1932

Abstract

Mastocytosis is a heterogeneous group of neoplasms defined by a numerical increase and accumulation of clonal mast cells (MCs) in various organ systems. The disease may present as cutaneous mastocytosis or systemic mastocytosis (SM). On the basis of histopathological and molecular features, clinical variables, and organ involvement, SM is divided into indolent SM, smoldering SM, SM with an associated hematologic neoplasm, aggressive SM, and MC leukemia. Each variant is defined by unique diagnostic criteria and a unique spectrum of clinical presentations. A key driver of MC expansion and disease evolution is the oncogenic machinery triggered by mutant forms of . The genetic background, additional somatic mutations, and comorbidities also contribute to the course and prognosis. Patients with SM may also suffer from mediator-related symptoms or even an MC activation syndrome. This article provides an update of concepts on the genetics, etiology, and pathology of mastocytosis, with emphasis on diagnostic criteria and new treatment concepts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-031521-042618
2023-01-24
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/pathol/18/1/annurev-pathmechdis-031521-042618.html?itemId=/content/journals/10.1146/annurev-pathmechdis-031521-042618&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Valent P, Akin C, Sperr WR, Horny HP, Arock M et al. 2003. Diagnosis and treatment of systemic mastocytosis: state of the art. Br. J. Haematol. 122:695–717
    [Google Scholar]
  2. 2.
    Metcalfe DD, Mekori YA. 2017. Pathogenesis and pathology of mastocytosis. Annu. Rev. Pathol. Mech. Dis. 12:487–514
    [Google Scholar]
  3. 3.
    Valent P, Akin C, Metcalfe DD. 2017. Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood 129:1420–27
    [Google Scholar]
  4. 4.
    Reiter A, George TI, Gotlib J. 2020. New developments in diagnosis, prognostication, and treatment of advanced systemic mastocytosis. Blood 135:1365–76
    [Google Scholar]
  5. 5.
    Nettleship E, Tay W. 1869. Rare forms of urticaria. Br. Med. J. 2:323–24
    [Google Scholar]
  6. 6.
    Ehrlich P. 1879. Beiträge zur Kenntnis der granulierten Bindegewebszellen und der eosinophilen Leukocyten. Arch. Anat. Physiol. 7:166–69
    [Google Scholar]
  7. 7.
    Unna PG. 1887. Beiträge zur Anatomie und Pathogeneses der Urticaria Simplex und Pigmentosa. Monatschr. Prakt. Dermatol. Suppl. Dermatol. Stud. 3:9
    [Google Scholar]
  8. 8.
    Ellis JM. 1949. Urticaria pigmentosa; a report of a case with autopsy. Arch. Pathol. 48:426–35
    [Google Scholar]
  9. 9.
    Lennert K, Parwaresch MR. 1979. Mast cells and mast cell neoplasia: a review. Histopathology 3:349–65
    [Google Scholar]
  10. 10.
    Parwaresch MR, Horny HP, Lennert K. 1985. Tissue mast cells in health and disease. Pathol. Res. Pract. 179:439–61
    [Google Scholar]
  11. 11.
    Metcalfe DD. 1991. Classification and diagnosis of mastocytosis: current status. J. Investig. Dermatol. 96:2S–4S
    [Google Scholar]
  12. 12.
    Valent P, Horny HP, Escribano L, Longley BJ, Li CY et al. 2001. Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk. Res. 25:603–25
    [Google Scholar]
  13. 13.
    Lim KH, Tefferi A, Lasho TL, Finke C, Patnaik M et al. 2009. Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood 113:5727–36
    [Google Scholar]
  14. 14.
    Pardanani A, Lim KH, Lasho TL, Finke C, McClure RF et al. 2009. Prognostically relevant breakdown of 123 patients with systemic mastocytosis associated with other myeloid malignancies. Blood 114:3769–72
    [Google Scholar]
  15. 15.
    Sperr WR, Kundi M, Alvarez-Twose I, van Anrooij B, Oude Elberink JNG et al. 2019. International prognostic scoring system for mastocytosis (IPSM): a retrospective cohort study. Lancet Haematol. 6:e638–49
    [Google Scholar]
  16. 16.
    Valent P, Akin C, Hartmann K, Nilsson G, Reiter A et al. 2017. Advances in the classification and treatment of mastocytosis: current status and outlook toward the future. Cancer Res. 77:1261–70
    [Google Scholar]
  17. 17.
    Schwartz LB, Metcalfe DD, Miller JS, Earl H, Sullivan T. 1987. Tryptase levels as an indicator of mast-cell activation in systemic anaphylaxis and mastocytosis. N. Engl. J. Med. 316:1622–26
    [Google Scholar]
  18. 18.
    Schwartz LB, Irani AM. 2000. Serum tryptase and the laboratory diagnosis of systemic mastocytosis. Hematol. Oncol. Clin. North Am. 14:641–57
    [Google Scholar]
  19. 19.
    Nagata H, Worobec AS, Oh CK, Chowdhury BA, Tannenbaum S et al. 1995. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. PNAS 92:10560–64
    [Google Scholar]
  20. 20.
    Longley BJ, Tyrrell L, Lu SZ, Ma YS, Langley K et al. 1996. Somatic c-KIT activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat. Genet. 12:312–14
    [Google Scholar]
  21. 21.
    Fritsche-Polanz R, Jordan JH, Feix A, Sperr WR, Sunder-Plassmann G et al. 2001. Mutation analysis of C-KIT in patients with myelodysplastic syndromes without mastocytosis and cases of systemic mastocytosis. Br. J. Haematol. 113:357–64
    [Google Scholar]
  22. 22.
