1932

Abstract

Gliomas are a diverse group of primary central nervous system tumors that affect both children and adults. Recent studies have revealed a dynamic cross talk that occurs between glioma cells and components of their microenvironment, including neurons, astrocytes, immune cells, and the extracellular matrix. This cross talk regulates fundamental aspects of glioma development and growth. In this review, we discuss recent discoveries about the impact of these interactions on gliomas and highlight how tumor cells actively remodel their microenvironment to promote disease. These studies provide a better understanding of the interactions in the microenvironment that are important in gliomas, offer insight into the cross talk that occurs, and identify potential therapeutic vulnerabilities that can be utilized to improve clinical outcomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-051122-110348
2024-01-24
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/pathol/19/1/annurev-pathmechdis-051122-110348.html?itemId=/content/journals/10.1146/annurev-pathmechdis-051122-110348&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    WHO Classif. Tumours Ed. Board. 2021. Central Nervous System Tumours Lyon, Fr.: International Agency for Research on Cancer, 5th ed..
  2. 2.
    Scherer HJ. 1940. A critical review: the pathology of cerebral gliomas. J. Neurol. Psychiatry 3:214777
    [Google Scholar]
  3. 3.
    Gonzalez Castro LN, Liu I, Filbin M 2023. Characterizing the biology of primary brain tumors and their microenvironment via single-cell profiling methods. Neuro-Oncology 25:223447
    [Google Scholar]
  4. 4.
    Neftel C, Laffy J, Filbin MG, Hara T, Shore ME et al. 2019. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178:483549.e21
    [Google Scholar]
  5. 5.
    Schwartzentruber J, Korshunov A, Liu X-Y, Jones DTW, Pfaff E et al. 2012. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:738422631
    [Google Scholar]
  6. 6.
    Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS et al. 2012. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44:325153
    [Google Scholar]
  7. 7.
    Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones DTW et al. 2012. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:442537
    [Google Scholar]
  8. 8.
    Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C et al. 2012. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486:740341014
    [Google Scholar]
  9. 9.
    Barres BA, Raff MC. 1993. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361:640925860
    [Google Scholar]
  10. 10.
    Filbin MG, Suvà ML. 2016. Gliomas genomics and epigenomics: arriving at the start and knowing it for the first time. Annu. Rev. Pathol. Mech. Dis. 11:1497521
    [Google Scholar]
  11. 11.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB et al. 2009. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10:545966
    [Google Scholar]
  12. 12.
    Armstrong GT, Conklin HM, Huang S, Srivastava D, Sanford R et al. 2011. Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro. Oncol. 13:222334
    [Google Scholar]
  13. 13.
    Avila EK, Chamberlain M, Schiff D, Reijneveld JC, Armstrong TS et al. 2017. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials. Neuro. Oncol. 19:11221
    [Google Scholar]
  14. 14.
    Nägler K, Mauch DH, Pfrieger FW. 2001. Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J. Physiol. 533:Part 366579
    [Google Scholar]
  15. 15.
    Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. 2001. Control of synapse number by glia. Science 291:550465761
    [Google Scholar]
  16. 16.
    Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW et al. 2005. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:342133
    [Google Scholar]
  17. 17.
    Bergles DE, Roberts JD, Somogyi P, Jahr CE. 2000. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:678318791
    [Google Scholar]
  18. 18.
    Piller M, Werkman IL, Brown EA, Latimer AJ, Kucenas S. 2021. Glutamate signaling via the AMPAR subunit GluR4 regulates oligodendrocyte progenitor cell migration in the developing spinal cord. J. Neurosci. 41:25535371
    [Google Scholar]
  19. 19.
    Geraghty AC, Gibson EM, Ghanem RA, Greene JJ, Ocampo A et al. 2019. Loss of adaptive myelination contributes to methotrexate chemotherapy-related cognitive impairment. Neuron 103:2250265.e8
    [Google Scholar]
  20. 20.
    Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL et al. 2014. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:61831252304
    [Google Scholar]
  21. 21.
    Gallo V, Ghiani CA. 2000. Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol. Sci. 21:725258
    [Google Scholar]
  22. 22.
    Feng Y, Zhang C, Wei Z, Li G, Gan Y et al. 2022. Gene variations of glutamate metabolism pathway and epilepsy. Acta Epileptologica 4:131
    [Google Scholar]
  23. 23.
