1932

Abstract

The rapid development of precision medicine in recent years has started to challenge diagnostic pathology with respect to its ability to analyze histological images and increasingly large molecular profiling data in a quantitative, integrative, and standardized way. Artificial intelligence (AI) and, more precisely, deep learning technologies have recently demonstrated the potential to facilitate complex data analysis tasks, including clinical, histological, and molecular data for disease classification; tissue biomarker quantification; and clinical outcome prediction. This review provides a general introduction to AI and describes recent developments with a focus on applications in diagnostic pathology and beyond. We explain limitations including the black-box character of conventional AI and describe solutions to make machine learning decisions more transparent with so-called explainable AI. The purpose of the review is to foster a mutual understanding of both the biomedical and the AI side. To that end, in addition to providing an overview of the relevant foundations in pathology and machine learning, we present worked-through examples for a better practical understanding of what AI can achieve and how it should be done.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-051222-113147
2024-01-24
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/pathol/19/1/annurev-pathmechdis-051222-113147.html?itemId=/content/journals/10.1146/annurev-pathmechdis-051222-113147&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Krizhevsky A, Sutskever I, Hinton GE 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25 PL Bartlett, FCN Pereira, CJC Burges, L Bottou, KQ Weinberger 1106–14 Red Hook, NY: Curran
    [Google Scholar]
  2. 2.
    Ronneberger O, Fischer P, Brox T. 2015. U-net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015): 18th International Conference, Proceedings, Part III234–41 Berlin: Springer
    [Google Scholar]
  3. 3.
    Ren S, He K, Girshick RB, Sun J. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39:61137–49
    [Google Scholar]
  4. 4.
    Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J et al. 2020. Language models are few-shot learners. Advances in Neural Information Processing Systems 33 H Larochelle, M Ranzato, R Hadsell, MF Balcan, H Lin 1877–901 Red Hook, NY: Curran
    [Google Scholar]
  5. 5.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:7873583–89
    [Google Scholar]
  6. 6.
    Unke OT, Chmiela S, Sauceda HE, Gastegger M, Poltavsky I et al. 2021. Machine learning force fields. Chem. Rev. 121:1610142–86
    [Google Scholar]
  7. 7.
    Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F et al. 2017. A survey on deep learning in medical image analysis. Med. Image Anal. 42:60–88
    [Google Scholar]
  8. 8.
    Lengauer T, Sander O, Sierra S, Thielen A, Kaiser R. 2007. Bioinformatics prediction of HIV coreceptor usage. Nat. Biotechnol. 25:121407–10
    [Google Scholar]
  9. 9.
    Bottou L 2010. Large-scale machine learning with stochastic gradient descent. 19th International Conference on Computational Statistics (COMPSTAT) Y Lechevallier, G Saporta 177–86 Heidelberg, Ger: Physica
    [Google Scholar]
  10. 10.
    Kingma DP, Ba J. 2015. Adam: a method for stochastic optimization. arXiv:1412.6980 [cs.LG]
  11. 11.
    Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM et al. 2017. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:7639115–18
    [Google Scholar]
  12. 12.
    Chen T, Kornblith S, Norouzi M, Hinton G. 2020. A simple framework for contrastive learning of visual representations. Proceedings of the 37th International Conference on Machine Learning1597–607 New York: ACM
    [Google Scholar]
  13. 13.
    He K, Chen X, Xie S, Li Y, Dollár P, Girshick R. 2022. Masked autoencoders are scalable vision learners. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022)16000–9 Piscataway, NJ: IEEE
    [Google Scholar]
  14. 14.
    James G, Witten D, Hastie T, Tibshirani R. 2013. An Introduction to Statistical Learning New York: Springer, 2nd ed..
  15. 15.
    Cortes C, Vapnik V. 1995. Support-vector networks. Mach. Learn. 20:3273–97
    [Google Scholar]
  16. 16.
    Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B. 2001. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12:2181–201
    [Google Scholar]
  17. 17.
    Zien A, Rätsch G, Mika S, Schölkopf B, Lengauer T, Müller KR. 2000. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16:9799–807
    [Google Scholar]
  18. 18.
    Schölkopf B, Smola A, Müller KR. 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10:51299–319
    [Google Scholar]
  19. 19.
    LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:7553436–44
    [Google Scholar]
  20. 20.
    Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Netw. 61:85–117
    [Google Scholar]
  21. 21.
    Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning Cambridge, MA: MIT Press
  22. 22.
    Chen RJ, Krishnan RG. 2021. Self-supervised vision transformers learn visual concepts in histopathology Paper presented at Learning Meaningful Representations of Life Workshop 35th Conference on Neural Information Processing Systems (NeurIPS 2021), online, Dec. 13–14
  23. 23.
    Krishnan R, Rajpurkar P, Topol EJ. 2022. Self-supervised learning in medicine and healthcare. Nat. Biomed. Eng. 6:1346–52
    [Google Scholar]
  24. 24.
    Goyal A, Bengio Y. 2022. Inductive biases for deep learning of higher-level cognition. Proc. R. Soc. A 478:226620210068
    [Google Scholar]
  25. 25.
    He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016)770–78 Piscataway, NJ: IEEE
    [Google Scholar]
  26. 26.
    Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput. 9:81735–80
    [Google Scholar]
  27. 27.
    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L et al. 2017. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS'17)6000–10 Red Hook, NY: Curran
    [Google Scholar]
  28. 28.
    Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning representations by back-propagating errors. Nature 323:6088533–36
    [Google Scholar]
  29. 29.
    LeCun Y, Bottou L, Orr GB, Müller KR 2012. Efficient BackProp. Neural Networks: Tricks of the Trade G Montavon, GB Orr, KR Müller 9–48 Berlin: Springer
    [Google Scholar]
  30. 30.
    Shao X, Liao J, Lu X, Xue R, Ai N, Fan X 2020. scCATCH: automatic annotation on cell types of clusters from single-cell RNA sequencing data. iScience 23:3100882
    [Google Scholar]
  31. 31.
    Hastie T, Tibshirani R, Friedman J. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction New York: Springer, 2nd ed..
  32. 32.
    Ilse M, Tomczak J, Welling M. 2018. Attention-based deep multiple instance learning. Proc. Mach. Learn. Res. 80:2127–36
    [Google Scholar]
  33. 33.
    Redmon J, Divvala SK, Girshick RB, Farhadi A. 2016. You only look once: unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016)779–88 Piscataway, NJ: IEEE
    [Google Scholar]
  34. 34.
    Bengio Y, Courville A, Vincent P. 2013. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35:81798–828
    [Google Scholar]
  35. 35.
    Schölkopf B, Locatello F, Bauer S, Ke NR, Kalchbrenner N et al. 2021. Toward causal representation learning. Proc. IEEE 109:5612–34
    [Google Scholar]
  36. 36.
    Zhuang F, Qi Z, Duan K, Xi D, Zhu Y et al. 2021. A comprehensive survey on transfer learning. Proc. IEEE 109:143–76
    [Google Scholar]
  37. 37.
    Ciga O, Xu T, Martel AL. 2022. Self supervised contrastive learning for digital histopathology. Mach. Learn. Appl. 7:100198
    [Google Scholar]
  38. 38.
    Chen RJ, Chen C, Li Y, Chen TY, Trister AD et al. 2022. Scaling vision transformers to gigapixel images via hierarchical self-supervised learning. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022)16123–34 Piscataway, NJ: IEEE
    [Google Scholar]
  39. 39.
    Ma S, Song X, Huang J. 2007. Supervised group Lasso with applications to microarray data analysis. BMC Bioinform. 8:60
    [Google Scholar]
  40. 40.
    Jurmeister P, Bockmayr M, Seegerer P, Bockmayr T, Treue D et al. 2019. Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases. Sci. Transl. Med. 11:509eaaw8513
    [Google Scholar]
  41. 41.
    Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D et al. 2018. DNA methylation–based classification of central nervous system tumours. Nature 555:7697469–74
    [Google Scholar]
  42. 42.
    Nguyen L, Van Hoeck A, Cuppen E. 2022. Machine learning–based tissue of origin classification for cancer of unknown primary diagnostics using genome-wide mutation features. Nat. Commun. 13:4013
    [Google Scholar]
  43. 43.
    Garg M, Couturier DL, Nsengimana J, Fonseca NA, Wongchenko M et al. 2021. Tumour gene expression signature in primary melanoma predicts long-term outcomes. Nat. Commun. 12:1137
    [Google Scholar]
  44. 44.
