1932

Abstract

Metastatic dissemination has lethal consequences for cancer patients. Accruing evidence supports the hypothesis that tumor cells can migrate and metastasize as clusters of cells while maintaining contacts with one another. Collective metastasis enables tumor cells to colonize secondary sites more efficiently, resist cell death, and evade the immune system. On the other hand, tumor cell clusters face unique challenges for dissemination particularly during systemic dissemination. Here, we review recent progress toward understanding how tumor cell clusters overcome these disadvantages as well as mechanisms they utilize to gain advantages throughout the metastatic process. We consider useful models for studying collective metastasis and reflect on how the study of collective metastasis suggests new opportunities for eradicating and preventing metastatic disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031521-023557
2023-01-24
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathmechdis-031521-023557.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031521-023557&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lambert AW, Pattabiraman DR, Weinberg RA. 2017. Emerging biological principles of metastasis. Cell 168:4670–91
    [Google Scholar]
  2. 2.
    Massagué J, Ganesh K. 2021. Metastasis-initiating cells and ecosystems. Cancer Discov. 11:4971–94
    [Google Scholar]
  3. 3.
    Liotta LA, Kleinerman J, Saldel GM. 1976. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 36:3889–94
    [Google Scholar]
  4. 4.
    Fidler IJ. 1973. The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur. J. Cancer 9:3223–27
    [Google Scholar]
  5. 5.
    Friedl P, Mayor R 2017. Tuning collective cell migration by cell-cell junction regulation. Cold Spring Harb. Perspect. Biol. 9:4a029199
    [Google Scholar]
  6. 6.
    Hou J-M, Krebs MG, Lancashire L, Sloane R, Backen A et al. 2012. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J. Clin. Oncol. 30:5525–32
    [Google Scholar]
  7. 7.
    Long E, Ilie M, Bence C, Butori C, Selva E et al. 2016. High expression of TRF2, SOX10, and CD10 in circulating tumor microemboli detected in metastatic melanoma patients. A potential impact for the assessment of disease aggressiveness. Cancer Med. 5:61022–30
    [Google Scholar]
  8. 8.
    Wang C, Mu Z, Chervoneva I, Austin L, Ye Z et al. 2017. Longitudinally collected CTCs and CTC-clusters and clinical outcomes of metastatic breast cancer. Breast Cancer Res. Treat. 161:183–94
    [Google Scholar]
  9. 9.
    Mu Z, Wang C, Ye Z, Austin L, Civan J et al. 2015. Prospective assessment of the prognostic value of circulating tumor cells and their clusters in patients with advanced-stage breast cancer. Breast Cancer Res. Treat. 154:3563–71
    [Google Scholar]
  10. 10.
    Larsson A-M, Jansson S, Bendahl P-O, Levin Tykjaer Jörgensen C, Loman N et al. 2018. Longitudinal enumeration and cluster evaluation of circulating tumor cells improve prognostication for patients with newly diagnosed metastatic breast cancer in a prospective observational trial. Breast Cancer Res. 20:148
    [Google Scholar]
  11. 11.
    Carlsson A, Kuhn P, Luttgen MS, Keomanee-Dizon K, Troncoso P et al. 2017. Paired high-content analysis of prostate cancer cells in bone marrow and blood characterizes increased androgen receptor expression in tumor cell clusters. Clin. Cancer Res. 23:71722–32
    [Google Scholar]
  12. 12.
    Alix-Panabières C, Pantel K 2016. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 6:5479–91
    [Google Scholar]
  13. 13.
    de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC et al. 2008. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 14:196302–9
    [Google Scholar]
  14. 14.
    Cristofanilli M, Pierga J-Y, Reuben J, Rademaker A, Davis AA et al. 2019. The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): international expert consensus paper. Crit. Rev. Oncol. Hematol. 134:39–45
    [Google Scholar]
  15. 15.
    Cho EH, Wendel M, Luttgen M, Yoshioka C, Marrinucci D et al. 2012. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys. Biol. 9:1016001
    [Google Scholar]
  16. 16.
    Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M et al. 2015. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 12:7685–91
    [Google Scholar]
  17. 17.
    Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS et al. 2014. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:51110–22
    [Google Scholar]
  18. 18.
    Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T et al. 2013. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLOS ONE 8:6e67466
    [Google Scholar]
  19. 19.
    Molnar B, Ladanyi A, Tanko L, Sréter L, Tulassay Z. 2001. Circulating tumor cell clusters in the peripheral blood of colorectal cancer patients. Clin. Cancer Res. 7:124080–85
    [Google Scholar]
  20. 20.
    Crosbie PAJ, Shah R, Krysiak P, Zhou C, Morris K et al. 2016. Circulating tumor cells detected in the tumor-draining pulmonary vein are associated with disease recurrence after surgical resection of NSCLC. J. Thorac. Oncol. 11:101793–97
    [Google Scholar]
  21. 21.
    Krol I, Schwab FD, Carbone R, Ritter M, Picocci S et al. 2021. Detection of clustered circulating tumour cells in early breast cancer. Br. J. Cancer 125:123–27
    [Google Scholar]
  22. 22.
    Murlidhar V, Reddy RM, Fouladdel S, Zhao L, Ishikawa MK et al. 2017. Poor prognosis indicated by venous circulating tumor cell clusters in early-stage lung cancers. Cancer Res. 77:185194–206
    [Google Scholar]
  23. 23.
    Diamantopoulou Z, Castro-Giner F, Schwab FD, Foerster C, Saini M et al. 2022. The metastatic spread of breast cancer accelerates during sleep. Nature 607:7917156–62
    [Google Scholar]
  24. 24.
    Paoletti C, Miao J, Dolce EM, Darga EP, Repollet MI et al. 2019. Circulating tumor cell clusters in patients with metastatic breast cancer: a SWOG S0500 translational medicine study. Clin. Cancer Res. 25:206089–97
    [Google Scholar]
  25. 25.
    Blau CA, Ramirez AB, Blau S, Pritchard CC, Dorschner MO et al. 2016. A distributed network for intensive longitudinal monitoring in metastatic triple-negative breast cancer. J. Natl. Compr. Cancer Netw. 14:18–17
    [Google Scholar]
  26. 26.
    Li Z, Wu Y, Yates ME, Tasdemir N, Bahreini A et al. 2022. Hotspot ESR1 mutations are multimodal and contextual modulators of breast cancer metastasis. Cancer Res. 82:71321–39
    [Google Scholar]
  27. 27.
    Zeinali M, Lee M, Nadhan A, Mathur A, Hedman C et al. 2020. High-throughput label-free isolation of heterogeneous circulating tumor cells and CTC clusters from non-small-cell lung cancer patients. Cancers 12:1E127
    [Google Scholar]
  28. 28.
    Hamza B, Miller AB, Meier L, Stockslager M, Ng SR et al. 2021. Measuring kinetics and metastatic propensity of CTCs by blood exchange between mice. Nat. Commun. 12:15680
    [Google Scholar]
  29. 29.
    Gao W, Yuan H, Jing F, Wu S, Zhou H et al. 2016. Analysis of circulating tumor cells from lung cancer patients with multiple biomarkers using high-performance size-based microfluidic chip. Oncotarget 8:812917–28
    [Google Scholar]
  30. 30.
    Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S et al. 2019. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566:7745553–57
    [Google Scholar]
  31. 31.
    Rushton AJ, Nteliopoulos G, Shaw JA, Coombes RC. 2021. A review of circulating tumour cell enrichment technologies. Cancers 13:5970
    [Google Scholar]
  32. 32.
    Cohen EN, Jayachandran G, Hardy MR, Venkata Subramanian AM, Meng X, Reuben JM 2020. Antigen-agnostic microfluidics-based circulating tumor cell enrichment and downstream molecular characterization. PLOS ONE 15:10e0241123
    [Google Scholar]
  33. 33.
    Kaldjian EP, Ramirez AB, Sun Y, Campton DE, Werbin JL et al. 2018. The RareCyte® platform for next-generation analysis of circulating tumor cells. Cytometry A 93:121220–25
    [Google Scholar]
  34. 34.
    Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD et al. 2016. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. PNAS 113:7E854–63
    [Google Scholar]
  35. 35.
    Maddipati R, Stanger BZ. 2015. Pancreatic cancer metastases harbor evidence of polyclonality. Cancer Discov. 5:101086–97
    [Google Scholar]
  36. 36.
