. J. Infect. Dis. 155:802–5
    [Google Scholar]
  27. 27.  Walker DH, Paletta CE, Cain BG 1980. Pathogenesis of myocarditis in Rocky Mountain spotted fever. Arch. Pathol. Lab. Med. 104:171–74
    [Google Scholar]
  28. 28.  Schmaier AH, Srikanth S, Elghetany MT, Normolle D, Gokhale S et al. 2001. Hemostatic/fibrinolytic protein changes in C3H/HeN mice infected with Rickettsia conorii—a model for Rocky Mountain spotted fever. Thromb. Haemost. 86:871–79
    [Google Scholar]
  29. 29.  Elghetany MT, Walker DH 1999. Hemostatic changes in Rocky Mountain spotted fever and Mediterranean spotted fever. Am. J. Clin. Pathol. 112:159–68
    [Google Scholar]
  30. 30.  Walker DH, Crawford CG, Cain BG 1980. Rickettsial infection of the pulmonary microcirculation: the basis for interstitial pneumonitis in Rocky Mountain spotted fever. Hum. Pathol. 11:263–72
    [Google Scholar]
  31. 31.  Horney LF, Walker DH 1988. Meningoencephalitis as a major manifestation of Rocky Mountain spotted fever. South. Med. J. 81:915–18
    [Google Scholar]
  32. 32.  Adams JS, Walker DH 1981. The liver in Rocky Mountain spotted fever. Am. J. Clin. Pathol. 75:156–61
    [Google Scholar]
  33. 33.  Walker DH, Staiti A, Mansueto S, Tringali G 1986. Frequent occurrence of hepatic lesions in boutonneuse fever. Acta Trop 43:175–81
    [Google Scholar]
  34. 34.  Randall MB, Walker DH 1984. Rocky Mountain spotted fever. Gastrointestinal and pancreatic lesions and rickettsial infection. Arch. Pathol. Lab. Med. 108:963–67
    [Google Scholar]
  35. 35.  Ruiz-Beltran R, Herrero-Herrero JI, Walker DH, Cunado-Rodriguez A 1990. Mechanism of upper gastrointestinal hemorrhage in Mediterranean spotted fever. Trop. Geogr. Med. 42:78–82
    [Google Scholar]
  36. 36.  Walker DH, Henderson FW, Hutchins GM 1986. Rocky Mountain spotted fever: mimicry of appendicitis or acute surgical abdomen?. Am. J. Dis. Child. 140:742–44
    [Google Scholar]
  37. 37.  Walker DH, Mattern WD 1979. Acute renal failure in Rocky Mountain spotted fever. Arch. Intern. Med. 139:443–48
    [Google Scholar]
  38. 38.  Valbuena G, Walker DH 2005. Changes in the adherens junctions of human endothelial cells infected with spotted fever group rickettsiae. Virchows Arch 446:379–82
    [Google Scholar]
  39. 39.  Woods ME, Olano JP 2008. Host defenses to Rickettsia rickettsii infection contribute to increased microvascular permeability in human cerebral endothelial cells. J. Clin. Immunol. 28:174–85
    [Google Scholar]
  40. 40.  Bechelli J, Smalley C, Milhano N, Walker DH, Fang R 2015. Rickettsia massiliae and Rickettsia conorii Israeli spotted fever strain differentially regulate endothelial cell responses. PLOS ONE 10:e0138830
    [Google Scholar]
  41. 41.  Gong B, Lee YS, Lee I, Shelite TR, Kunkeaw N et al. 2013. Compartmentalized, functional role of angiogenin during spotted fever group rickettsia-induced endothelial barrier dysfunction: evidence of possible mediation by host tRNA-derived small noncoding RNAs. BMC Infect. Dis. 13:285
    [Google Scholar]
  42. 42.  Sousa R, Franca A, Doria Nobrega S, Belo A, Amaro M et al. 2008. Host- and microbe-related risk factors for and pathophysiology of fatal Rickettsia conorii infection in Portuguese patients. J. Infect. Dis. 198:576–85
    [Google Scholar]
  43. 43.  Walker DH, Kirkman HN 1980. Rocky Mountain spotted fever and deficiency in glucose-6-phosphate dehydrogenase. J. Infect. Dis. 142:771
    [Google Scholar]
  44. 44.  Walker DH, Hawkins HK, Hudson P 1983. Fulminant Rocky Mountain spotted fever. Its pathologic characteristics associated with glucose-6-phosphate dehydrogenase deficiency. Arch. Pathol. Lab. Med. 107:121–25
    [Google Scholar]