    Keyl J, Kasper S, Wiesweg M, Götze J, Schönrock M et al. 2022. Multimodal survival prediction in advanced pancreatic cancer using machine learning. ESMO Open 7:5100555
    [Google Scholar]
  45. 45.
    Zhang Y, Feng T, Wang S, Dong R, Yang J et al. 2020. A novel XGBoost method to identify cancer tissue-of-origin based on copy number variations. Front. Genet. 11:585029
    [Google Scholar]
  46. 46.
    Li Q, Yang H, Wang P, Liu X, Lv K, Ye M. 2022. XGBoost-based and tumor-immune characterized gene signature for the prediction of metastatic status in breast cancer. J. Transl. Med. 20:1177
    [Google Scholar]
  47. 47.
    Moncada-Torres A, van Maaren MC, Hendriks MP, Siesling S, Geleijnse G. 2021. Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival. Sci. Rep. 11:6968
    [Google Scholar]
  48. 48.
    Keyl P, Bockmayr M, Heim D, Dernbach G, Montavon G et al. 2022. Patient-level proteomic network prediction by explainable artificial intelligence. npj Precis. Oncol. 6:135
    [Google Scholar]
  49. 49.
    Keyl P, Bischoff P, Dernbach G, Bockmayr M, Fritz R et al. 2023. Single-cell gene regulatory network prediction by explainable AI. Nucleic Acids Res. 51:4e20
    [Google Scholar]
  50. 50.
    Poplin R, Chang PC, Alexander D, Schwartz S, Colthurst T et al. 2018. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36:10983–87
    [Google Scholar]
  51. 51.
    Mostavi M, Chiu YC, Huang Y, Chen Y. 2020. Convolutional neural network models for cancer type prediction based on gene expression. BMC Med. Genom. 13:Suppl. 544
    [Google Scholar]
  52. 52.
    Boža V, Brejová B, Vinař T. 2017. DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLOS ONE 12:6e0178751
    [Google Scholar]
  53. 53.
    Liu Q, Fang L, Yu G, Wang D, Xiao CL, Wang K. 2019. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 10:2449
    [Google Scholar]
  54. 54.
    Kim HH, Lim YS, Seo SI, Lee KJ, Kim JY, Shin WG. 2021. A deep recurrent neural network–based explainable prediction model for progression from atrophic gastritis to gastric cancer. Appl. Sci. 11:136194
    [Google Scholar]
  55. 55.
    Xu Y, Zhang Z, You L, Liu J, Fan Z, Zhou X. 2020. scIGANs: single-cell RNA-seq imputation using generative adversarial networks. Nucleic Acids Res. 48:15e85
    [Google Scholar]
  56. 56.
    Binder A, Bockmayr M, Hägele M, Wienert S, Heim D et al. 2021. Morphological and molecular breast cancer profiling through explainable machine learning. Nat. Mach. Intell. 3:4355–66
    [Google Scholar]
  57. 57.
    Dietrich S, Oleś M, Lu J, Sellner L, Anders S et al. 2018. Drug-perturbation-based stratification of blood cancer. J. Clin. Investig. 128:1427–45
    [Google Scholar]
  58. 58.
    Schulte-Sasse R, Budach S, Hnisz D, Marsico A. 2021. Integration of multiomics data with graph convolutional networks to identify new cancer genes and their associated molecular mechanisms. Nat. Mach. Intell. 3:6513–26
    [Google Scholar]
  59. 59.
    Pfeifer B, Baniecki H, Saranti A, Biecek P, Holzinger A. 2022. Multi-omics disease module detection with an explainable Greedy Decision Forest. Sci. Rep. 12:16857
    [Google Scholar]
  60. 60.
    Chereda H, Bleckmann A, Menck K, Perera-Bel J, Stegmaier P et al. 2021. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer. Genome Med. 13:142
    [Google Scholar]
  61. 61.
    Bourgeais V, Zehraoui F, Hamdoune MB, Hanczar B. 2021. Deep GONet: self-explainable deep neural network based on gene ontology for phenotype prediction from gene expression data. BMC Bioinform. 22:Suppl. 10455
    [Google Scholar]
  62. 62.