    Horny HP, Sillaber C, Menke D, Kaiserling E, Wehrmann M et al. 1998. Diagnostic value of immunostaining for tryptase in patients with mastocytosis. Am. J. Surg. Pathol. 22:1132–40
    [Google Scholar]
  23. 23.
    Escribano L, Orfao A, Díaz-Agustin B, Villarrubia J, Cerveró C et al. 1998. Indolent systemic mast cell disease in adults: immunophenotypic characterization of bone marrow mast cells and its diagnostic implications. Blood 91:2731–36
    [Google Scholar]
  24. 24.
    Sperr WR, Escribano L, Jordan JH, Schernthaner GH, Kundi M et al. 2001. Morphologic properties of neoplastic mast cells: delineation of stages of maturation and implication for cytological grading of mastocytosis. Leuk. Res. 25:529–36
    [Google Scholar]
  25. 25.
    Valent P, Escribano L, Parwaresch RM, Schemmel V, Schwartz LB et al. 1998. Recent advances in mastocytosis research. Summary of the Vienna Mastocytosis Meeting 1998. Int. Arch. Allergy Immunol. 120:1–7
    [Google Scholar]
  26. 26.
    Valent P, Horny H-P, Li CY, Longley JB, Metcalfe DD et al. 2001. Mastocytosis (mast cell disease). World Health Organization (WHO) Classification of Tumours. Pathology & Genetics. Tumours of Haematopoietic and Lymphoid Tissues ES Jaffe, NL Harris, H Stein, JW Vardiman 291–302 Lyon, France: IARC Press
    [Google Scholar]
  27. 27.
    Horny HP, Akin C, Metcalfe DD, Escribano L, Bennett JM et al. 2008. Mastocytosis (mast cell disease). World Health Organization (WHO) Classification of Tumours. Pathology & Genetics. Tumours of Haematopoietic and Lymphoid Tissues SH Swerdlow, E Campo, NL Harris, ES Jaffe, SA Pileri et al.54–63 Lyon, France: IARC Press
    [Google Scholar]
  28. 28.
    Horny HP, Akin C, Arber D, Peterson LA, Tefferi A et al. 2017. Mastocytosis. World Health Organization (WHO) Classification of Tumours of Haematopoietic and Lymphoid Tissues SH Swerdlow, E Campo, NL Harris, ES Jaffe, SA Pileri et al.62–69 Lyon, France: IARC Press
    [Google Scholar]
  29. 29.
    Valent P, Akin C, Escribano L, Födinger M, Hartmann K et al. 2007. Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria. Eur. J. Clin. Investig. 37:435–53
    [Google Scholar]
  30. 30.
    Hartmann K, Escribano L, Grattan C, Brockow K, Carter MC et al. 2016. Cutaneous manifestations in patients with mastocytosis: consensus report of the European Competence Network on Mastocytosis; the American Academy of Allergy, Asthma & Immunology; and the European Academy of Allergology and Clinical Immunology. J. Allergy Clin. Immunol. 137:35–45
    [Google Scholar]
  31. 31.
    Valent P, Akin C, Hartmann K, Alvarez-Twose I, Brockow K et al. 2021. Refined diagnostic criteria and classification of mast cell disorders: a consensus proposal. HemaSphere 5:e646
    [Google Scholar]
  32. 32.
    Zanotti R, Bonifacio M, Lucchini G, Sperr WR, Scaffidi L et al. 2021. Refined diagnostic criteria for bone marrow mastocytosis: a proposal of the European competence network on mastocytosis. Leukemia 36:516–24
    [Google Scholar]
  33. 33.
    Trizuljak J, Sperr WR, Nekvindová L, Elberink HO, Gleixner KV et al. 2020. Clinical features and survival of patients with indolent systemic mastocytosis defined by the updated WHO classification. Allergy 75:1927–38
    [Google Scholar]
  34. 34.
    Tefferi A, Shah S, Reichard KK, Hanson CA, Pardanani A. 2019. Smoldering mastocytosis: survival comparisons with indolent and aggressive mastocytosis. Am. J. Hematol. 94:E1–2
    [Google Scholar]
  35. 35.
    Alvarez-Twose I, Zanotti R, González-de-Olano D, Bonadonna P, Vega A et al. 2014. Nonaggressive systemic mastocytosis (SM) without skin lesions associated with insect-induced anaphylaxis shows unique features versus other indolent SM. J. Allergy Clin. Immunol. 133:520–28
    [Google Scholar]
  36. 36.
    Zanotti R, Lombardo C, Passalacqua G, Caimmi C, Bonifacio M et al. 2015. Clonal mast cell disorders in patients with severe Hymenoptera venom allergy and normal serum tryptase levels. J. Allergy Clin. Immunol. 136:1135–39
    [Google Scholar]
  37. 37.
    Zanotti R, Tanasi I, Bernardelli A, Orsolini G, Bonadonna P. 2021. Bone marrow mastocytosis: a diagnostic challenge. J. Clin. Med. 10:1420
    [Google Scholar]
  38. 38.
    Horny HP, Parwaresch MR, Kaiserling E, Müller K, Olbermann M, Mainzer K et al. 1986. Mast cell sarcoma of the larynx. J. Clin. Pathol. 39:596–602
    [Google Scholar]
  39. 39.
    Chott A, Guenther P, Huebner A, Selzer E, Parwaresch RM et al. 2003. Morphologic and immunophenotypic properties of neoplastic cells in a case of mast cell sarcoma. Am. J. Surg. Pathol. 27:1013–19
    [Google Scholar]
  40. 40.
    Georgin-Lavialle S, Aguilar C, Guieze R, Lhermitte L, Bruneau J et al. 2013. Mast cell sarcoma: a rare and aggressive entity—report of two cases and review of the literature. J. Clin. Oncol. 31:e90–97
    [Google Scholar]
  41. 41.