  45. 45.  Walker DH, Radisch DL, Kirkman HN 1983. Haemolysis with rickettsiosis and glucose-6-phosphate dehydrogenase deficiency. Lancet 2:217
    [Google Scholar]
  46. 46.  Walker DH, Popov VL, Wen J, Feng HM 1994. Rickettsia conorii infection of C3H/HeN mice. A model of endothelial-target rickettsiosis. Lab. Investig. 70:358–68
    [Google Scholar]
  47. 47.  Walker DH, Popov VL, Feng HM 2000. Establishment of a novel endothelial target mouse model of a typhus group rickettsiosis: evidence for critical roles for gamma interferon and CD8 T lymphocytes. Lab. Investig. 80:1361–72
    [Google Scholar]
  48. 48.  Walker DH, Olano JP, Feng HM 2001. Critical role of cytotoxic T lymphocytes in immune clearance of rickettsial infection. Infect. Immun. 69:1841–46
    [Google Scholar]
  49. 49.  Feng HM, Wen J, Walker DH 1993. Rickettsia australis infection: a murine model of a highly invasive vasculopathic rickettsiosis. Am. J. Pathol. 142:1471–82
    [Google Scholar]
  50. 50.  Feng HM, Popov VL, Walker DH 1994. Depletion of gamma interferon and tumor necrosis factor alpha in mice with Rickettsia conorii-infected endothelium: impairment of rickettsicidal nitric oxide production resulting in fatal, overwhelming rickettsial disease. Infect. Immun. 62:1952–60
    [Google Scholar]
  51. 51.  Feng HM, Whitworth T, Popov V, Walker DH 2004. Effect of antibody on the rickettsia–host cell interaction. Infect. Immun. 72:3524–30
    [Google Scholar]
  52. 52.  Feng HM, Walker DH 2000. Mechanisms of intracellular killing of Rickettsia conorii in infected human endothelial cells, hepatocytes, and macrophages. Infect. Immun. 68:6729–36
    [Google Scholar]
  53. 53.  de Sousa R, Ismail N, Nobrega SD, Franca A, Amaro M et al. 2007. Intralesional expression of mRNA of interferon-γ, tumor necrosis factor-α, interleukin-10, nitric oxide synthase, indoleamine-2,3-dioxygenase, and RANTES is a major immune effector in Mediterranean spotted fever rickettsiosis. J. Infect. Dis. 196:770–81
    [Google Scholar]
  54. 54.  Xin L, Shelite TR, Gong B, Mendell NL, Soong L et al. 2012. Systemic treatment with CpG-B after sublethal rickettsial infection induces mouse death through indoleamine 2,3-dioxygenase (IDO). PLOS ONE 7:e34062
    [Google Scholar]
  55. 55.  Walker DH, Popov VL, Crocquet-Valdes PA, Welsh CJ, Feng HM 1997. Cytokine-induced, nitric oxide–dependent, intracellular antirickettsial activity of mouse endothelial cells. Lab. Investig. 76:129–38
    [Google Scholar]
  56. 56.  Cragun WC, Bartlett BL, Ellis MW, Hoover AZ, Tyring SK et al. 2010. The expanding spectrum of eschar-associated rickettsioses in the United States. Arch. Dermatol. 146:641–48
    [Google Scholar]
  57. 57.  Curto P, Simoes I, Riley SP, Martinez JJ 2016. Differences in intracellular fate of two spotted fever group Rickettsia in macrophage-like cells. Front. Cell. Infect. Microbiol. 6:80
    [Google Scholar]
  58. 58.  Fang R, Ismail N, Walker DH 2012. Contribution of NK cells to the innate phase of host protection against an intracellular bacterium targeting systemic endothelium. Am. J. Pathol. 181:185–95
    [Google Scholar]
  59. 59.  Berg RE, Crossley E, Murray S, Forman J 2005. Relative contributions of NK and CD8 T cells to IFN-γ mediated innate immune protection against Listeria monocytogenes. J. . Immunol 175:1751–57
    [Google Scholar]
  60. 60.  D'Orazio SE, Troese MJ, Starnbach MN 2006. Cytosolic localization of Listeria monocytogenes triggers an early IFN-γ response by CD8+ T cells that correlates with innate resistance to infection. J. Immunol. 177:7146–54
    [Google Scholar]
  61. 61.  Sumaria N, van Dommelen SL, Andoniou CE, Smyth MJ, Scalzo AA, Degli-Esposti MA 2009. The roles of interferon-γ and perforin in antiviral immunity in mice that differ in genetically determined NK-cell-mediated antiviral activity. Immunol. Cell Biol. 87:559–66