    Baehrens D, Schroeter T, Harmeling S, Kawanabe M, Hansen K, Müller KR. 2010. How to explain individual classification decisions. J. Mach. Learn. Res. 11:1803–31
    [Google Scholar]
  63. 63.
    Lauritsen SM, Kristensen M, Olsen MV, Larsen MS, Lauritsen KM et al. 2020. Explainable artificial intelligence model to predict acute critical illness from electronic health records. Nat. Commun. 11:3852
    [Google Scholar]
  64. 64.
    Zeiler MD, Fergus R 2014. Visualizing and understanding convolutional networks. Computer Vision: 13th European Conference (ECCV 2014) DJ Fleet, T Pajdla, B Schiele, T Tuytelaars 818–33 Berlin: Springer
    [Google Scholar]
  65. 65.
    Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W. 2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE 10:7e0130140
    [Google Scholar]
  66. 66.
    Arras L, Arjona-Medina JA, Widrich M, Montavon G, Gillhofer M et al. 2019. Explaining and interpreting LSTMs. See Ref. 100 231–38
  67. 67.
    Preuer K, Klambauer G, Rippmann F, Hochreiter S, Unterthiner T. 2019. Interpretable deep learning in drug discovery. See Ref. 100 331–45
  68. 68.
    Schnake T, Eberle O, Lederer J, Nakajima S, Schütt KT et al. 2022. Higher-order explanations of graph neural networks via relevant walks. IEEE Trans. Pattern Anal. Mach. Intell. 44:117581–96
    [Google Scholar]
  69. 69.
    Kim B, Wattenberg M, Gilmer J, Cai CJ, Wexler J et al. 2018. Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). Proc. Mach. Learn. Res. 80:2673–82
    [Google Scholar]
  70. 70.
    Chormai P, Herrmann J, Müller KR, Montavon G. 2022. Disentangled explanations of neural network predictions by finding relevant subspaces. arXiv:2212.14855 [cs.LG]
  71. 71.
    Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N. 2015. Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. KDD '15: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining1721–30 New York: ACM
    [Google Scholar]
  72. 72.
    Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM et al. 2020. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2:156–67
    [Google Scholar]
  73. 73.
    Wachter S, Mittelstadt B, Russell C. 2018. Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harvard J. Law Technol. 31:2841–87
    [Google Scholar]
  74. 74.
    Verma S, Dickerson JP, Hines K. 2020. Counterfactual explanations for machine learning: a review. arXiv:2010.10596 [cs.LG]
  75. 75.
    Zhou B, Khosla A, Lapedriza À, Oliva A, Torralba A. 2016. Learning deep features for discriminative localization. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016)2921–29 Piscataway, NJ: IEEE
    [Google Scholar]
  76. 76.
    Chen RJ, Lu MY, Williamson DFK, Chen TY, Lipkova J et al. 2022. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell 40:8865–78
    [Google Scholar]
  77. 77.
    Strumbelj E, Kononenko I. 2014. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41:3647–65
    [Google Scholar]
  78. 78.
    Covert I, Lundberg SM, Lee S. 2021. Explaining by removing: a unified framework for model explanation. J. Mach. Learn. Res. 22:209
    [Google Scholar]
  79. 79.
    Lundberg SM, Lee S. 2017. A unified approach to interpreting model predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS'17)4765–74 Red Hook, NY: Curran
    [Google Scholar]
  80. 80.
    Fong RC, Vedaldi A. 2017. Interpretable explanations of black boxes by meaningful perturbation. IEEE International Conference on Computer Vision (ICCV 2017)3449–57 Piscataway, NJ: IEEE
    [Google Scholar]
  81. 81.
    Sundararajan M, Taly A, Yan Q. 2017. Axiomatic attribution for deep networks. Proc. Mach. Learn. Res. 70:3319–28
    [Google Scholar]
  82. 82.
    Ribeiro MT, Singh S, Guestrin C. 2016. ``Why should I trust you?'': explaining the predictions of any classifier. KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining1135–44 New York: ACM
    [Google Scholar]
  83. 83.
    Levy JJ, Titus AJ, Petersen CL, Chen Y, Salas LA, Christensen BC. 2020. MethylNet: an automated and modular deep learning approach for DNA methylation analysis. BMC Bioinform. 21:1108
    [Google Scholar]
  84. 84.