    Zajac O, Raingeaud J, Libanje F, Lefebvre C, Sabino D et al. 2018. Tumour spheres with inverted polarity drive the formation of peritoneal metastases in patients with hypermethylated colorectal carcinomas. Nat. Cell Biol. 20:3296–306
    [Google Scholar]
  37. 37.
    Allen TA, Asad D, Amu E, Hensley MT, Cores J et al. 2019. Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential. J. Cell Sci. 132:17jcs231563
    [Google Scholar]
  38. 38.
    Liu X, Taftaf R, Kawaguchi M, Chang Y-F, Chen W et al. 2019. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov. 9:196–113
    [Google Scholar]
  39. 39.
    Wrenn ED, Yamamoto A, Moore BM, Huang Y, McBirney M et al. 2020. Regulation of collective metastasis by nanolumenal signaling. Cell 183:2395–410.e19
    [Google Scholar]
  40. 40.
    Wrenn E, Huang Y, Cheung K. 2021. Collective metastasis: coordinating the multicellular voyage. Clin. Exp. Metastasis 38:4373–99
    [Google Scholar]
  41. 41.
    Reeves MQ, Kandyba E, Harris S, Del Rosario R, Balmain A. 2018. Multicolour lineage tracing reveals clonal dynamics of squamous carcinoma evolution from initiation to metastasis. Nat. Cell Biol. 20:6699–709
    [Google Scholar]
  42. 42.
    Echeverria GV, Powell E, Seth S, Ge Z, Carugo A et al. 2018. High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer. Nat. Commun. 9:15079
    [Google Scholar]
  43. 43.
    Lo HC, Xu Z, Kim IS, Pingel B, Aguirre S et al. 2020. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat. Cancer 1:7709–22
    [Google Scholar]
  44. 44.
    Berthelet J, Wimmer VC, Whitfield HJ, Serrano A, Boudier T et al. 2021. The site of breast cancer metastases dictates their clonal composition and reversible transcriptomic profile. Sci. Adv. 7:28eabf4408
    [Google Scholar]
  45. 45.
    Campbell NR, Rao A, Hunter MV, Sznurkowska MK, Briker L et al. 2021. Cooperation between melanoma cell states promotes metastasis through heterotypic cluster formation. Dev. Cell 56:202808–25.e10
    [Google Scholar]
  46. 46.
    Tiede S, Kalathur RKR, Lüönd F, von Allmen L, Szczerba BM et al. 2021. Multi-color clonal tracking reveals intra-stage proliferative heterogeneity during mammary tumor progression. Oncogene 40:112–27
    [Google Scholar]
  47. 47.
    Al Habyan S, Kalos C, Szymborski J, McCaffrey L 2018. Multicellular detachment generates metastatic spheroids during intra-abdominal dissemination in epithelial ovarian cancer. Oncogene 37:5127–35
    [Google Scholar]
  48. 48.
    Kok SY, Oshima H, Takahashi K, Nakayama M, Murakami K et al. 2021. Malignant subclone drives metastasis of genetically and phenotypically heterogenous cell clusters through fibrotic niche generation. Nat. Commun. 12:1863
    [Google Scholar]
  49. 49.
    Kim M-Y, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH-F et al. 2009. Tumor self-seeding by circulating cancer cells. Cell 139:71315–26
    [Google Scholar]
  50. 50.
    Heyde A, Reiter JG, Naxerova K, Nowak MA. 2019. Consecutive seeding and transfer of genetic diversity in metastasis. PNAS 116:2814129–37
    [Google Scholar]
  51. 51.
    Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B, Nowak MA. 2015. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525:7568261–64
    [Google Scholar]
  52. 52.
    Hu Z, Li Z, Ma Z, Curtis C 2020. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52:7701–8
    [Google Scholar]
  53. 53.
    De Mattos-Arruda L, Sammut S-J, Ross EM, Bashford-Rogers R, Greenstein E et al. 2019. The genomic and immune landscapes of lethal metastatic breast cancer. Cell Rep. 27:92690–708.e10
    [Google Scholar]
  54. 54.