    Monnier J, Georgin-Lavialle S, Canioni D, Lhermitte L, Soussan M et al. 2016. Mast cell sarcoma: new cases and literature review. Oncotarget 7:66299–309
    [Google Scholar]
  42. 42.
    Galli SJ, Tsai M, Wershil BK. 1993. The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. Am. J. Pathol. 142:965–74
    [Google Scholar]
  43. 43.
    Valent P. 1994. The riddle of the mast cell: kit(CD117)-ligand as the missing link?. Immunol. Today 15:3111–14
    [Google Scholar]
  44. 44.
    Nakahata T, Toru H. 2002. Cytokines regulate development of human mast cells from hematopoietic progenitors. Int. J. Hematol. 75:350–56
    [Google Scholar]
  45. 45.
    Valent P, Akin C, Hartmann K, Nilsson G, Reiter A et al. 2020. Mast cells as a unique hematopoietic lineage and cell system: from Paul Ehrlich's visions to precision medicine concepts. Theranostics 10:10743–68
    [Google Scholar]
  46. 46.
    Valent P, Spanblöchl E, Sperr WR, Sillaber C, Zsebo KM et al. 1992. Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor/kit-ligand in long-term culture. Blood 80:2237–45
    [Google Scholar]
  47. 47.
    Irani AM, Nilsson G, Miettinen U, Craig SS, Ashman LK et al. 1992. Recombinant human stem cell factor stimulates differentiation of mast cells from dispersed human fetal liver cells. Blood 80:3009–21
    [Google Scholar]
  48. 48.
    Kirshenbaum AS, Goff JP, Kessler SW, Mican JM, Zsebo KM, Metcalfe DD. 1992. Effect of IL-3 and stem cell factor on the appearance of human basophils and mast cells from CD34+ pluripotent progenitor cells. J. Immunol. 148:772–77
    [Google Scholar]
  49. 49.
    Saito H, Ebisawa M, Tachimoto H, Shichijo M, Fukagawa K et al. 1996. Selective growth of human mast cells induced by Steel factor, IL-6, and prostaglandin E2 from cord blood mononuclear cells. J. Immunol. 157:343–50
    [Google Scholar]
  50. 50.
    Ochi H, Hirani WM, Yuan Q, Friend DS, Austen KF, Boyce JA 1999. T helper cell type 2 cytokine-mediated comitogenic responses and CCR3 expression during differentiation of human mast cells in vitro. J. Exp. Med. 190:267–80
    [Google Scholar]
  51. 51.
    Xia HZ, Du Z, Craig S, Klisch G, Noben-Trauth N et al. 1997. Effect of recombinant human IL-4 on tryptase, chymase, and Fc epsilon receptor type I expression in recombinant human stem cell factor-dependent fetal liver-derived human mast cells. J. Immunol. 159:2911–21
    [Google Scholar]
  52. 52
    Toru H, Eguchi M, Matsumoto R, Yanagida M, Yata J, Nakahata T. 1998. Interleukin-4 promotes the development of tryptase and chymase double-positive human mast cells accompanied by cell maturation. Blood 91:187–95
    [Google Scholar]
  53. 53.
    Eisenwort G, Sadovnik I, Schwaab J, Jawhar M, Keller A et al. 2019. Identification of a leukemia-initiating stem cell in human mast cell leukemia. Leukemia 33:2673–84
    [Google Scholar]
  54. 54.
    Bodemer C, Hermine O, Palmérini F, Yang Y, Grandpeix-Guyodo C et al. 2010. Pediatric mastocytosis is a clonal disease associated with D816V and other activating c-KIT mutations. J. Investig. Dermatol. 130:804–15
    [Google Scholar]
  55. 55.
    Arock M, Sotlar K, Akin C, Broesby-Olsen S, Hoermann G et al. 2015. KIT mutation analysis in mast cell neoplasms: recommendations of the European Competence Network on Mastocytosis. Leukemia 29:1223–32
    [Google Scholar]
  56. 56.
    Akin C, Fumo G, Yavuz AS, Lipsky PE, Neckers L, Metcalfe DD. 2004. A novel form of mastocytosis associated with a transmembrane c-kit mutation and response to imatinib. Blood 103:3222–25
    [Google Scholar]
  57. 57.
    Zhang LY, Smith ML, Schultheis B, Fitzgibbon J, Lister TA et al. 2006. A novel K509I mutation of KIT identified in familial mastocytosis—in vitro and in vivo responsiveness to imatinib therapy. Leuk. Res. 30:373–78
    [Google Scholar]
  58. 58.
    Chan EC, Bai Y, Kirshenbaum AS, Fischer ER, Simakova O et al. 2014. Mastocytosis associated with a rare germline KIT K509I mutation displays a well-differentiated mast cell phenotype. J. Allergy Clin. Immunol. 134:178–87
    [Google Scholar]
  59. 59.
    de Melo Campos P, Machado-Neto JA, Scopim-Ribeiro R, Visconte V, Tabarroki A et al. 2014. Familial systemic mastocytosis with germline KIT K509I mutation is sensitive to treatment with imatinib, dasatinib and PKC412. Leuk. Res. 38:1245–51
    [Google Scholar]
  60. 60.
    Valent P, Akin C, Arock M, Bock C, George TI et al. 2017. Proposed terminology and classification of pre-malignant neoplastic conditions: a consensus proposal. eBioMedicine 26:17–24
    [Google Scholar]
  61. 61.
    Georgin-Lavialle S, Lhermitte L, Dubreuil P, Chandesris MO, Hermine O, Damaj G 2013. Mast cell leukemia. Blood 121:1285–95
    [Google Scholar]
  62. 62.