    [Google Scholar]
  62. 62.  Billings AN, Feng HM, Olano JP, Walker DH 2001. Rickettsial infection in murine models activates an early anti-rickettsial effect mediated by NK cells and associated with production of gamma interferon. Am. J. Trop. Med. Hyg. 65:52–56
    [Google Scholar]
  63. 63.  Fang R, Ismail N, Soong L, Popov VL, Whitworth T et al. 2007. Differential interaction of dendritic cells with Rickettsia conorii: impact on host susceptibility to murine spotted fever rickettsiosis. Infect. Immun. 75:3112–23
    [Google Scholar]
  64. 64.  Jordan JM, Woods ME, Olano J, Walker DH 2008. The absence of Toll-like receptor 4 signaling in C3H/HeJ mice predisposes them to overwhelming rickettsial infection and decreased protective Th1 responses. Infect. Immun. 76:3717–24
    [Google Scholar]
  65. 65.  Bechelli J, Smalley C, Zhao X, Judy B, Valdes P et al. 2016. MyD88 mediates instructive signaling in dendritic cells and protective inflammatory response during rickettsial infection. Infect. Immun. 84:883–93
    [Google Scholar]
  66. 66.  Jordan JM, Woods ME, Soong L, Walker DH 2009. Rickettsiae stimulate dendritic cells through Toll-like receptor 4, leading to enhanced NK cell activation in vivo. J. Infect. Dis. 199:236–42
    [Google Scholar]
  67. 67.  Jordan JM, Woods ME, Feng HM, Soong L, Walker DH 2007. Rickettsiae-stimulated dendritic cells mediate protection against lethal rickettsial challenge in an animal model of spotted fever rickettsiosis. J. Infect. Dis. 196:629–38
    [Google Scholar]
  68. 68.  Fukata M, Vamadevan AS, Abreu MT 2009. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin. Immunol. 21:242–53
    [Google Scholar]
  69. 69.  Abdullah Z, Knolle PA 2014. Scaling of immune responses against intracellular bacterial infection. EMBO J 33:2283–94
    [Google Scholar]
  70. 70.  Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C et al. 1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2:253–58
    [Google Scholar]
  71. 71.  Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A et al. 2003. LPS–TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF. J. Exp. Med. 198:1043–55
    [Google Scholar]
  72. 72.  Arpaia N, Godec J, Lau L, Sivick KE, McLaughlin LM et al. 2011. TLR signaling is required for Salmonella typhimurium virulence. Cell 144:675–88
    [Google Scholar]
  73. 73.  Quevedo-Diaz MA, Song C, Xiong Y, Chen H, Wahl LM et al. 2010. Involvement of TLR2 and TLR4 in cell responses to Rickettsia akari. J. Leukoc. . Biol 88:675–85
    [Google Scholar]
  74. 74.  Akira S, Takeda K 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4:499–511
    [Google Scholar]
  75. 75.  Schroder K, Tschopp J 2010. The inflammasomes. Cell 140:821–32
    [Google Scholar]
  76. 76.  Smalley C, Bechelli J, Rockx-Brouwer D, Saito T, Azar SR et al. 2016. Rickettsia australis activates inflammasome in human and murine macrophages. PLOS ONE 11:e0157231
    [Google Scholar]
  77. 77.  Wu J, Fernandes-Alnemri T, Alnemri ES 2010. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J. Clin. . Immunol 30:693–702
    [Google Scholar]
  78. 78.  Cai S, Batra S, Wakamatsu N, Pacher P, Jeyaseelan S 2012. NLRC4 inflammasome-mediated production of IL-1β modulates mucosal immunity in the lung against Gram-negative bacterial infection. J. Immunol. 188:5623–35
    [Google Scholar]
  79. 79.  Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F 2011. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious. PLOS Pathog 7:e1002452
    [Google Scholar]
  80. 80.  Jones JW, Kayagaki N, Broz P, Henry T, Newton K et al. 2010. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. . PNAS 107:9771–76
    [Google Scholar]
