Emerging infectious diseases of zoonotic origin are shaping today's infectious disease field more than ever. In this article, we introduce and review three emerging zoonotic viruses. Novel hantaviruses emerged in the Americas in the mid-1990s as the cause of severe respiratory infections, designated hantavirus pulmonary syndrome, with case fatality rates of around 40%. Nipah virus emerged a few years later, causing respiratory infections and encephalitis in Southeast Asia, with case fatality rates ranging from 40% to more than 90%. A new coronavirus emerged in 2012 on the Arabian Peninsula with a clinical syndrome of acute respiratory infections, later designated as Middle East respiratory syndrome (MERS), and an initial case fatality rate of more than 40%. Our current state of knowledge on the pathogenicity of these three severe, emerging viral infections is discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. Int. Comm. Taxon. Virol. (ICTV) 2013. Virus taxonomy: 2013 release EC 45, Edinburgh, July 2013. http://aictvonline.org/virusTaxonomy.asp
  2. Jonsson CB, Figueiredo LT, Vapalahti O. 2.  2010. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev. 23:412–41 [Google Scholar]
  3. Duchin JS, Koster FT, Peters CJ, Simpson GL, Tempest B. 3.  et al. 1994. Hantavirus pulmonary syndrome: a clinical description of 17 patients with a newly recognized disease. N. Engl. J. Med. 330:949–55 [Google Scholar]
  4. Nichol ST, Spiropoulou CF, Morzunov S, Rollin PE, Ksiazek TG. 4.  et al. 1993. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 262:914–17 [Google Scholar]
  5. Macneil A, Nichol ST, Spiropoulou CF. 5.  2011. Hantavirus pulmonary syndrome. Virus Res. 162:138–47 [Google Scholar]
  6. Webster D, Lee B, Joffe A, Sligl W, Dick D. 6.  et al. 2007. Cluster of cases of hantavirus pulmonary syndrome in Alberta, Canada. Am. J. Trop. Med. Hyg. 77:914–18 [Google Scholar]
  7. 7. Cent. Dis. Control Prev 2012. Hantavirus pulmonary syndrome in visitors to a national park—Yosemite Valley, California, 2012. Morb. Mortal. Wkly. Rep. 61:952 [Google Scholar]
  8. Roehr B. 8.  2012. US officials warn 39 countries about risk of hantavirus among travellers to Yosemite. BMJ 345:e6054 [Google Scholar]
  9. MacNeil A, Ksiazek TG, Rollin PE. 9.  2011. Hantavirus pulmonary syndrome, United States, 1993–2009. Emerg. Infect. Dis. 17:1195–201 [Google Scholar]
  10. Drebot MA, Artsob H, Werker D. 10.  2000. Hantavirus pulmonary syndrome in Canada, 1989–1999. Can. Commun. Dis. Rep. 26:65–69 [Google Scholar]
  11. Figueiredo LT, Moreli ML, de-Sousa RL, Borges AA, de-Figueiredo GG. 11.  et al. 2009. Hantavirus pulmonary syndrome, central plateau, southeastern, and southern Brazil. Emerg. Infect. Dis. 15:561–67 [Google Scholar]
  12. Martinez VP, Bellomo CM, Cacace ML, Suarez P, Bogni L, Padula PJ. 12.  2010. Hantavirus pulmonary syndrome in Argentina, 1995–2008. Emerg. Infect. Dis. 16:1853–60 [Google Scholar]
  13. Castillo C, Sanhueza L, Tager M, Munoz S, Ossa G, Vial P. 13.  2002. Seroprevalence of antibodies against hantavirus in 10 communities of the IX Region of Chile where hantavirus infection were diagnosed. Rev. Med. Chile 130:251–58 [Google Scholar]
  14. Campos GM, Moro de Sousa RL, Badra SJ, Pane C, Gomes UA, Figueiredo LT. 14.  2003. Serological survey of hantavirus in Jardinopolis County, Brazil. J. Med. Virol. 71:417–22 [Google Scholar]