    Siegel MB, He X, Hoadley KA, Hoyle A, Pearce JB et al. 2018. Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J. Clin. Investig. 128:41371–83
    [Google Scholar]
  55. 55.
    Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC et al. 2015. The evolutionary history of lethal metastatic prostate cancer. Nature 520:7547353–57
    [Google Scholar]
  56. 56.
    Leung ML, Davis A, Gao R, Casasent A, Wang Y et al. 2017. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res. 27:81287–99
    [Google Scholar]
  57. 57.
    El-Kebir M, Satas G, Raphael BJ. 2018. Inferring parsimonious migration histories for metastatic cancers. Nat. Genet. 50:5718–26
    [Google Scholar]
  58. 58.
    Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N et al. 2020. Fluids and their mechanics in tumour transit: shaping metastasis. Nat. Rev. Cancer 20:2107–24
    [Google Scholar]
  59. 59.
    Strilic B, Offermanns S. 2017. Intravascular survival and extravasation of tumor cells. Cancer Cell 32:3282–93
    [Google Scholar]
  60. 60.
    Labuschagne CF, Cheung EC, Blagih J, Domart M-C, Vousden KH. 2019. Cell clustering promotes a metabolic switch that supports metastatic colonization. Cell Metab. 30:4720–34.e5
    [Google Scholar]
  61. 61.
    Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z et al. 2009. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461:7260109–13
    [Google Scholar]
  62. 62.
    Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC et al. 2020. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585:7823113–18
    [Google Scholar]
  63. 63.
    Brown CW, Amante JJ, Mercurio AM. 2018. Cell clustering mediated by the adhesion protein PVRL4 is necessary for α6β4 integrin-promoted ferroptosis resistance in matrix-detached cells. J. Biol. Chem. 293:3312741–48
    [Google Scholar]
  64. 64.
    Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ et al. 2007. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and -independent mechanisms. Blood 110:1133–41
    [Google Scholar]
  65. 65.
    Chan IS, Knútsdóttir H, Ramakrishnan G, Padmanaban V, Warrier M et al. 2020. Cancer cells educate natural killer cells to a metastasis-promoting cell state. J. Cell Biol. 219:9e202001134
    [Google Scholar]
  66. 66.
    Follain G, Osmani N, Azevedo AS, Allio G, Mercier L et al. 2018. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev. Cell 45:133–52.e12
    [Google Scholar]
  67. 67.
    Marrella A, Fedi A, Varani G, Vaccari I, Fato M et al. 2021. High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device. PLOS ONE 16:1e0245536
    [Google Scholar]
  68. 68.
    Li K, Wu R, Zhou M, Tong H, Luo KQ. 2021. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci. Adv. 7:40eabg7265
    [Google Scholar]
  69. 69.
    Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N et al. 2019. E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573:7774439–44
    [Google Scholar]
  70. 70.
    Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J et al. 2019. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176:1–298–112.e14
    [Google Scholar]
  71. 71.
    Huntington ND, Cursons J, Rautela J. 2020. The cancer-natural killer cell immunity cycle. Nat. Rev. Cancer 20:8437–54
    [Google Scholar]
  72. 72.
    Chan IS, Ewald AJ. 2022. The changing role of natural killer cells in cancer metastasis. J. Clin. Investig. 132:6e143762
    [Google Scholar]
  73. 73.
    Dianat-Moghadam H, Mahari A, Heidarifard M, Parnianfard N, Pourmousavi-Kh L et al. 2021. NK cells-directed therapies target circulating tumor cells and metastasis. Cancer Lett. 497:41–53
    [Google Scholar]
  74. 74.
    Janiszewska M, Tabassum DP, Castaño Z, Cristea S, Yamamoto KN et al. 2019. Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments. Nat. Cell Biol. 21:7879–88
    [Google Scholar]
  75. 75.
    Karthikeyan S, Waters IG, Dennison L, Chu D, Donaldson J et al. 2021. Hierarchical tumor heterogeneity mediated by cell contact between distinct genetic subclones. J. Clin. Investig. 131:6143557
    [Google Scholar]
  76. 76.
    Amara SN-A, Kuiken HJ, Selfors LM, Butler T, Leung ML et al. 2020. Transient commensal clonal interactions can drive tumor metastasis. Cancer Biol. 11:5799
    [Google Scholar]
  77. 77.