  81. 81.  Rollwagen FM, Bakun AJ, Dorsey CH, Dasch GA 1985. Mechanisms of immunity to infection with typhus rickettsiae: Infected fibroblasts bear rickettsial antigens on their surfaces. Infect. Immun. 50:911–16
    [Google Scholar]
  82. 82.  Feng H, Popov VL, Yuoh G, Walker DH 1997. Role of T lymphocyte subsets in immunity to spotted fever group rickettsiae. J. Immunol. 158:5314–20
    [Google Scholar]
  83. 83.  Fang R, Ismail N, Shelite T, Walker DH 2009. CD4+ CD25+ Foxp3 T-regulatory cells produce both gamma interferon and interleukin-10 during acute severe murine spotted fever rickettsiosis. Infect. Immun. 77:3838–49
    [Google Scholar]
  84. 84.  Mansueto P, Vitale G, Di Lorenzo G, Arcoleo F, Mansueto S, Cillari E 2008. Immunology of human rickettsial diseases. J. Biol. Regul. Homeost. Agents 22:131–39
    [Google Scholar]
  85. 85.  Valbuena G, Walker DH 2006. The endothelium as a target for infections. Annu. Rev. Pathol. Mech. Dis. 1:171–98
    [Google Scholar]
  86. 86.  Sahni A, Narra HP, Walker DH, Sahni SK 2016. Endothelial activation and injury: the mechanisms of rickettsial vasculitis. Vascular Responses to Pathogens FNE Gavins, KY Stokes 111–22 London: Elsevier
    [Google Scholar]
  87. 87.  Blanc G, Ngwamidiba M, Ogata H, Fournier PE, Claverie JM, Raoult D 2005. Molecular evolution of rickettsia surface antigens: evidence of positive selection. Mol. Biol. Evol. 22:2073–83
    [Google Scholar]
  88. 88.  Sears KT, Ceraul SM, Gillespie JJ, Allen ED Jr, Popov VL et al. 2012. Surface proteome analysis and characterization of surface cell antigen (Sca) or autotransporter family of Rickettsia typhi. . PLOS Pathog 8:e1002856
    [Google Scholar]
  89. 89.  Ngwamidiba M, Blanc G, Raoult D, Fournier PE 2006. Sca1, a previously undescribed paralog from autotransporter protein-encoding genes in Rickettsia species. BMC Microbiol 6:12
    [Google Scholar]
  90. 90.  Chan YG, Riley SP, Martinez JJ 2010. Adherence to and invasion of host cells by spotted fever group Rickettsia species. Front. Microbiol. 1:139
    [Google Scholar]
  91. 91.  Hackstadt T, Messer R, Cieplak W, Peacock MG 1992. Evidence for proteolytic cleavage of the 120-kilodalton outer membrane protein of rickettsiae: identification of an avirulent mutant deficient in processing. Infect. Immun. 60:159–65
    [Google Scholar]
  92. 92.  Martinez JJ, Seveau S, Veiga E, Matsuyama S, Cossart P 2005. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. . Cell 123:1013–23
    [Google Scholar]
  93. 93.  Li H, Walker DH 1998. rOmpA is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb. Pathog. 24:289–98
    [Google Scholar]
  94. 94.  Hillman RD Jr, Baktash YM, Martinez JJ 2013. OmpA-mediated rickettsial adherence to and invasion of human endothelial cells is dependent upon interaction with α2β1 integrin. Cell. Microbiol. 15:727–41
    [Google Scholar]
  95. 95.  Noriea NF, Clark TR, Hackstadt T 2015. Targeted knockout of the Rickettsia rickettsii OmpA surface antigen does not diminish virulence in a mammalian model system. mBio 6:e00323–15
    [Google Scholar]
  96. 96.  Riley SP, Goh KC, Hermanas TM, Cardwell MM, Chan YG, Martinez JJ 2010. The Rickettsia conorii autotransporter protein Sca1 promotes adherence to nonphagocytic mammalian cells. Infect. Immun. 78:1895–904
    [Google Scholar]
  97. 97.  Cardwell MM, Martinez JJ 2009. The Sca2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect. Immun. 77:5272–80
    [Google Scholar]
  98. 98.  Dreher-Lesnick SM, Ceraul SM, Rahman MS, Azad AF 2008. Genome-wide screen for temperature-regulated genes of the obligate intracellular bacterium. Rickettsia typhi. BMC Microbiol. 8:61
    [Google Scholar]