    Nedoszytko B, Arock M, Lyons JJ, Bachelot G, Schwartz LB et al. 2021. Clinical impact of inherited and acquired genetic variants in mastocytosis. Int. J. Mol. Sci. 22:411–28
    [Google Scholar]
  63. 63.
    Mayerhofer M, Gleixner KV, Hoelbl A, Florian S, Hoermann G et al. 2008. Unique effects of KIT D816V in BaF3 cells: induction of cluster formation, histamine synthesis, and early mast cell differentiation antigens. J. Immunol. 180:5466–76
    [Google Scholar]
  64. 64.
    Tefferi A. 2010. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 24:1128–38
    [Google Scholar]
  65. 65.
    Traina F, Visconte V, Jankowska AM, Makishima H, O'Keefe CL et al. 2012. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis. PLOS ONE 7:e43090
    [Google Scholar]
  66. 66.
    Schwaab J, Schnittger S, Sotlar K, Walz C, Fabarius A et al. 2013. Comprehensive mutational profiling in advanced systemic mastocytosis. Blood 122:2460–66
    [Google Scholar]
  67. 67.
    Jawhar M, Schwaab J, Schnittger S, Meggendorfer M, Pfirrmann M et al. 2016. Additional mutations in SRSF2, ASXL1 and/or RUNX1 identify a high-risk group of patients with KIT D816V+ advanced systemic mastocytosis. Leukemia 30:136–43
    [Google Scholar]
  68. 68.
    Wang YY, Zhao LJ, Wu CF, Liu P, Shi L et al. 2011. C-KIT mutation cooperates with full-length AML1-ETO to induce acute myeloid leukemia in mice. PNAS 108:2450–55
    [Google Scholar]
  69. 69.
    Nick HJ, Kim HG, Chang CW, Harris KW, Reddy V, Klug CA. 2012. Distinct classes of c-Kit-activating mutations differ in their ability to promote RUNX1-ETO-associated acute myeloid leukemia. Blood 119:1522–31
    [Google Scholar]
  70. 70.
    Zhao L, Melenhorst JJ, Alemu L, Kirby M, Anderson S et al. 2012. KIT with D816 mutations cooperates with CBFB-MYH11 for leukemogenesis in mice. Blood 119:1511–21
    [Google Scholar]
  71. 71.
    De Vita S, Schneider RK, Garcia M, Wood J, Gavillet M et al. 2014. Loss of function of TET2 cooperates with constitutively active KIT in murine and human models of mastocytosis. PLOS ONE 9:e96209
    [Google Scholar]
  72. 72.
    Gleixner KV, Rabitsch W, Herrmann H, Klepetko W, Greiner G et al. 2018. Treatment of patients with aggressive systemic mastocytosis, mast cell leukemia and mast cell sarcoma: a single center experience. Blood 132:1769
    [Google Scholar]
  73. 73.
    Martinelli G, Mancini M, De Benedittis C, Rondoni M, Papayannidis C et al. 2018. SETD2 and histone H3 lysine 36 methylation deficiency in advanced systemic mastocytosis. Leukemia 32:139–48
    [Google Scholar]
  74. 74.
    Caplan RM. 1963. The natural course of urticaria pigmentosa: analysis and follow-up of 112 cases. Arch. Dermatol. 87:146–57
    [Google Scholar]
  75. 75.
    Kiszewski AE, Durán-Mckinster C, Orozco-Covarrubias L, Gutiérrez-Castrellón P, Ruiz-Maldonado R. 2004. Cutaneous mastocytosis in children: a clinical analysis of 71 cases. J. Eur. Acad. Dermatol. Venereol. 18:285–90
    [Google Scholar]
  76. 76.
    Fowler JF Jr., Parsley WM, Cotter PG. 1986. Familial urticaria pigmentosa. Arch. Dermatol. 122:80–81
    [Google Scholar]
  77. 77.
    Hartmann K, Wardelmann E, Ma Y, Merkelbach-Bruse S, Preussner LM et al. 2005. Novel germline mutation of KIT associated with familial gastrointestinal stromal tumors and mastocytosis. Gastroenterology 129:1042–46
    [Google Scholar]
  78. 78.
    Zanotti R, Simioni L, Garcia-Montero AC, Perbellini O, Bonadonna P et al. 2013. Somatic D816V KIT mutation in a case of adult-onset familial mastocytosis. J. Allergy Clin. Immunol. 131:605–7
    [Google Scholar]
  79. 79.
    Wöhrl S, Moritz KB, Bracher A, Fischer G, Stingl G, Loewe R. 2013. A c-kit mutation in exon 18 in familial mastocytosis. J. Investig. Dermatol. 133:839–41
    [Google Scholar]
  80. 80.
    Ke H, Kazi JU, Zhao H, Sun J. 2016. Germline mutations of KIT in gastrointestinal stromal tumor (GIST) and mastocytosis. Cell Biosci. 6:55
    [Google Scholar]
  81. 81.
    Peters F, Fiebig B, Lundberg P, Jaspers NI, Holzapfel B et al. 2021. Detection of the germline KIT S476I mutation in a kindred with familial mastocytosis associated with gastrointestinal stromal tumors. J. Allergy Clin. Immunol. Pract. 9:2123–25.e1
    [Google Scholar]
  82. 82.
    Broesby-Olsen S, Kristensen TK, Møller MB, Bindslev-Jensen C, Vestergaard H. 2012. Adult-onset systemic mastocytosis in monozygotic twins with KIT D816V and JAK2 V617F mutations. J. Allergy Clin. Immunol. 130:806–8
    [Google Scholar]
  83. 83.
    Lyons JJ, Yu X, Hughes JD, Le QT, Jamil A et al. 2016. Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number. Nat. Genet. 48:1564–69
    [Google Scholar]
  84. 84.