    Chang P-H, Chen M-C, Tsai Y-P, Tan GYT, Hsu P-H et al. 2021. Interplay between desmoglein2 and hypoxia controls metastasis in breast cancer. PNAS 118:3e2014408118
    [Google Scholar]
  78. 78.
    Ilina O, Gritsenko PG, Syga S, Lippoldt J, La Porta CAM et al. 2020. Cell-cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat. Cell Biol. 22:91103–15
    [Google Scholar]
  79. 79.
    Pavlova NN, Pallasch C, Elia AEH, Braun CJ, Westbrook TF et al. 2013. A role for PVRL4-driven cell-cell interactions in tumorigenesis. eLife 2:e00358
    [Google Scholar]
  80. 80.
    Aasen T, Mesnil M, Naus CC, Lampe PD, Laird DW. 2016. Gap junctions and cancer: communicating for 50 years. Nat. Rev. Cancer 16:12775–88
    [Google Scholar]
  81. 81.
    Higginbotham JN, Demory Beckler M, Gephart JD, Franklin JL, Bogatcheva G et al. 2011. Amphiregulin exosomes increase cancer cell invasion. Curr. Biol. 21:9779–86
    [Google Scholar]
  82. 82.
    Roh-Johnson M, Shah AN, Stonick JA, Poudel KR, Kargl J et al. 2017. Macrophage-dependent cytoplasmic transfer during melanoma invasion in vivo. Dev. Cell 43:5549–62.e6
    [Google Scholar]
  83. 83.
    Maeshiro M, Shinriki S, Liu R, Nakachi Y, Komohara Y et al. 2021. Colonization of distant organs by tumor cells generating circulating homotypic clusters adaptive to fluid shear stress. Sci. Rep. 11:16150
    [Google Scholar]
  84. 84.
    Dang HX, Krasnick BA, White BS, Grossman JG, Strand MS et al. 2020. The clonal evolution of metastatic colorectal cancer. Sci Adv. 6:24eaay9691
    [Google Scholar]
  85. 85.
    Tabassum DP, Polyak K. 2015. Tumorigenesis: it takes a village. Nat. Rev. Cancer 15:8473–83
    [Google Scholar]
  86. 86.
    Yu M, Bardia A, Wittner BS, Stott SL, Smas ME et al. 2013. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:6119580–84
    [Google Scholar]
  87. 87.
    Egeblad M, de Visser KE. 2019. Sticking together helps cancer to spread. Nature 566:7745459–60
    [Google Scholar]
  88. 88.
    Sprouse ML, Welte T, Boral D, Liu HN, Yin W et al. 2019. PMN-MDSCs enhance CTC metastatic properties through reciprocal interactions via ROS/Notch/Nodal signaling. Int. J. Mol. Sci. 20:8E1916
    [Google Scholar]
  89. 89.
    Duda DG, Duyverman AMMJ, Kohno M, Snuderl M, Steller EJA et al. 2010. Malignant cells facilitate lung metastasis by bringing their own soil. PNAS 107:5021677–82
    [Google Scholar]
  90. 90.
    Ortiz-Otero N, Clinch AB, Hope J, Wang W, Reinhart-King CA, King MR 2020. Cancer associated fibroblasts confer shear resistance to circulating tumor cells during prostate cancer metastatic progression. Oncotarget 11:121037–50
    [Google Scholar]
  91. 91.
    Labelle M, Begum S, Hynes RO. 2011. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:5576–90
    [Google Scholar]
  92. 92.
    Haemmerle M, Taylor ML, Gutschner T, Pradeep S, Cho MS et al. 2017. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat. Commun. 8:1310
    [Google Scholar]
  93. 93.
    Egan K, Cooke N, Kenny D. 2014. Living in shear: platelets protect cancer cells from shear induced damage. Clin. Exp. Metastasis 31:6697–704
    [Google Scholar]
  94. 94.
    Jiang X, Wong KHK, Khankhel AH, Zeinali M, Reategui E et al. 2017. Microfluidic isolation of platelet-covered circulating tumor cells. Lab. Chip 17:203498–503
    [Google Scholar]
  95. 95.
    Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S. 2013. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24:1130–37
    [Google Scholar]
  96. 96.