    Liu B, Liu Y, Pan X, Li M, Yang S, Li SC. 2019. DNA methylation markers for pan-cancer prediction by deep learning. Genes 10:10778
    [Google Scholar]
  85. 85.
    Modhukur V, Sharma S, Mondal M, Lawarde A, Kask K et al. 2021. Machine learning approaches to classify primary and metastatic cancers using tissue of origin-based DNA methylation profiles. Cancers 13:153768
    [Google Scholar]
  86. 86.
    Zhou K, Arslanturk S, Craig DB, Heath E, Draghici S. 2021. Discovery of primary prostate cancer biomarkers using cross cancer learning. Sci. Rep. 11:10433
    [Google Scholar]
  87. 87.
    Lemsara A, Ouadfel S, Fröhlich H. 2020. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data. BMC Bioinform. 21:1146
    [Google Scholar]
  88. 88.
    Böhle M, Fritz M, Schiele B. 2022. B-cos networks: Alignment is all we need for interpretability. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022)10329–38 Piscataway, NJ: IEEE
    [Google Scholar]
  89. 89.
    Lapuschkin S, Wäldchen S, Binder A, Montavon G, Samek W, Müller KR. 2019. Unmasking Clever Hans predictors and assessing what machines really learn. Nat. Commun. 10:1096
    [Google Scholar]
  90. 90.
    Anders CJ, Weber L, Neumann D, Samek W, Müller KR, Lapuschkin S. 2021. Finding and removing Clever Hans: using explanation methods to debug and improve deep models. Inf. Fusion 77:261–95
    [Google Scholar]
  91. 91.
    Hägele M, Seegerer P, Lapuschkin S, Bockmayr M, Samek W et al. 2020. Resolving challenges in deep learning–based analyses of histopathological images using explanation methods. Sci. Rep. 10:6423
    [Google Scholar]
  92. 92.
    Sanneman L, Shah J 2023. Transparent Value Alignment. Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction (HRI 2023) G Castellano, LD Riek, M Cakmak, I Leite 557–60 New York: ACM
    [Google Scholar]
  93. 93.
    Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15:1929–58
    [Google Scholar]
  94. 94.
    Jurmeister P, Glöß S, Roller R, Leitheiser M, Schmid S et al. 2022. DNA methylation–based classification of sinonasal tumors. Nat. Commun. 13:7148
    [Google Scholar]
  95. 95.
    Leibig C, Allken V, Ayhan MS, Berens P, Wahl S. 2017. Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7:17816
    [Google Scholar]
  96. 96.
    Luecken MD, Theis FJ. 2019. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15:6e8746
    [Google Scholar]
  97. 97.
    Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B et al. 2010. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11:10733–39
    [Google Scholar]
  98. 98.
    Calude CS, Longo G. 2016. The deluge of spurious correlations in big data. Found. Sci. 22:3595–612
    [Google Scholar]
  99. 99.
    Gunning D, Aha DW. 2019. DARPA's explainable artificial intelligence (XAI) program. AI Mag. 40:244–58
    [Google Scholar]
  100. 100.
    Samek W, Montavon G, Vedaldi A, Hansen LK, Müller KR 2019. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning Berlin: Springer
  101. 101.
    Holzinger A, Goebel R, Fong R, Moon T, Müller KR, Samek W 2022. XXAI—Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020. Revised and Extended Papers Berlin: Springer
  102. 102.
    Samek W, Montavon G, Lapuschkin S, Anders CJ, Müller KR. 2021. Explaining deep neural networks and beyond: a review of methods and applications. Proc. IEEE 109:3247–78
    [Google Scholar]
  103. 103.
    Zhang Y, Weng Y, Lund J. 2022. Applications of explainable artificial intelligence in diagnosis and surgery. Diagnostics 12:2237
    [Google Scholar]
  104. 104.
    Montavon G, Binder A, Lapuschkin S, Samek W, Müller KR. 2019. Layer-wise relevance propagation: an overview. See Ref. 100 193–209
    [Google Scholar]
  105. 105.
    Lipton ZC. 2018. The mythos of model interpretability. Commun. ACM 61:1036–43
    [Google Scholar]
  106. 106.
    Rudin C. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1:5206–15
    [Google Scholar]
  107. 107.