    Lyons JJ. 2018. Hereditary alpha tryptasemia: genotyping and associated clinical features. Immunol. Allergy Clin. North Am. 38:483–95
    [Google Scholar]
  85. 85.
    Greiner G, Sprinzl B, Górska A, Ratzinger F, Gurbisz M et al. 2021. Hereditary α tryptasemia is a valid genetic biomarker for severe mediator-related symptoms in mastocytosis. Blood 137:238–47
    [Google Scholar]
  86. 86.
    Lyons JJ, Chovanec J, O'Connell MP, Liu Y, Šelb J et al. 2021. Heritable risk for severe anaphylaxis associated with increased α-tryptase–encoding germline copy number at TPSAB1. J. Allergy Clin. Immunol. 147:622–32
    [Google Scholar]
  87. 87.
    Giannetti MP, Akin C, Hufdhi R, Hamilton MJ, Weller E et al. 2021. Patients with mast cell activation symptoms and elevated baseline serum tryptase level have unique bone marrow morphology. J. Allergy Clin. Immunol. 147:1497–501.e1
    [Google Scholar]
  88. 88.
    Ruoss SJ, Hartmann T, Caughey GH. 1991. Mast cell tryptase is a mitogen for cultured fibroblasts. J. Clin. Investig. 88:493–99
    [Google Scholar]
  89. 89.
    Sonneck K, Florian S, Böhm A, Krauth MT, Kondo R et al. 2006. Evaluation of biologic activity of tryptase secreted from blast cells in acute myeloid leukemia. Leuk. Lymphoma 47:897–906
    [Google Scholar]
  90. 90.
    Daley T, Metcalfe DD, Akin C. 2001. Association of the Q576R polymorphism in the interleukin-4 receptor α chain with indolent mastocytosis limited to the skin. Blood 98:880–82
    [Google Scholar]
  91. 91.
    Nedoszytko B, Niedoszytko M, Lange M, van Doormaal J, Gleń J, Zabłotna M et al. 2009. Interleukin-13 promoter gene polymorphism -1112C/T is associated with the systemic form of mastocytosis. Allergy 64:287–94
    [Google Scholar]
  92. 92.
    Niedoszytko M, Oude Elberink JN, Bruinenberg M, Nedoszytko B, de Monchy JG et al. 2011. Gene expression profile, pathways, and transcriptional system regulation in indolent systemic mastocytosis. Allergy 66:229–37
    [Google Scholar]
  93. 93.
    Rausz E, Szilágyi A, Nedoszytko B, Lange M, Niedoszytko M et al. 2013. Comparative analysis of IL6 and IL6 receptor gene polymorphisms in mastocytosis. Br. J. Haematol. 160:216–19
    [Google Scholar]
  94. 94.
    Lange M, Gleń J, Zabłotna M, Nedoszytko B, Sokołowska-Wojdyło M et al. 2017. Interleukin-31 polymorphisms and serum IL-31 level in patients with mastocytosis: correlation with clinical presentation and pruritus. Acta Derm. Venereol. 97:47–53
    [Google Scholar]
  95. 95.
    Nedoszytko B, Lange M, Renke J, Niedoszytko M, Zabłotna M et al. 2018. The possible role of gene variant coding nonfunctional Toll-like receptor 2 in the pathogenesis of mastocytosis. Int. Arch. Allergy Immunol. 177:80–86
    [Google Scholar]
  96. 96.
    Nedoszytko B, Sobalska-Kwapis M, Strapagiel D, Lange M, Górska A et al. 2020. Results from a genome-wide association study (GWAS) in mastocytosis reveal new gene polymorphisms associated with WHO subgroups. Int. J. Mol. Sci. 21:5506
    [Google Scholar]
  97. 97.
    Polivka L, Parietti V, Bruneau J, Soucie E, Madrange M et al. 2021. The association of Greig syndrome and mastocytosis reveals the involvement of the hedgehog pathway in advanced mastocytosis. Blood 138:2396–407
    [Google Scholar]
  98. 98.
    Galatà G, García-Montero AC, Kristensen T, Dawoud AAZ, Muñoz-González JI et al. 2021. Genome-wide association study identifies novel susceptibility loci for KIT D816V positive mastocytosis. Am. J. Hum. Genet. 108:284–94
    [Google Scholar]
  99. 99.
    Escribano L, Alvarez-Twose I, Sánchez-Muñoz L, Garcia-Montero A, Núñez R et al. 2009. Prognosis in adult indolent systemic mastocytosis: a long-term study of the Spanish Network on Mastocytosis in a series of 145 patients. J. Allergy Clin. Immunol. 124:514–21
    [Google Scholar]
  100. 100.
    Hoermann G, Gleixner KV, Dinu GE, Kundi M, Greiner G et al. 2014. The KIT D816V allele burden predicts survival in patients with mastocytosis and correlates with the WHO type of the disease. Allergy 69:810–13
    [Google Scholar]
  101. 101.
    Naumann N, Lübke J, Baumann S, Schwaab J, Hoffmann O et al. 2021. Adverse prognostic impact of the KIT D816V transcriptional activity in advanced systemic mastocytosis. Int. J. Mol. Sci. 22:2562
    [Google Scholar]
  102. 102.
    Muñoz-González JI, Álvarez-Twose I, Jara-Acevedo M, Henriques A, Viñas E et al. 2019. Frequency and prognostic impact of KIT and other genetic variants in indolent systemic mastocytosis. Blood 134:456–68
    [Google Scholar]
  103. 103.
    Kluin-Nelemans HC, Jawhar M, Reiter A, van Anrooij B, Gotlib J et al. 2021. Cytogenetic and molecular aberrations and worse outcome for male patients in systemic mastocytosis. Theranostics 11:292–303
    [Google Scholar]
  104. 104.