  99. 99.  Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT et al. 2015. Secretome of obligate intracellular Rickettsia. FEMS Microbiol. . Rev 39:47–80
    [Google Scholar]
  100. 100.  Park H, Lee JH, Gouin E, Cossart P, Izard T 2011. The Rickettsia surface cell antigen 4 applies mimicry to bind to and activate vinculin. J. Biol. Chem. 286:35096–103
    [Google Scholar]
  101. 101.  Gong B, Shelite T, Mei FC, Ha T, Hu Y et al. 2013. Exchange protein directly activated by cAMP plays a critical role in bacterial invasion during fatal rickettsioses. PNAS 110:19615–20
    [Google Scholar]
  102. 102.  Sahni A, Patel J, Narra HP, Schroeder CLC, Walker DH, Sahni SK 2017. Fibroblast growth factor receptor-1 mediates internalization of pathogenic spotted fever rickettsiae into host endothelium. PLOS ONE 12:e0183181
    [Google Scholar]
  103. 103.  Noriea NF, Clark TR, Mead D, Hackstadt T 2017. Proteolytic cleavage of the immunodominant outer membrane protein rOmpA in Rickettsia rickettsii. J. . Bacteriol 199:e00826–16
    [Google Scholar]
  104. 104.  Heinzen RA, Hayes SF, Peacock MG, Hackstadt T 1993. Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells. Infect. Immun. 61:1926–35
    [Google Scholar]
  105. 105.  Teysseire N, Chiche-Portiche C, Raoult D 1992. Intracellular movements of Rickettsia conorii and R. typhi based on actin polymerization. Res. Microbiol. 143:821–29
    [Google Scholar]
  106. 106.  Martinez JJ, Cossart P 2004. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J. Cell Sci. 117:5097–106
    [Google Scholar]
  107. 107.  Gouin E, Egile C, Dehoux P, Villiers V, Adams J et al. 2004. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427:457–61
    [Google Scholar]
  108. 108.  Balraj P, Nappez C, Raoult D, Renesto P 2008. Western-blot detection of RickA within spotted fever group rickettsiae using a specific monoclonal antibody. FEMS Microbiol. Lett. 286:257–62
    [Google Scholar]
  109. 109.  Simser JA, Rahman MS, Dreher-Lesnick SM, Azad AF 2005. A novel and naturally occurring transposon, ISRpe1 in the Rickettsia peacockii genome disrupting the rickA gene involved in actin-based motility. Mol. Microbiol. 58:71–79
    [Google Scholar]
  110. 110.  Ogata H, Renesto P, Audic S, Robert C, Blanc G et al. 2005. The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLOS Biol 3:e248
    [Google Scholar]
  111. 111.  Reed SC, Lamason RL, Risca VI, Abernathy E, Welch MD 2014. Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators. Curr. Biol. 24:98–103
    [Google Scholar]
  112. 112.  Haglund CM, Choe JE, Skau CT, Kovar DR, Welch MD 2010. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat. Cell Biol. 12:1057–63
    [Google Scholar]
  113. 113.  Kleba B, Clark TR, Lutter EI, Ellison DW, Hackstadt T 2010. Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect. Immun. 78:2240–47
    [Google Scholar]
  114. 114.  Lamason RL, Welch MD 2017. Actin-based motility and cell-to-cell spread of bacterial pathogens. Curr. Opin. Microbiol. 35:48–57
    [Google Scholar]
  115. 115.  Alix E, Chesnel L, Bowzard BJ, Tucker AM, Delprato A et al. 2012. The capping domain in RalF regulates effector functions. PLOS Pathog 8:e1003012
    [Google Scholar]
  116. 116.  Rydkina E, Sahni A, Baggs RB, Silverman DJ, Sahni SK 2006. Infection of human endothelial cells with spotted fever group rickettsiae stimulates cyclooxygenase 2 expression and release of vasoactive prostaglandins. Infect. Immun. 74:5067–74
    [Google Scholar]
  117. 117.  Walker TS, Mellott GE 1993. Rickettsial stimulation of endothelial platelet-activating factor synthesis. Infect. Immun. 61:2024–29
    [Google Scholar]
  118. 118.  Bechah Y, Capo C, Raoult D, Mege JL 2008. Infection of endothelial cells with virulent Rickettsia prowazekii increases the transmigration of leukocytes. J. Infect. Dis. 197:142–47