    Lucotti S, Cerutti C, Soyer M, Gil-Bernabé AM, Gomes AL et al. 2019. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J. Clin. Investig. 129:51845–62
    [Google Scholar]
  97. 97.
    Friedl P, Locker J, Sahai E, Segall JE. 2012. Classifying collective cancer cell invasion. Nat. Cell Biol. 14:8777–83
    [Google Scholar]
  98. 98.
    Bronsert P, Enderle-Ammour K, Bader M, Timme S, Kuehs M et al. 2014. Cancer cell invasion and EMT marker expression: a three-dimensional study of the human cancer-host interface. J. Pathol. 234:3410–22
    [Google Scholar]
  99. 99.
    Friedl P, Noble PB, Walton PA, Laird DW, Chauvin PJ et al. 1995. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res. 55:204557–60
    [Google Scholar]
  100. 100.
    Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. 2013. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155:71639–51
    [Google Scholar]
  101. 101.
    Weigelin B, Bakker G-J, Friedl P. 2012. Intravital third harmonic generation microscopy of collective melanoma cell invasion: principles of interface guidance and microvesicle dynamics. Intravital 1:132–43
    [Google Scholar]
  102. 102.
    Haeger A, Alexander S, Vullings M, Kaiser FMP, Veelken C et al. 2020. Collective cancer invasion forms an integrin-dependent radioresistant niche. J. Exp. Med. 217:1e20181184
    [Google Scholar]
  103. 103.
    Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK, Wong PK. 2021. Decoding leader cells in collective cancer invasion. Nat. Rev. Cancer 21:9592–604
    [Google Scholar]
  104. 104.
    Carey SP, Starchenko A, McGregor AL, Reinhart-King CA. 2013. Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model. Clin. Exp. Metastasis 30:5615–30
    [Google Scholar]
  105. 105.
    Hwang PY, Brenot A, King AC, Longmore GD, George SC. 2019. Randomly distributed K14+ breast tumor cells polarize to the leading edge and guide collective migration in response to chemical and mechanical environmental cues. Cancer Res. 79:81899–912
    [Google Scholar]
  106. 106.
    Zoeller EL, Pedro B, Konen J, Dwivedi B, Rupji M et al. 2019. Genetic heterogeneity within collective invasion packs drives leader and follower cell phenotypes. J. Cell Sci. 132:19jcs231514
    [Google Scholar]
  107. 107.
    Westcott JM, Prechtl AM, Maine EA, Dang TT, Esparza MA et al. 2015. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J. Clin. Investig. 125:51927–43
    [Google Scholar]
  108. 108.
    Zhang J, Goliwas KF, Wang W, Taufalele PV, Bordeleau F, Reinhart-King CA. 2019. Energetic regulation of coordinated leader-follower dynamics during collective invasion of breast cancer cells. PNAS 116:167867–72
    [Google Scholar]
  109. 109.
    Commander R, Wei C, Sharma A, Mouw JK, Burton LJ et al. 2020. Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion. Nat. Commun. 11:1533
    [Google Scholar]
  110. 110.
    Konen J, Summerbell E, Dwivedi B, Galior K, Hou Y et al. 2017. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat. Commun. 8:15078
    [Google Scholar]
  111. 111.
    Pedro B, Rupji M, Dwivedi B, Kowalski J, Konen JM et al. 2020. Prognostic significance of an invasive leader cell–derived mutation cluster on chromosome 16q. Cancer 126:133140–50
    [Google Scholar]
  112. 112.
    Summerbell ER, Mouw JK, Bell JSK, Knippler CM, Pedro B et al. 2020. Epigenetically heterogeneous tumor cells direct collective invasion through filopodia-driven fibronectin micropatterning. Sci. Adv. 6:30eaaz6197
    [Google Scholar]
  113. 113.
    Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D et al. 2005. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 65:125278–83
    [Google Scholar]
  114. 114.
    Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF et al. 2007. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9:121392–400
    [Google Scholar]
  115. 115.
    Labernadie A, Kato T, Brugués A, Serra-Picamal X, Derzsi S et al. 2017. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19:3224–37
    [Google Scholar]
  116. 116.