    Letham B, Rudin C, McCormick TH, Madigan D. 2015. Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 9:31350–71
    [Google Scholar]
  108. 108.
    Ali A, Schnake T, Eberle O, Montavon G, Müller KR, Wolf L. 2022. XAI for transformers: better explanations through conservative propagation. Proc. Mach. Learn. Res. 162:435–51
    [Google Scholar]
  109. 109.
    Hosseini MS, Bejnordi BE, Trinh VQH, Hasan D, Li X et al. 2023. Computational pathology: a survey review and the way forward. arXiv:2304.05482 [eess.IV]
  110. 110.
    Baxi V, Edwards R, Montalto M, Saha S. 2022. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 35:123–32
    [Google Scholar]
  111. 111.
    Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG et al. 2017. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7:16878
    [Google Scholar]
  112. 112.
    Pocock J, Graham S, Vu QD, Jahanifar M, Deshpande S et al. 2022. TIAToolbox as an end-to-end library for advanced tissue image analytics. Commun. Med. 2:120
    [Google Scholar]
  113. 113.
    Cifci D, Veldhuizen GP, Foersch S, Kather JN. 2023. AI in computational pathology of cancer: improving diagnostic workflows and clinical outcomes?. Annu. Rev. Cancer Biol. 7:57–71
    [Google Scholar]
  114. 114.
    Schmidt U, Weigert M, Broaddus C, Myers G. 2018. Cell detection with star-convex polygons. arXiv:1806.03535 [cs]
  115. 115.
    Kather JN, Pearson AT, Halama N, Jäger D, Krause J et al. 2019. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25:71054–56
    [Google Scholar]
  116. 116.
    Warnat-Herresthal S, Schultze H, Shastry KL, Manamohan S, Mukherjee S et al. 2021. Swarm learning for decentralized and confidential clinical machine learning. Nature 594:7862265–70
    [Google Scholar]
  117. 117.
    Saldanha OL, Quirke P, West NP, James JA, Loughrey MB et al. 2022. Swarm learning for decentralized artificial intelligence in cancer histopathology. Nat. Med. 28:61232–39
    [Google Scholar]
  118. 118.
    Leiter C, Zhang R, Chen Y, Belouadi J, Larionov D et al. 2023. ChatGPT: a meta-analysis after 2.5 months. arXiv:2302.13795 [cs]
  119. 119.
    Ruff L, Kauffmann JR, Vandermeulen RA, Montavon G, Samek W et al. 2021. A unifying review of deep and shallow anomaly detection. Proc. IEEE 109:5756–95
    [Google Scholar]
  120. 120.
    Zehnder P, Feng J, Fuji RN, Sullivan R, Hu F. 2022. Multiscale generative model using regularized skip-connections and perceptual loss for anomaly detection in toxicologic histopathology. J. Pathol. Inform. 13:100102
    [Google Scholar]
  121. 121.
    Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M et al. 2018. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24:101559–67
    [Google Scholar]
  122. 122.
    Campanella G, Hanna MG, Geneslaw L, Miraflor A, Krauss Silva VW et al. 2019. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25:81301–9
    [Google Scholar]
  123. 123.
    Wang S, Wang T, Yang L, Yang DM, Fujimoto J et al. 2019. ConvPath: a software tool for lung adenocarcinoma digital pathological image analysis aided by a convolutional neural network. eBioMedicine 50:103–10
    [Google Scholar]
  124. 124.
    Kiani A, Uyumazturk B, Rajpurkar P, Wang A, Gao R et al. 2020. Impact of a deep learning assistant on the histopathologic classification of liver cancer. npj Digit. Med. 3:23
    [Google Scholar]
  125. 125.
    Bao L, Zhou M, Cui Y. 2005. nsSNPAnalyzer: identifying disease-associated nonsynonymous single nucleotide polymorphisms. Nucleic Acids Res. 33:W480–82
    [Google Scholar]
  126. 126.
    Sammut SJ, Crispin-Ortuzar M, Chin SF, Provenzano E, Bardwell HA et al. 2022. Multi-omic machine learning predictor of breast cancer therapy response. Nature 601:7894623–29
    [Google Scholar]
  127. 127.
    Alharbi WS, Rashid M. 2022. A review of deep learning applications in human genomics using next-generation sequencing data. Hum. Genom. 16:126
    [Google Scholar]
  128. 128.