    Campbell SC, Muñoz-Ballester C, Chaunsali L, Mills WA, Yang JH et al. 2020. Potassium and glutamate transport is impaired in scar-forming tumor-associated astrocytes. Neurochem. Int. 133:104628
    [Google Scholar]
  24. 24.
    Chen H, Judkins J, Thomas C, Wu M, Khoury L et al. 2017. Mutant IDH1 and seizures in patients with glioma. Neurology 88:19180513
    [Google Scholar]
  25. 25.
    Ye ZC, Sontheimer H. 1999. Glioma cells release excitotoxic concentrations of glutamate. Cancer Res. 59:17438391
    [Google Scholar]
  26. 26.
    Marcus HJ, Carpenter KLH, Price SJ, Hutchinson PJ. 2010. In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J. Neurooncol. 97:11123
    [Google Scholar]
  27. 27.
    Takano T, Lin JH-C, Arcuino G, Gao Q, Yang J, Nedergaard M. 2001. Glutamate release promotes growth of malignant gliomas. Nat. Med. 7:9101015
    [Google Scholar]
  28. 28.
    Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S et al. 2011. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 17:10126974
    [Google Scholar]
  29. 29.
    Robert SM, Buckingham SC, Campbell SL, Robel S, Holt KT et al. 2015. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci. Transl. Med. 7:289289ra86
    [Google Scholar]
  30. 30.
    Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S et al. 2017. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549:767353337
    [Google Scholar]
  31. 31.
    Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y et al. 2015. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161:480316
    [Google Scholar]
  32. 32.
    Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M et al. 2006. Neuroligins determine synapse maturation and function. Neuron 51:674154
    [Google Scholar]
  33. 33.
    Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O et al. 2021. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 594:786227782
    [Google Scholar]
  34. 34.
    Chen P, Wang W, Liu R, Lyu J, Zhang L et al. 2022. Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature 606:791455056
    [Google Scholar]
  35. 35.
    Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N et al. 2002. Blockage of Ca2+-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat. Med. 8:997178
    [Google Scholar]
  36. 36.
    Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H. 2007. Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res. 67:19946371
    [Google Scholar]
  37. 37.
    Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM et al. 2019. Electrical and synaptic integration of glioma into neural circuits. Nature 573:777553945
    [Google Scholar]
  38. 38.
    Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L et al. 2019. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573:777553238
    [Google Scholar]
  39. 39.
    Hausmann D, Hoffmann DC, Venkataramani V, Jung E, Horschitz S et al. 2023. Autonomous rhythmic activity in glioma networks drives brain tumour growth. Nature 613:794217986
    [Google Scholar]
  40. 40.
    Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V et al. 2015. Brain tumour cells interconnect to a functional and resistant network. Nature 528:75809398
    [Google Scholar]
  41. 41.
    Roehlecke C, Schmidt MHH. 2020. Tunneling nanotubes and tumor microtubes in cancer. Cancers 12:4857
    [Google Scholar]
  42. 42.
    Weil S, Osswald M, Solecki G, Grosch J, Jung E et al. 2017. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro. Oncol. 19:10131626
    [Google Scholar]
  43. 43.
    Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H et al. 2013. The somatic genomic landscape of glioblastoma. Cell 155:246277
    [Google Scholar]
  44. 44.
    Mohamed E, Kumar A, Zhang Y, Wang AS, Chen K et al. 2022. PI3K/AKT/mTOR signaling pathway activity in IDH-mutant diffuse glioma and clinical implications. Neuro. Oncol. 24:9147181
    [Google Scholar]
  45. 45.
    Yu K, Lin C-CJ, Hatcher A, Lozzi B, Kong K et al. 2020. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 578:779316671
    [Google Scholar]
  46. 46.
    Venkataramani V, Yang Y, Schubert MC, Reyhan E, Tetzlaff SK et al. 2022. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell 185:162899917.e31
    [Google Scholar]
  47. 47.
    Lin JHC, Takano T, Cotrina ML, Arcuino G, Kang J et al. 2002. Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J. Neurosci. 22:11430211
    [Google Scholar]
  48. 48.
    Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H, Naus CC. 2016. Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene 35:12150416
    [Google Scholar]
  49. 49.
    Henrik Heiland D, Ravi VM, Behringer SP, Frenking JH, Wurm J et al. 2019. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat. Commun. 10:12541
    [Google Scholar]
  50. 50.
    Jin P, Shin S-H, Chun Y-S, Shin H-W, Shin YJ et al. 2018. Astrocyte-derived CCL20 reinforces HIF-1-mediated hypoxic responses in glioblastoma by stimulating the CCR6-NF-κB signaling pathway. Oncogene 37:23307087
    [Google Scholar]
  51. 51.