    Sperr WR, Horny HP, Lechner K, Valent P. 2000. Clinical and biologic diversity of leukemias occurring in patients with mastocytosis. Leuk. Lymphoma 37:473–86
    [Google Scholar]
  105. 105.
    Sotlar K, Fridrich C, Mall A, Jaussi R, Bültmann B et al. 2002. Detection of c-kit point mutation Asp-816 → Val in microdissected pooled single mast cells and leukemic cells in a patient with systemic mastocytosis and concomitant chronic myelomonocytic leukemia. Leuk. Res. 26:979–84
    [Google Scholar]
  106. 106.
    Sotlar K, Colak S, Bache A, Berezowska S, Krokowski M et al. 2010. Variable presence of KITD816V in clonal haematological non-mast cell lineage diseases associated with systemic mastocytosis (SM-AHNMD). J. Pathol. 220:586–95
    [Google Scholar]
  107. 107.
    Valent P, Orazi A, Savona MR, Patnaik MM, Onida F et al. 2019. Proposed diagnostic criteria for classical chronic myelomonocytic leukemia (CMML), CMML variants and pre-CMML conditions. Haematologica 104:1935–49
    [Google Scholar]
  108. 108.
    Sperr WR, Walchshofer S, Horny HP, Födinger M, Simonitsch I et al. 1998. Systemic mastocytosis associated with acute myeloid leukaemia: report of two cases and detection of the c-kit mutation Asp-816 to Val. Br. J. Haematol. 103:740–49
    [Google Scholar]
  109. 109.
    Sotlar K, Bache A, Stellmacher F, Bültmann B, Valent P, Horny HP. 2008. Systemic mastocytosis associated with chronic idiopathic myelofibrosis: a distinct subtype of systemic mastocytosis associated with a clonal hematological non-mast cell lineage disorder carrying the activating point mutations KITD816V and JAK2V617F. J. Mol. Diagn. 10:58–66
    [Google Scholar]
  110. 110.
    Fritsche-Polanz R, Fritz M, Huber A, Sotlar K, Sperr WR et al. 2010. High frequency of concomitant mastocytosis in patients with acute myeloid leukemia exhibiting the transforming KIT mutation D816V. Mol. Oncol. 4:335–46
    [Google Scholar]
  111. 111.
    Jawhar M, Döhner K, Kreil S, Schwaab J, Shoumariyeh K et al. 2019. KIT D816 mutated/CBF-negative acute myeloid leukemia: a poor-risk subtype associated with systemic mastocytosis. Leukemia 33:1124–34
    [Google Scholar]
  112. 112.
    Wilson TM, Maric I, Simakova O, Bai Y, Chan EC et al. 2011. Clonal analysis of NRAS activating mutations in KIT-D816V systemic mastocytosis. Haematologica 96:459–63
    [Google Scholar]
  113. 113.
    Jawhar M, Schwaab J, Schnittger S, Sotlar K, Horny HP et al. 2015. Molecular profiling of myeloid progenitor cells in multi-mutated advanced systemic mastocytosis identifies KIT D816V as a distinct and late event. Leukemia 29:1115–22
    [Google Scholar]
  114. 114.
    Garcia-Montero AC, Jara-Acevedo M, Alvarez-Twose I, Teodosio C, Sanchez-Muñoz L et al. 2016. KIT D816V-mutated bone marrow mesenchymal stem cells in indolent systemic mastocytosis are associated with disease progression. Blood 127:761–68
    [Google Scholar]
  115. 115.
    Mayado A, Teodosio C, Dasilva-Freire N, Jara-Acevedo M, Garcia-Montero AC et al. 2018. Characterization of CD34+ hematopoietic cells in systemic mastocytosis: potential role in disease dissemination. Allergy 73:1294–304
    [Google Scholar]
  116. 116.
    Naumann N, Lübke J, Shomali W, Reiter L, Horny HP et al. 2021. Clinical and histopathological features of myeloid neoplasms with concurrent Janus kinase 2 (JAK2) V617F and KIT proto-oncogene, receptor tyrosine kinase (KIT) D816V mutations. Br. J. Haematol. 194:344–54
    [Google Scholar]
  117. 117.
    Rechsteiner M, Müller R, Reineke T, Goede J, Bohnert A et al. 2014. Modelling of a genetically diverse evolution of systemic mastocytosis with chronic myelomonocytic leukemia (SM-CMML) by next generation sequencing. Exp. Hematol. Oncol. 3:18
    [Google Scholar]
  118. 118.
    Agis H, Sotlar K, Valent P, Horny HP. 2005. Ph-Chromosome-positive chronic myeloid leukemia with associated bone marrow mastocytosis. Leuk. Res. 29:1227–32
    [Google Scholar]
  119. 119.
    Schmitt-Graeff AH, Erben P, Schwaab J, Vollmer-Kary B, Metzgeroth G et al. 2014. The FIP1L1-PDGFRA fusion gene and the KIT D816V mutation are coexisting in a small subset of myeloid/lymphoid neoplasms with eosinophilia. Blood 123:595–97
    [Google Scholar]
  120. 120.
    Jawhar M, Schwaab J, Álvarez-Twose I, Shoumariyeh K, Naumann N et al. 2019. MARS: mutation-adjusted risk score for advanced systemic mastocytosis. J. Clin. Oncol. 37:2846–56
    [Google Scholar]
  121. 121.
    Muñoz-González JI, Álvarez-Twose I, Jara-Acevedo M, Zanotti R, Perkins C et al. 2021. Proposed global prognostic score for systemic mastocytosis: a retrospective prognostic modelling study. Lancet Haematol 8:e194–204
    [Google Scholar]
  122. 122.