    [Google Scholar]
  119. 119.  Rao AK, Schapira M, Clements ML, Niewiarowski S, Budzynski AZ et al. 1988. A prospective study of platelets and plasma proteolytic systems during the early stages of Rocky Mountain spotted fever. N. Engl. J. Med. 318:1021–28
    [Google Scholar]
  120. 120.  Clifton DR, Rydkina E, Huyck H, Pryhuber G, Freeman RS et al. 2005. Expression and secretion of chemotactic cytokines IL-8 and MCP-1 by human endothelial cells after Rickettsia rickettsii infection: regulation by nuclear transcription factor NF-κB. Int. J. Med. Microbiol. 295:267–78
    [Google Scholar]
  121. 121.  Rydkina E, Silverman DJ, Sahni SK 2005. Activation of p38 stress-activated protein kinase during Rickettsia rickettsii infection of human endothelial cells: role in the induction of chemokine response. Cell. Microbiol. 7:1519–30
    [Google Scholar]
  122. 122.  Kaplanski G, Teysseire N, Farnarier C, Kaplanski S, Lissitzky JC et al. 1995. IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1α-dependent pathway. J. Clin. Investig. 96:2839–44
    [Google Scholar]
  123. 123.  Mansueto P, Vitale G, Cascio A, Seidita A, Pepe I et al. 2012. New insight into immunity and immunopathology of rickettsial diseases. Clin. Dev. Immunol. 2012:967852
    [Google Scholar]
  124. 124.  Clifton DR, Rydkina E, Freeman RS, Sahni SK 2005. NF-κB activation during Rickettsia rickettsii infection of endothelial cells involves the activation of catalytic IκB kinases IKKα and IKKβ and phosphorylation-proteolysis of the inhibitor protein IκBα. Infect. Immun. 73:155–65
    [Google Scholar]
  125. 125.  Sporn LA, Sahni SK, Lerner NB, Marder VJ, Silverman DJ et al. 1997. Rickettsia rickettsii infection of cultured human endothelial cells induces NF-κB activation. Infect. Immun. 65:2786–91
    [Google Scholar]
  126. 126.  Clifton DR, Goss RA, Sahni SK, van Antwerp D, Baggs RB et al. 1998. NF-κB-dependent inhibition of apoptosis is essential for host cell survival during Rickettsia rickettsii infection. PNAS 95:4646–51
    [Google Scholar]
  127. 127.  Sahni SK, Van Antwerp DJ, Eremeeva ME, Silverman DJ, Marder VJ, Sporn LA 1998. Proteasome-independent activation of nuclear factor κB in cytoplasmic extracts from human endothelial cells by Rickettsia rickettsii. Infect. . Immun 66:1827–33
    [Google Scholar]
  128. 128.  Sahni SK, Kiriakidi S, Colonne MP, Sahni A, Silverman DJ 2009. Selective activation of signal transducer and activator of transcription (STAT) proteins STAT1 and STAT3 in human endothelial cells infected with Rickettsia rickettsii. Clin. Microbiol. . Infect 15:Suppl. 2303–4
    [Google Scholar]
  129. 129.  Colonne PM, Eremeeva ME, Sahni SK 2011. Beta interferon-mediated activation of signal transducer and activator of transcription protein 1 interferes with Rickettsia conorii replication in human endothelial cells. Infect. Immun. 79:3733–43
    [Google Scholar]
  130. 130.  Colonne PM, Sahni A, Sahni SK 2013. Suppressor of cytokine signalling protein SOCS1 and UBP43 regulate the expression of type I interferon–stimulated genes in human microvascular endothelial cells infected with Rickettsia conorii. J. Med. Microbiol 62:968–79
    [Google Scholar]
  131. 131.  Colonne PM, Sahni A, Sahni SK 2011. Rickettsia conorii infection stimulates the expression of ISG15 and ISG15 protease UBP43 in human microvascular endothelial cells. Biochem. Biophys. Res. Commun. 416:153–58
    [Google Scholar]
  132. 132.  Sahni SK, Rydkina E 2009. Host-cell interactions with pathogenic Rickettsia species. Future Microbiol 4:323–39
    [Google Scholar]
  133. 133.  Whelton A, Donadio JV Jr, Elisberg BL 1968. Acute renal failure complicating rickettsial infections in glucose-6-phosphate dehydrogenase–deficient individuals. Ann. Intern. Med. 69:323–28