    Aabedi AA, Lipkin B, Kaur J, Kakaizada S, Valdivia C et al. 2021. Functional alterations in cortical processing of speech in glioma-infiltrated cortex. PNAS 118:46e2108959118
    [Google Scholar]
  52. 52.
    Krishna S, Choudhury A, Keough MB, Seo K, Ni L et al. 2023. Glioblastoma remodelling of human neural circuits decreases survival. Nature 617:7961599607
    [Google Scholar]
  53. 53.
    Hambardzumyan D, Gutmann DH, Kettenmann H. 2016. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19:12027
    [Google Scholar]
  54. 54.
    Kumar A, Mohamed E, Tong S, Chen K, Mukherjee J et al. 2022. CXCL14 promotes a robust brain tumor-associated immune response in glioma. Clin. Cancer Res. 28:132898910
    [Google Scholar]
  55. 55.
    Lin GL, Nagaraja S, Filbin MG, Suvà ML, Vogel H, Monje M. 2018. Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma. Acta Neuropathol. Commun. 6:151
    [Google Scholar]
  56. 56.
    Kim A-R, Choi SJ, Park J, Kwon M, Chowdhury T et al. 2022. Spatial immune heterogeneity of hypoxia-induced exhausted features in high-grade glioma. Oncoimmunology 11:12026019
    [Google Scholar]
  57. 57.
    Chen Z, Feng X, Herting CJ, Garcia VA, Nie K et al. 2017. Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 77:9226678
    [Google Scholar]
  58. 58.
    Darmanis S, Sloan SA, Croote D, Mignardi M, Chernikova S et al. 2017. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 21:51399410
    [Google Scholar]
  59. 59.
    Liu I, Jiang L, Samuelsson ER, Marco Salas S, Beck A et al. 2022. The landscape of tumor cell states and spatial organization in H3-K27M mutant diffuse midline glioma across age and location. Nat. Genet. 54:12188194
    [Google Scholar]
  60. 60.
    Wang Q, Hu B, Hu X, Kim H, Squatrito M et al. 2017. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32:14256.e6
    [Google Scholar]
  61. 61.
    Solga AC, Pong WW, Kim K-Y, Cimino PJ, Toonen JA et al. 2015. RNA sequencing of tumor-associated microglia reveals Ccl5 as a stromal chemokine critical for neurofibromatosis-1 glioma growth. Neoplasia 17:1077688
    [Google Scholar]
  62. 62.
    Pong WW, Higer SB, Gianino SM, Emnett RJ, Gutmann DH. 2013. Reduced microglial CX3CR1 expression delays neurofibromatosis-1 glioma formation. Ann. Neurol. 73:23038
    [Google Scholar]
  63. 63.
    Kohanbash G, McKaveney K, Sakaki M, Ueda R, Mintz AH et al. 2013. GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-α. Cancer Res. 73:641323
    [Google Scholar]
  64. 64.
    Flores-Toro JA, Luo D, Gopinath A, Sarkisian MR, Campbell JJ et al. 2020. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. PNAS 117:2112938
    [Google Scholar]
  65. 65.
    Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L et al. 2013. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19:10126472
    [Google Scholar]
  66. 66.
    Daginakatte GC, Gianino SM, Zhao NW, Parsadanian AS, Gutmann DH. 2008. Increased c-Jun-NH2-kinase signaling in neurofibromatosis-1 heterozygous microglia drives microglia activation and promotes optic glioma proliferation. Cancer Res. 68:241035866
    [Google Scholar]
  67. 67.
    Daginakatte GC, Gutmann DH. 2007. Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum. Mol. Genet. 16:91098112
    [Google Scholar]
  68. 68.
    Chen R, Keoni C, Waker CA, Lober RM, Chen Y-H, Gutmann DH. 2019. KIAA1549-BRAF expression establishes a permissive tumor microenvironment through NFκB-mediated CCL2 production. Neoplasia 21:15260
    [Google Scholar]
  69. 69.
    Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL et al. 2012. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol. Med. 18:151927
    [Google Scholar]
  70. 70.
    Friedrich M, Sankowski R, Bunse L, Kilian M, Green E et al. 2021. Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. Nat. Cancer. 2:772340
    [Google Scholar]
  71. 71.
    Liu H, Sun Y, Zhang Q, Jin W, Gordon RE et al. 2021. Pro-inflammatory and proliferative microglia drive progression of glioblastoma. Cell Rep. 36:11109718
    [Google Scholar]
  72. 72.