    Moore LD, Le T, Fan G. 2013. DNA methylation and its basic function. Neuropsychopharmacology 38:123–38
    [Google Scholar]
  129. 129.
    Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R et al. 2014. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 15:4r54
    [Google Scholar]
  130. 130.
    Kim M, Costello J. 2017. DNA methylation: an epigenetic mark of cellular memory. Exp. Mol. Med. 49:4e322
    [Google Scholar]
  131. 131.
    Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP et al. 2016. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17:1208
    [Google Scholar]
  132. 132.
    Hovestadt V, Remke M, Kool M, Pietsch T, Northcott PA et al. 2013. Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol. 125:6913–16
    [Google Scholar]
  133. 133.
    Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V et al. 2015. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:5728–43
    [Google Scholar]
  134. 134.
    Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW et al. 2016. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164:51060–72
    [Google Scholar]
  135. 135.
    Bockmayr M, Harnisch K, Pohl LC, Schweizer L, Mohme T et al. 2022. Comprehensive profiling of myxopapillary ependymomas identifies a distinct molecular subtype with relapsing disease. Neuro-Oncology 24:101689–99
    [Google Scholar]
  136. 136.
    Koelsche C, Schrimpf D, Stichel D, Sill M, Sahm F et al. 2021. Sarcoma classification by DNA methylation profiling. Nat. Commun. 12:498
    [Google Scholar]
  137. 137.
    Louis DN, Wesseling P, Aldape K, Brat DJ, Capper D et al. 2020. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 30:4844–56
    [Google Scholar]
  138. 138.
    Gündert M, Edelmann D, Benner A, Jansen L, Jia M et al. 2019. Genome-wide DNA methylation analysis reveals a prognostic classifier for non-metastatic colorectal cancer (ProMCol classifier). Gut 68:1101–10
    [Google Scholar]
  139. 139.
    Nassiri F, Mamatjan Y, Suppiah S, Badhiwala JH, Mansouri S et al. 2019. DNA methylation profiling to predict recurrence risk in meningioma: development and validation of a nomogram to optimize clinical management. Neuro-Oncology 21:7901–10
    [Google Scholar]
  140. 140.
    Jeschke J, Bizet M, Desmedt C, Calonne E, Dedeurwaerder S et al. 2017. DNA methylation–based immune response signature improves patient diagnosis in multiple cancers. J. Clin. Investig. 127:83090–102
    [Google Scholar]
  141. 141.
    Safaei S, Mohme M, Niesen J, Schüller U, Bockmayr M. 2021. DIMEimmune: robust estimation of infiltrating lymphocytes in CNS tumors from DNA methylation profiles. Oncoimmunology 10:11932365
    [Google Scholar]
  142. 142.
    Leitheiser M, Capper D, Seegerer P, Lehmann A, Schüller U et al. 2022. Machine learning models predict the primary sites of head and neck squamous cell carcinoma metastases based on DNA methylation. J. Pathol. 256:4378–87
    [Google Scholar]
  143. 143.
    Bradley R, Braybrooke J, Gray R, Hills R, Liu Z et al. 2021. 864 women in seven randomised trials. Lancet Oncol. 22:81139–50
    [Google Scholar]
  144. 144.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P et al. 2011. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364:262507–16
    [Google Scholar]
  145. 145.
    Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J et al. 2022. PD-1 blockade in mismatch repair–deficient, locally advanced rectal cancer. N. Engl. J. Med. 386:252363–76
    [Google Scholar]
  146. 146.
    Keyl J, Hosch R, Berger A, Ester O, Greiner T et al. 2023. Deep learning–based assessment of body composition and liver tumour burden for survival modelling in advanced colorectal cancer. J. Cachexia Sarcopenia Muscle 14:1545–52
    [Google Scholar]
  147. 147.
    Delgado FM, Gómez-Vela F. 2019. Computational methods for gene regulatory networks reconstruction and analysis: a review. Artif. Intell. Med. 95:133–45
    [Google Scholar]
  148. 148.
    Fiers MWEJ, Minnoye L, Aibar S, Bravo González-Blas C, Kalender Atak Z, Aerts S 2018. Mapping gene regulatory networks from single-cell omics data. Brief. Funct. Genom. 17:4246–54
    [Google Scholar]
  149. 149.
    Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. 2020. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods 17:2147–54
    [Google Scholar]
  150. 150.
    Rao VS, Srinivas K, Sujini GN, Kumar GN. 2014. Protein-protein interaction detection: methods and analysis. Int. J. Proteom. 2014:147648
    [Google Scholar]
  151. 151.
    Raatz M, Shah S, Chitadze G, Brüggemann M, Traulsen A. 2021. The impact of phenotypic heterogeneity of tumour cells on treatment and relapse dynamics. PLOS Comput. Biol. 17:2e1008702
    [Google Scholar]
  152. 152.
    Marusyk A, Janiszewska M, Polyak K. 2020. Intratumor heterogeneity: the Rosetta Stone of therapy resistance. Cancer Cell 37:4471–84
    [Google Scholar]
  153. 153.
    Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. 2010. Inferring regulatory networks from expression data using tree-based methods. PLOS ONE 5:9e12776
    [Google Scholar]
  154. 154.
    Moerman T, Aibar Santos S, Bravo González-Blas C, Simm J, Moreau Y et al. 2019. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35:122159–61
    [Google Scholar]
  155. 155.
    Medina-Martínez JS, Arango-Ossa JE, Levine MF, Zhou Y, Gundem G et al. 2020. Isabl Platform, a digital biobank for processing multimodal patient data. BMC Bioinform. 21:1549
    [Google Scholar]
  156. 156.
    Chen RJ, Lu MY, Weng WH, Chen TY, Williamson DFK et al. 2021. Multimodal co-attention transformer for survival prediction in gigapixel whole slide images. 2021 IEEE/CVF International Conference on Computer Vision (ICCV 2021)3995–4005 Piscataway, NJ: IEEE
    [Google Scholar]
  157. 157.
    Chen RJ, Lu MY, Wang J, Williamson DFK, Rodig SJ et al. 2022. Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging 41:4757–70
    [Google Scholar]
  158. 158.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL et al. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102:4315545–50
    [Google Scholar]
  159. 159.
    Tan K, Huang W, Liu X, Hu J, Dong S. 2022. A multi-modal fusion framework based on multi-task correlation learning for cancer prognosis prediction. Artif. Intell. Med. 126:102260
    [Google Scholar]
  160. 160.
    Boehm KM, Khosravi P, Vanguri R, Gao J, Shah SP. 2022. Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 22:2114–26
    [Google Scholar]
  161. 161.
    Lipkova J, Chen RJ, Chen B, Lu MY, Barbieri M et al. 2022. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 40:101095–110
    [Google Scholar]
  162. 162.
    Kather JN, Halama N, Marx A. 2018. 100,000 histological images of human colorectal cancer and healthy tissue. Zenodo April 7. https://doi.org/10.5281/zenodo.1214456
    [Google Scholar]
  163. 163.
    Anders CJ, Neumann D, Samek W, Müller KR, Lapuschkin S 2021. Software for dataset-wide XAI: from local explanations to global insights with Zennit, CoRelAy, and ViRelAy. arXiv:2106.13200v2 [cs.LG]
  164. 164.
    Macenko M, Niethammer M, Marron JS, Borland D, Woosley JT et al. 2009. A method for normalizing histology slides for quantitative analysis. Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro1107–10 Piscataway, NJ: IEEE
    [Google Scholar]
  165. 165.
    Jassal B, Matthews L, Viteri G, Gong C, Lorente P et al. 2020. The reactome pathway knowledgebase. Nucleic Acids Res. 48:1D498–503
    [Google Scholar]
  166. 166.
    Veta M, van Diest PJ, Willems SM, Wang H, Madabhushi A et al. 2015. Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 20:237–48
    [Google Scholar]
  167. 167.
    Goodman B, Flaxman SR. 2017. European Union regulations on algorithmic decision-making and a ``right to explanation. AI Mag. 38:350–57
    [Google Scholar]
  168. 168.
    Clough E, Barrett T. 2016. The Gene Expression Omnibus database. Methods Mol. Biol. 1418:93–110
    [Google Scholar]
  169. 169.
    Kaissis GA, Makowski MR, Rückert D, Braren RF. 2020. Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2:6305–11
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-051222-113147
Loading
/content/journals/10.1146/annurev-pathmechdis-051222-113147
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error