    Richardson AM, Havel LS, Koyen AE, Konen JM, Shupe J et al. 2018. Vimentin is required for lung adenocarcinoma metastasis via heterotypic tumor cell-cancer-associated fibroblast interactions during collective invasion. Clin. Cancer Res. 24:2420–32
    [Google Scholar]
  117. 117.
    Westcott JM, Camacho S, Nasir A, Huysman ME, Rahhal R et al. 2020. ΔNp63-regulated epithelial-to-mesenchymal transition state heterogeneity confers a leader-follower relationship that drives collective invasion. Cancer Res. 80:183933–44
    [Google Scholar]
  118. 118.
    Calbo J, van Montfort E, Proost N, van Drunen E, Beverloo HB et al. 2011. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19:2244–56
    [Google Scholar]
  119. 119.
    Ewald AJ, Brenot A, Duong M, BS Chan, Werb Z. 2008. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev. Cell 14:4570–81
    [Google Scholar]
  120. 120.
    Ozawa M, Hiver S, Yamamoto T, Shibata T, Upadhyayula S et al. 2020. Adherens junction regulates cryptic lamellipodia formation for epithelial cell migration. J. Cell Biol. 219:10e202006196
    [Google Scholar]
  121. 121.
    Fischer KR, Durrans A, Lee S, Sheng J, Li F et al. 2015. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527:7579472–76
    [Google Scholar]
  122. 122.
    Lüönd F, Sugiyama N, Bill R, Bornes L, Hager C et al. 2021. Distinct contributions of partial and full EMT to breast cancer malignancy. Dev. Cell 56:233203–21.e11
    [Google Scholar]
  123. 123.
    Pastushenko I, Blanpain C. 2019. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:3212–26
    [Google Scholar]
  124. 124.
    Jolly MK, Tripathi SC, Jia D, Mooney SM, Celiktas M et al. 2016. Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget 7:1927067–84
    [Google Scholar]
  125. 125.
    Boareto M, Jolly MK, Goldman A, Pietilä M, Mani SA et al. 2016. Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. J. R. Soc. Interface 13:11820151106
    [Google Scholar]
  126. 126.
    Li C-F, Chen J-Y, Ho Y-H, Hsu W-H, Wu L-C et al. 2019. Snail-induced claudin-11 prompts collective migration for tumour progression. Nat. Cell Biol. 21:2251–62
    [Google Scholar]
  127. 127.
    Campbell K, Rossi F, Adams J, Pitsidianaki I, Barriga FM et al. 2019. Collective cell migration and metastases induced by an epithelial-to-mesenchymal transition in Drosophila intestinal tumors. Nat. Commun. 10:12311
    [Google Scholar]
  128. 128.
    Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J et al. 2018. EMT subtype influences epithelial plasticity and mode of cell migration. Dev. Cell 45:6681–95.e4
    [Google Scholar]
  129. 129.
    Katt ME, Wong AD, Searson PC. 2018. Dissemination from a solid tumor: examining the multiple parallel pathways. Trends Cancer 4:120–37
    [Google Scholar]
  130. 130.
    Folarin AA, Konerding MA, Timonen J, Nagl S, Pedley RB. 2010. Three-dimensional analysis of tumour vascular corrosion casts using stereoimaging and micro-computed tomography. Microvasc Res. 80:189–98
    [Google Scholar]
  131. 131.
    Yang X, Zhang Y, Hosaka K, Andersson P, Wang J et al. 2015. VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients. PNAS 112:22E2900–9
    [Google Scholar]
  132. 132.
    Sugino T, Kusakabe T, Hoshi N, Yamaguchi T, Kawaguchi T et al. 2002. An invasion-independent pathway of blood-borne metastasis: a new murine mammary tumor model. Am. J. Pathol. 160:61973–80
    [Google Scholar]
  133. 133.
    Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL. 2000. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. PNAS 97:2614608–13
    [Google Scholar]
  134. 134.
    Silvestri VL, Henriet E, Linville RM, Wong AD, Searson PC, Ewald AJ. 2020. a tissue-engineered 3D microvessel model reveals the dynamics of mosaic vessel formation in breast cancer. Cancer Res. 80:194288–301
    [Google Scholar]
  135. 135.