    Carvalho da Fonseca AC, Wang H, Fan H, Chen X, Zhang I et al. 2014. Increased expression of stress inducible protein 1 in glioma-associated microglia/macrophages. J. Neuroimmunol. 274:1–27177
    [Google Scholar]
  73. 73.
    Wallmann T, Zhang X-M, Wallerius M, Bolin S, Joly A-L et al. 2018. Microglia induce PDGFRB expression in glioma cells to enhance their migratory capacity. iScience 9:7183
    [Google Scholar]
  74. 74.
    Takenaka MC, Gabriely G, Rothhammer V, Mascanfroni ID, Wheeler MA et al. 2019. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat. Neurosci. 22:572940
    [Google Scholar]
  75. 75.
    Chen P, Zhao D, Li J, Liang X, Li J et al. 2019. Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-null glioma. Cancer Cell 35:686884.e6
    [Google Scholar]
  76. 76.
    Lamano JB, Lamano JB, Li YD, DiDomenico JD, Choy W et al. 2019. Glioblastoma-derived IL6 induces immunosuppressive peripheral myeloid cell PD-L1 and promotes tumor growth. Clin. Cancer Res. 25:12364357
    [Google Scholar]
  77. 77.
    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS et al. 2018. The immune landscape of cancer. Immunity 48:481230.e14
    [Google Scholar]
  78. 78.
    Ravi VM, Neidert N, Will P, Joseph K, Maier JP et al. 2022. T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat. Commun. 13:1925
    [Google Scholar]
  79. 79.
    Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV et al. 2016. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76:19567182
    [Google Scholar]
  80. 80.
    Coy S, Wang S, Stopka SA, Lin J-R, Yapp C et al. 2022. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat. Commun. 13:14814
    [Google Scholar]
  81. 81.
    Goswami S, Walle T, Cornish AE, Basu S, Anandhan S et al. 2020. Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat. Med. 26:13946
    [Google Scholar]
  82. 82.
    Grossman SA, Ye X, Lesser G, Sloan A, Carraway H et al. 2011. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin. Cancer Res. 17:16547380
    [Google Scholar]
  83. 83.
    Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X et al. 2018. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat. Med. 24:9145968
    [Google Scholar]
  84. 84.
    Gustafson MP, Lin Y, New KC, Bulur PA, O'Neill BP et al. 2010. Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone. Neuro-Oncology 12:763144
    [Google Scholar]
  85. 85.
    Kohanbash G, Carrera DA, Shrivastav S, Ahn BJ, Jahan N et al. 2017. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J. Clin. Investig. 127:4142537
    [Google Scholar]
  86. 86.
    Mathewson ND, Ashenberg O, Tirosh I, Gritsch S, Perez EM et al. 2021. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 184:5128198.e26
    [Google Scholar]
  87. 87.
    Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W et al. 2012. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4:147147ra111
    [Google Scholar]
  88. 88.
    Rustenhoven J, Drieu A, Mamuladze T, de Lima KA, Dykstra T et al. 2021. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184:4100016.e27
    [Google Scholar]
  89. 89.
    He B, Jabouille A, Steri V, Johansson-Percival A, Michael IP et al. 2018. Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoural high endothelial venules. J. Pathol. 245:220921
    [Google Scholar]
  90. 90.
    Chryplewicz A, Scotton J, Tichet M, Zomer A, Shchors K et al. 2022. Cancer cell autophagy, reprogrammed macrophages, and remodeled vasculature in glioblastoma triggers tumor immunity. Cancer Cell 40:10111127.e9
    [Google Scholar]
  91. 91.
    Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R et al. 2017. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9:385eaak9679
    [Google Scholar]
  92. 92.
    Hwang EI, Sayour EJ, Flores CT, Grant G, Wechsler-Reya R et al. 2022. The current landscape of immunotherapy for pediatric brain tumors. Nat. Cancer. 3:11124
    [Google Scholar]
  93. 93.
    Sampson JH, Gunn MD, Fecci PE, Ashley DM. 2020. Brain immunology and immunotherapy in brain tumours. Nat. Rev. Cancer. 20:11225
    [Google Scholar]
  94. 94.
    Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M et al. 2020. Effect of nivolumab versus bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6:7100310
    [Google Scholar]
  95. 95.
    Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH et al. 2019. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 25:347786
    [Google Scholar]
  96. 96.
    Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, López-Janeiro A, Porciuncula A et al. 2019. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat. Med. 25:347076
    [Google Scholar]
  97. 97.
    Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S et al. 2019. Cold tumors: a therapeutic challenge for immunotherapy. Front. Immunol. 10:168
    [Google Scholar]
  98. 98.
    Müller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D et al. 2017. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol. 18:1234
    [Google Scholar]
  99. 99.
    Zeiner PS, Preusse C, Golebiewska A, Zinke J, Iriondo A et al. 2019. Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas: immune polarization in gliomas. Brain Pathol. 29:451329
    [Google Scholar]
  100. 100.
    Arrieta VA, Chen AX, Kane JR, Kang SJ, Kassab C et al. 2021. ERK1/2 phosphorylation predicts survival following anti-PD-1 immunotherapy in recurrent glioblastoma. Nat. Cancer. 2:12137286
    [Google Scholar]
  101. 101.
    Mackay A, Burford A, Molinari V, Jones DTW, Izquierdo E et al. 2018. Molecular, pathological, radiological, and immune profiling of non-brainstem pediatric high-grade glioma from the HERBY phase II randomized trial. Cancer Cell 33:582942.e5
    [Google Scholar]
  102. 102.
    Engler JR, Robinson AE, Smirnov I, Hodgson JG, Berger MS et al. 2012. Increased microglia/macrophage gene expression in a subset of adult and pediatric astrocytomas. PLOS ONE 7:8e43339
    [Google Scholar]
  103. 103.
    Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC et al. 2019. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179:7160922.e16
    [Google Scholar]
  104. 104.
    Vezzani A, Balosso S, Ravizza T. 2019. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat. Rev. Neurol. 15:845972
    [Google Scholar]
  105. 105.
    Socovich AM, Naba A. 2019. The cancer matrisome: from comprehensive characterization to biomarker discovery. Semin. Cell Dev. Biol. 89:15766
    [Google Scholar]
  106. 106.
    Barnes JM, Przybyla L, Weaver VM. 2017. Tissue mechanics regulate brain development, homeostasis and disease. J. Cell Sci. 130:17182
    [Google Scholar]
  107. 107.
    Hynes RO, Naba A. 2012. Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4:1a004903
    [Google Scholar]
  108. 108.
    Sethi MK, Downs M, Shao C, Hackett WE, Phillips JJ, Zaia J. 2022. In-depth matrisome and glycoproteomic analysis of human brain glioblastoma versus control tissue. Mol. Cell. Proteom. 21:4100216
    [Google Scholar]
  109. 109.
    Varki A. 2017. Biological roles of glycans. Glycobiology 27:1349
    [Google Scholar]
  110. 110.
    Iqbal S, Ghanimi Fard M, Everest-Dass A, Packer NH, Parker LM 2019. Understanding cellular glycan surfaces in the central nervous system. Biochem. Soc. Trans. 47:189100
    [Google Scholar]
  111. 111.
    Loulier K, Lathia JD, Marthiens V, Relucio J, Mughal MR et al. 2009. β1 integrin maintains integrity of the embryonic neocortical stem cell niche. PLOS Biol. 7:8e1000176
    [Google Scholar]
  112. 112.
    Leone DP, Relvas JB, Campos LS, Hemmi S, Brakebusch C et al. 2005. Regulation of neural progenitor proliferation and survival by β1 integrins. J. Cell Sci. 118:Part 12258999
    [Google Scholar]
  113. 113.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J et al. 2004. Identification of human brain tumour initiating cells. Nature 432:7015396401
    [Google Scholar]
  114. 114.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q et al. 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:712075660
    [Google Scholar]
  115. 115.
    Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE et al. 2010. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6:542132
    [Google Scholar]
  116. 116.
    Zimmermann DR, Dours-Zimmermann MT. 2008. Extracellular matrix of the central nervous system: from neglect to challenge. Histochem. Cell Biol. 130:463553
    [Google Scholar]
  117. 117.
    Sarrazin S, Lamanna WC, Esko JD. 2011. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3:7a004952
    [Google Scholar]
  118. 118.
    Chen J-WE, Lumibao J, Blazek A, Gaskins HR, Harley B. 2018. Hypoxia activates enhanced invasive potential and endogenous hyaluronic acid production by glioblastoma cells. Biomater. Sci. 6:485462
    [Google Scholar]
  119. 119.
    Chen J-WE, Pedron S, Shyu P, Hu Y, Sarkaria JN, Harley BAC. 2018. Influence of hyaluronic acid transitions in tumor microenvironment on glioblastoma malignancy and invasive behavior. Front. Mater. 5:39
    [Google Scholar]
  120. 120.