    Jawhar M, Schwaab J, Meggendorfer M, Naumann N, Horny HP et al. 2017. The clinical and molecular diversity of mast cell leukemia with or without associated hematologic neoplasm. Haematologica 102:1035–43
    [Google Scholar]
  123. 123.
    Brockow K, Akin C, Huber M, Metcalfe DD. 2005. IL-6 levels predict disease variant and extent of organ involvement in patients with mastocytosis. Clin. Immunol. 115:216–23
    [Google Scholar]
  124. 124.
    Matito A, Morgado JM, Álvarez-Twose I, Sánchez-Muñoz L, Pedreira CE et al. 2013. Serum tryptase monitoring in indolent systemic mastocytosis: association with disease features and patient outcome. PLOS ONE 8:e76116
    [Google Scholar]
  125. 125.
    Erben P, Schwaab J, Metzgeroth G, Horny HP, Jawhar M et al. 2014. The KIT D816V expressed allele burden for diagnosis and disease monitoring of systemic mastocytosis. Ann. Hematol. 93:81–88
    [Google Scholar]
  126. 126.
    Jawhar M, Schwaab J, Hausmann D, Clemens J, Naumann N et al. 2016. Splenomegaly, elevated alkaline phosphatase and mutations in the SRSF2/ASXL1/RUNX1 gene panel are strong adverse prognostic markers in patients with systemic mastocytosis. Leukemia 30:2342–50
    [Google Scholar]
  127. 127.
    Naumann N, Jawhar M, Schwaab J, Kluger S, Lübke J et al. 2018. Incidence and prognostic impact of cytogenetic aberrations in patients with systemic mastocytosis. Genes Chromosomes Cancer 57:252–59
    [Google Scholar]
  128. 128.
    Muñoz-González JI, Jara-Acevedo M, Alvarez-Twose I, Merker JD, Teodosio C et al. 2018. Impact of somatic and germline mutations on the outcome of systemic mastocytosis. Blood Adv. 2:2814–28
    [Google Scholar]
  129. 129.
    Mayado A, Teodosio C, Garcia-Montero AC, Matito A, Rodriguez-Caballero A et al. 2016. Increased IL6 plasma levels in indolent systemic mastocytosis patients are associated with high risk of disease progression. Leukemia 30:124–30
    [Google Scholar]
  130. 130.
    Reszka E, Jabłońska E, Wieczorek E, Valent P, Arock M et al. 2021. Epigenetic changes in neoplastic mast cells and potential impact in mastocytosis. Int. J. Mol. Sci. 22:2964–76
    [Google Scholar]
  131. 131.
    Bonadonna P, Perbellini O, Passalacqua G, Caruso B, Colarossi S et al. 2009. Clonal mast cell disorders in patients with systemic reactions to Hymenoptera stings and increased serum tryptase levels. J. Allergy Clin. Immunol. 123:680–86
    [Google Scholar]
  132. 132.
    Valent P. 2014. Risk factors and management of severe life-threatening anaphylaxis in patients with clonal mast cell disorders. Clin. Exp. Allergy 44:914–20
    [Google Scholar]
  133. 133.
    Alvarez-Twose I, Zanotti R, González-de-Olano D, Bonadonna P, Vega A et al. 2014. Nonaggressive systemic mastocytosis (SM) without skin lesions associated with insect-induced anaphylaxis shows unique features versus other indolent SM. J. Allergy Clin. Immunol. 133:520–28
    [Google Scholar]
  134. 134.
    Theoharides TC, Valent P, Akin C. 2015. Mast cells, mastocytosis, and related disorders. N. Engl. J. Med. 373:163–72
    [Google Scholar]
  135. 135.
    Gülen T, Akin C. 2022. Anaphylaxis and mast cell disorders. Immunol. Allergy Clin. North Am. 42:45–63
    [Google Scholar]
  136. 136.
    Akin C, Valent P, Metcalfe DD. 2010. Mast cell activation syndrome: proposed diagnostic criteria. J. Allergy Clin. Immunol. 126:1099–104
    [Google Scholar]
  137. 137.
    Valent P, Akin C, Arock M, Brockow K, Butterfield JH et al. 2012. Definitions, criteria and global classification of mast cell disorders with special reference to mast cell activation syndromes: a consensus proposal. Int. Arch. Allergy Immunol. 157:215–25
    [Google Scholar]
  138. 138.
    Valent P. 2013. Mast cell activation syndromes: definition and classification. Allergy 68:417–24
    [Google Scholar]
  139. 139.
    Valent P, Akin C, Bonadonna P, Hartmann K, Brockow K et al. 2019. Proposed diagnostic algorithm for patients with suspected mast cell activation syndrome. J. Allergy Clin. Immunol. Pract. 7:1125–33.e1
    [Google Scholar]
  140. 140.
    Saleh R, Wedeh G, Herrmann H, Bibi S, Cerny-Reiterer S, Sadovnik I et al. 2014. A new human mast cell line expressing a functional IgE receptor converts to tumorigenic growth by KIT D816V transfection. Blood 124:111–20
    [Google Scholar]
  141. 141.
    Smiljkovic D, Kiss R, Lupinek C, Hoermann G, Greiner G et al. 2020. Microarray-based detection of allergen-reactive IgE in patients with mastocytosis. J. Allergy Clin. Immunol. Pract. 8:2761–68.e16
    [Google Scholar]
  142. 142.
    Niedoszytko M, Bruinenberg M, van Doormaal JJ, de Monchy JG, Nedoszytko B et al. 2011. Gene expression analysis predicts insect venom anaphylaxis in indolent systemic mastocytosis. Allergy 66:648–57
    [Google Scholar]
  143. 143.