    Deryugina EI, Kiosses WB. 2017. Intratumoral cancer cell intravasation can occur independent of invasion into the adjacent stroma. Cell Rep. 19:3601–16
    [Google Scholar]
  136. 136.
    Donato C, Kunz L, Castro-Giner F, Paasinen-Sohns A, Strittmatter K et al. 2020. Hypoxia triggers the intravasation of clustered circulating tumor cells. Cell Rep. 32:10108105
    [Google Scholar]
  137. 137.
    Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A et al. 2018. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat. Commun. 9:121
    [Google Scholar]
  138. 138.
    Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF et al. 2016. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540:7634588–92
    [Google Scholar]
  139. 139.
    Harney AS, Arwert EN, Entenberg D, Wang Y, Guo P et al. 2015. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5:9932–43
    [Google Scholar]
  140. 140.
    Roh-Johnson M, Bravo-Cordero JJ, Patsialou A, Sharma VP, Guo P et al. 2014. Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33:4203–12
    [Google Scholar]
  141. 141.
    Au SH, Storey BD, Moore JC, Tang Q, Chen Y-L et al. 2016. Clusters of circulating tumor cells traverse capillary-sized vessels. PNAS 113:184947–52
    [Google Scholar]
  142. 142.
    Filho OM, Viale G, Stein S, Trippa L, Yardley DA et al. 2021. Impact of HER2 heterogeneity on treatment response of early-stage HER2-positive breast cancer: phase II neoadjuvant clinical trial of T-DM1 combined with pertuzumab. Cancer Discov. 11:102474–87
    [Google Scholar]
  143. 143.
    Seligson JM, Patron AM, Berger MJ, Harvey RD, Seligson ND. 2021. Sacituzumab govitecan-hziy: an antibody-drug conjugate for the treatment of refractory, metastatic, triple-negative breast cancer. Ann. Pharmacother. 55:7921–31
    [Google Scholar]
  144. 144.
    Rosenberg JE, O'Donnell PH, Balar AV, McGregor BA, Heath EI et al. 2019. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J. Clin. Oncol. 37:292592–600
    [Google Scholar]
  145. 145.
    Jansson S, Bendahl P-O, Larsson A-M, Aaltonen KE, Rydén L. 2016. Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC Cancer 16:433
    [Google Scholar]
  146. 146.
    Costa C, Muinelo-Romay L, Cebey-López V, Pereira-Veiga T, Martínez-Pena I et al. 2020. Analysis of a real-world cohort of metastatic breast cancer patients shows circulating tumor cell clusters (CTC-clusters) as predictors of patient outcomes. Cancers 12:5E1111
    [Google Scholar]
  147. 147.
    Divella R, Daniele A, Abbate I, Bellizzi A, Savino E et al. 2014. The presence of clustered circulating tumor cells (CTCs) and circulating cytokines define an aggressive phenotype in metastatic colorectal cancer. Cancer Causes Control 25:111531–41
    [Google Scholar]
  148. 148.
    Zheng L, Zou K, Yang C, Chen F, Guo T, Xiong B. 2017. Inflammation-based indexes and clinicopathologic features are strong predictive values of preoperative circulating tumor cell detection in gastric cancer patients. Clin. Transl. Oncol. 19:91125–32
    [Google Scholar]
  149. 149.
    Lee M, Kim EJ, Cho Y, Kim S, Chung HH et al. 2017. Predictive value of circulating tumor cells (CTCs) captured by microfluidic device in patients with epithelial ovarian cancer. Gynecol. Oncol. 145:2361–65
    [Google Scholar]
  150. 150.
    Chang M-C, Chang Y-T, Chen J-Y, Jeng Y-M, Yang C-Y et al. 2016. Clinical significance of circulating tumor microemboli as a prognostic marker in patients with pancreatic ductal adenocarcinoma. Clin. Chem. 62:3505–13
    [Google Scholar]
  151. 151.
    Okegawa T, Ninomiya N, Masuda K, Nakamura Y, Tambo M, Nutahara K. 2018. AR-V7 in circulating tumor cells cluster as a predictive biomarker of abiraterone acetate and enzalutamide treatment in castration-resistant prostate cancer patients. Prostate 78:8576–82
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031521-023557
Loading
/content/journals/10.1146/annurev-pathmechdis-031521-023557
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error