    Yoshida T, Matsuda Y, Naito Z, Ishiwata T. 2012. CD44 in human glioma correlates with histopathological grade and cell migration. Pathol. Int. 62:746370
    [Google Scholar]
  121. 121.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH et al. 2006. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:315773
    [Google Scholar]
  122. 122.
    Wolf KJ, Shukla P, Springer K, Lee S, Coombes JD et al. 2020. A mode of cell adhesion and migration facilitated by CD44-dependent microtentacles. PNAS 117:211143243
    [Google Scholar]
  123. 123.
    Ward JA, Huang L, Guo H, Ghatak S, Toole BP. 2003. Perturbation of hyaluronan interactions inhibits malignant properties of glioma cells. Am. J. Pathol. 162:514039
    [Google Scholar]
  124. 124.
    Miroshnikova YA, Mouw JK, Barnes JM, Pickup MW, Lakins JN et al. 2016. Tissue mechanics promote IDH1-dependent HIF1α–tenascin C feedback to regulate glioblastoma aggression. Nat. Cell Biol. 18:12133645
    [Google Scholar]
  125. 125.
    Ulrich TA, de Juan Pardo EM, Kumar S. 2009. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69:10416774
    [Google Scholar]
  126. 126.
    Umesh V, Rape AD, Ulrich TA, Kumar S. 2014. Microenvironmental stiffness enhances glioma cell proliferation by stimulating epidermal growth factor receptor signaling. PLOS ONE 9:7e101771
    [Google Scholar]
  127. 127.
    Kim S, Takahashi H, Lin W-W, Descargues P, Grivennikov S et al. 2009. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:72251026
    [Google Scholar]
  128. 128.
    Wade A, Robinson AE, Engler JR, Petritsch C, James CD, Phillips JJ. 2013. Proteoglycans and their roles in brain cancer. FEBS J. 280:102399417
    [Google Scholar]
  129. 129.
    Hu F, Dzaye OD, Hahn A, Yu Y, Scavetta RJ et al. 2015. Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro. Oncol. 17:220010
    [Google Scholar]
  130. 130.
    Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H et al. 2009. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. PNAS 106:301253035
    [Google Scholar]
  131. 131.
    Vinnakota K, Hu F, Ku M-C, Georgieva PB, Szulzewsky F et al. 2013. Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion. Neuro. Oncol. 15:11145768
    [Google Scholar]
  132. 132.
    Trotter J, Karram K, Nishiyama A. 2010. NG2 cells: properties, progeny and origin. Brain Res. Rev. 63:1–27282
    [Google Scholar]
  133. 133.
    Goretzki L, Burg MA, Grako KA, Stallcup WB. 1999. High-affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteoglycan. J. Biol. Chem. 274:241683137
    [Google Scholar]
  134. 134.
    Fukushi J, Makagiansar IT, Stallcup WB. 2004. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and α3β1 integrin. Mol. Biol. Cell 15:8358090
    [Google Scholar]
  135. 135.
    Kucharova K, Stallcup WB. 2010. The NG2 proteoglycan promotes oligodendrocyte progenitor proliferation and developmental myelination. Neuroscience 166:118594
    [Google Scholar]
  136. 136.
    Cattaruzza S, Ozerdem U, Denzel M, Ranscht B, Bulian P et al. 2013. Multivalent proteoglycan modulation of FGF mitogenic responses in perivascular cells. Angiogenesis 16:230927
    [Google Scholar]
  137. 137.
    Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C et al. 2011. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell 20:332840
    [Google Scholar]
  138. 138.
    Cecchi F, Pajalunga D, Fowler CA, Uren A, Rabe DC et al. 2012. Targeted disruption of heparan sulfate interaction with hepatocyte and vascular endothelial growth factors blocks normal and oncogenic signaling. Cancer Cell 22:225062
    [Google Scholar]
  139. 139.
    Phillips JJ, Huillard E, Robinson AE, Ward A, Lum DH et al. 2012. Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma. J. Clin. Investig. 122:391122
    [Google Scholar]
  140. 140.
    Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. 2001. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 15:15191325
    [Google Scholar]
  141. 141.
    Uhrbom L, Hesselager G, Nistér M, Westermark B. 1998. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res. 58:23527579
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-051122-110348
Loading
/content/journals/10.1146/annurev-pathmechdis-051122-110348
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error