    Górska A, Gruchała-Niedoszytko M, Niedoszytko M, Maciejewska A, Chełmińska M et al. 2016. The role of TRAF4 and B3GAT1 gene expression in the food hypersensitivity and insect venom allergy in mastocytosis. Arch. Immunol. Ther. Exp. 64:497–503
    [Google Scholar]
  144. 144.
    Glover SC, Carter MC, Korošec P, Bonadonna P, Schwartz LB et al. 2021. Clinical relevance of inherited genetic differences in human tryptases: hereditary alpha-tryptasemia and beyond. Ann. Allergy Asthma Immunol. 127:638–47
    [Google Scholar]
  145. 145.
    Barete S, Assous N, de Gennes C, Grandpeix C, Feger F et al. 2010. Systemic mastocytosis and bone involvement in a cohort of 75 patients. Ann. Rheum. Dis. 69:1838–41
    [Google Scholar]
  146. 146.
    van der Veer E, van der Goot W, de Monchy JG, Kluin-Nelemans HC, van Doormaal JJ. 2012. High prevalence of fractures and osteoporosis in patients with indolent systemic mastocytosis. Allergy 67:431–38
    [Google Scholar]
  147. 147.
    Rossini M, Zanotti R, Orsolini G, Tripi G, Viapiana O et al. 2016. Prevalence, pathogenesis, and treatment options for mastocytosis-related osteoporosis. Osteoporos. Int. 27:2411–21
    [Google Scholar]
  148. 148.
    Degboé Y, Eischen M, Nigon D, Apoil PA, Mailhol C et al. 2017. Prevalence and risk factors for fragility fracture in systemic mastocytosis. Bone 105:219–25
    [Google Scholar]
  149. 149.
    Makovoz A, Wang J, Oshegbo G, Park YH, Lyons JJ et al. 2021. Assessment of osteoporosis and fracture risk in mastocytosis within a North American cohort. J. Allergy Clin. Immunol. Pract. 9:4459–67.e10
    [Google Scholar]
  150. 150.
    Meyer HJ, Pönisch W, Monecke A, Gundermann P, Surov A. 2021. Bone mineral density in patients with systemic mastocytosis: correlations with clinical and histopathological features. Clin. Exp. Rheumatol. 39:52–57
    [Google Scholar]
  151. 151.
    Johansson C, Roupe G, Lindstedt G, Mellström D. 1996. Bone density, bone markers and bone radiological features in mastocytosis. Age Ageing 25:1–7
    [Google Scholar]
  152. 152.
    Theoharides TC, Boucher W, Spear K. 2002. Serum interleukin-6 reflects disease severity and osteoporosis in mastocytosis patients. Int. Arch. Allergy Immunol. 128:344–50
    [Google Scholar]
  153. 153.
    Rabenhorst A, Christopeit B, Leja S, Gerbaulet A, Kleiner S et al. 2013. Serum levels of bone cytokines are increased in indolent systemic mastocytosis associated with osteopenia or osteoporosis. J. Allergy Clin. Immunol. 132:1234–37.e7
    [Google Scholar]
  154. 154.
    Makovoz A, Wang J, Oshegbo G, Park YH, Lyons JJ et al. 2021. Assessment of osteoporosis and fracture risk in mastocytosis within a North American cohort. J. Allergy Clin. Immunol. Pract. 9:4459–67.e10
    [Google Scholar]
  155. 155.
    Kim DK, Bandara G, Cho YE, Komarow HD, Donahue DR et al. 2021. Mastocytosis-derived extracellular vesicles deliver miR-23a and miR-30a into pre-osteoblasts and prevent osteoblastogenesis and bone formation. Nat. Commun. 12:2527–44
    [Google Scholar]
  156. 156.
    Ustun C, Reiter A, Scott BL, Nakamura R, Damaj G, Kreil S et al. 2014. Hematopoietic stem-cell transplantation for advanced systemic mastocytosis. J. Clin. Oncol. 32:3264–74
    [Google Scholar]
  157. 157.
    Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K et al. 2016. Efficacy and safety of midostaurin in advanced systemic mastocytosis. N. Engl. J. Med. 374:2530–41
    [Google Scholar]
  158. 158.
    Valent P, Akin C, Hartmann K, George TI, Sotlar K et al. 2017. Midostaurin: a magic bullet that blocks mast cell expansion and activation. Ann. Oncol. 28:2367–76
    [Google Scholar]
  159. 159.
    Hartmann K, Gotlib J, Akin C, Hermine O, Awan FT et al. 2020. Midostaurin improves quality of life and mediator-related symptoms in advanced systemic mastocytosis. J. Allergy Clin. Immunol. 146:356–66.e4
    [Google Scholar]
  160. 160.
    Gotlib J, Reiter A, Radia DH, Deininger MW, George TI et al. 2021. Efficacy and safety of avapritinib in advanced systemic mastocytosis: interim analysis of the phase 2 PATHFINDER trial. Nat. Med. 27:2192–99
    [Google Scholar]
  161. 161.
    DeAngelo DJ, Radia DH, George TI, Robinson WA, Quiery AT et al. 2021. Safety and efficacy of avapritinib in advanced systemic mastocytosis: the phase 1 EXPLORER trial. Nat. Med. 27:2183–91
    [Google Scholar]
  162. 162.
    Krauth MT, Mirkina I, Herrmann H, Baumgartner C, Kneidinger M, Valent P. 2009. Midostaurin (PKC412) inhibits immunoglobulin E-dependent activation and mediator release in human blood basophils and mast cells. Clin. Exp. Allergy 39:1711–20
    [Google Scholar]
  163. 163.
    Peter B, Winter GE, Blatt K, Bennett KL, Stefanzl G et al. 2016. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth. Leukemia 30:464–72
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-031521-042618
Loading
/content/journals/10.1146/annurev-pathmechdis-031521-042618
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error