    [Google Scholar]
  134. 134.  Rydkina E, Sahni A, Silverman DJ, Sahni SK 2002. Rickettsia rickettsii infection of cultured human endothelial cells induces heme oxygenase 1 expression. Infect. Immun. 70:4045–52
    [Google Scholar]
  135. 135.  Chung SW, Hall SR, Perrella MA 2009. Role of haem oxygenase-1 in microbial host defence. Cell. Microbiol. 11:199–207
    [Google Scholar]
  136. 136.  Rydkina E, Turpin LC, Silverman DJ, Sahni SK 2009. Rickettsia rickettsii infection of human pulmonary microvascular endothelial cells: modulation of cyclooxygenase-2 expression. Clin. Microbiol. Infect. 15:Suppl. 2300–2
    [Google Scholar]
  137. 137.  Sahni A, Narra HP, Patel J, Sahni SK 2017. MicroRNA signature of human microvascular endothelium infected with Rickettsia rickettsii. Int. J. Mol. Sci 18:1471
    [Google Scholar]
  138. 138.  O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D 2010. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10:111–22
    [Google Scholar]
  139. 139.  Das K, Garnica O, Dhandayuthapani S 2016. Modulation of host miRNAs by intracellular bacterial pathogens. Front. Cell. Infect. Microbiol. 6:79
    [Google Scholar]
  140. 140.  Storz G, Vogel J, Wassarman KM 2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43:880–91
    [Google Scholar]
  141. 141.  Holste D, Weiss O, Grosse I, Herzel H 2000. Are noncoding sequences of Rickettsia prowazekii remnants of “neutralized” genes?. J. Mol. Evol. 51:353–62
    [Google Scholar]
  142. 142.  Schroeder CL, Narra HP, Rojas M, Sahni A, Patel J et al. 2015. Bacterial small RNAs in the genus Rickettsia. . BMC Genom 16:1075
    [Google Scholar]
  143. 143.  Schroeder CL, Narra HP, Sahni A, Rojas M, Khanipov K et al. 2016. Identification and characterization of novel small RNAs in Rickettsia prowazekii. Front. . Microbiol 7:859
    [Google Scholar]
  144. 144.  Schroeder CLC, Narra HP, Sahni A, Khanipov K, Patel J et al. 2017. Transcriptional profiling of Rickettsia prowazekii coding and non-coding transcripts during in vitro host-pathogen and vector-pathogen interactions. Ticks Tick-Borne Dis 8:827–36
    [Google Scholar]
  145. 145.  Narra HP, Schroeder CLC, Sahni A, Rojas M, Khanipov K et al. 2016. Small regulatory RNAs of Rickettsia conorii. Sci. . Rep 6:36728
    [Google Scholar]
  146. 146.  Kao GF, Evancho CD, Ioffe O, Lowitt MH, Dumler JS 1997. Cutaneous histopathology of Rocky Mountain spotted fever. J. Cutan. Pathol. 24:604–10
    [Google Scholar]
  147. 147.  Lillie RD 1941. The pathology of Rocky Mountain spotted fever. Natl. Inst. Health Bull. 177:1–46
    [Google Scholar]
  148. 148.  Roggli VL, Keener S, Bradford WD, Pratt PC, Walker DH 1985. Pulmonary pathology of Rocky Mountain spotted fever (RMSF) in children. Pediatr. Pathol. 4:47–57
    [Google Scholar]
  149. 149.  Jackson MD, Kirkman C, Bradford WD, Walker DH 1986. Rocky Mountain spotted fever: hepatic lesions in childhood cases. Pediatr. Pathol. 5:379–88
    [Google Scholar]
  150. 150.  Walker DH, Lesesne HR, Varma VA, Thacker W 1985. Rocky Mountain spotted fever mimicking acute cholecystitis. Arch. Intern. Med. 145:2194–96
    [Google Scholar]
  151. 151.  Bradford WD, Croker BP, Tisher CC 1979. Kidney lesions in Rocky Mountain spotted fever: a light-, immunofluorescence-, and electron-microscopic study. Am. J. Pathol. 97:381–92
    [Google Scholar]
  152. 152.  Bradford WD, Hackel DB 1978. Myocardial involvement in Rocky Mountain spotted fever. Arch. Pathol. Lab. Med. 102:357–59
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012418-012800
Loading
/content/journals/10.1146/annurev-pathmechdis-012418-012800
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error