  15. Pini N, Levis S, Calderon G, Ramirez J, Bravo D. 15.  et al. 2003. Hantavirus infection in humans and rodents, northwestern Argentina. Emerg. Infect. Dis. 9:1070–76 [Google Scholar]
  16. 16. Cent. Dis. Control Prev 2010. Hantavirus pulmonary syndrome (hantavirus disease) (HPS) 2010 case definition. CSTE Pos. Statement 09-ID-17. http://wwwn.cdc.gov/nndss/script/casedef.aspx?CondYrID=697&DatePub=1/1/2010%2012:00:00%20AM [Google Scholar]
  17. Young JC, Hansen GR, Graves TK, Deasy MP, Humphreys JG. 17.  et al. 2000. The incubation period of hantavirus pulmonary syndrome. Am. J. Trop. Med. Hyg. 62:714–17 [Google Scholar]
  18. Jonsson CB, Hooper J, Mertz G. 18.  2008. Treatment of hantavirus pulmonary syndrome. Antivir. Res. 78:162–69 [Google Scholar]
  19. Enria DA, Briggiler AM, Pini N, Levis S. 19.  2001. Clinical manifestations of New World hantaviruses. Curr. Top. Microbiol. Immunol. 256:117–34 [Google Scholar]
  20. Mackow ER, Gavrilovskaya IN. 20.  2001. Cellular receptors and hantavirus pathogenesis. Curr. Top. Microbiol. Immunol. 256:91–115 [Google Scholar]
  21. Raftery MJ, Kraus AA, Ulrich R, Kruger DH, Schonrich G. 21.  2002. Hantavirus infection of dendritic cells. J. Virol. 76:10724–33 [Google Scholar]
  22. Zaki SR, Greer PW, Coffield LM, Goldsmith CS, Nolte KB. 22.  et al. 1995. Hantavirus pulmonary syndrome. Pathogenesis of an emerging infectious disease. Am. J. Pathol. 146:552–79 [Google Scholar]
  23. Borges AA, Campos GM, Moreli ML, Souza RL, Aquino VH. 23.  et al. 2006. Hantavirus cardiopulmonary syndrome: immune response and pathogenesis. Microbes Infect. 8:2324–30 [Google Scholar]
  24. Safronetz D, Ebihara H, Feldmann H, Hooper JW. 24.  2012. The Syrian hamster model of hantavirus pulmonary syndrome. Antivir. Res. 95:282–92 [Google Scholar]
  25. Hooper JW, Larsen T, Custer DM, Schmaljohn CS. 25.  2001. A lethal disease model for hantavirus pulmonary syndrome. Virology 289:6–14 [Google Scholar]
  26. Safronetz D, Hegde NR, Ebihara H, Denton M, Kobinger GP. 26.  et al. 2009. Adenovirus vectors expressing hantavirus proteins protect hamsters against lethal challenge with Andes virus. J. Virol. 83:7285–95 [Google Scholar]
  27. Wahl-Jensen V, Chapman J, Asher L, Fisher R, Zimmerman M. 27.  et al. 2007. Temporal analysis of Andes virus and Sin Nombre virus infections of Syrian hamsters. J. Virol. 81:7449–62 [Google Scholar]
  28. Safronetz D, Prescott J, Haddock E, Scott DP, Feldmann H, Ebihara H. 28.  2013. Hamster-adapted Sin Nombre virus causes disseminated infection and efficiently replicates in pulmonary endothelial cells without signs of disease. J. Virol. 87:4778–82 [Google Scholar]
  29. Safronetz D, Zivcec M, Lacasse R, Feldmann F, Rosenke R. 29.  et al. 2011. Pathogenesis and host response in Syrian hamsters following intranasal infection with Andes virus. PLOS Pathog. 7:e1002426 [Google Scholar]
  30. Campen MJ, Milazzo ML, Fulhorst CF, Obot Akata CJ, Koster F. 30.  2006. Characterization of shock in a hamster model of hantavirus infection. Virology 356:45–49 [Google Scholar]
  31. Safronetz D, Geisbert TW, Feldmann H. 31.  2013. Animal models for highly pathogenic emerging viruses. Curr. Opin. Virol. 3:205–9 [Google Scholar]
  32. McElroy AK, Bray M, Reed DS, Schmaljohn CS. 32.  2002. Andes virus infection of cynomolgus macaques. J. Infect. Dis. 186:1706–12 [Google Scholar]
  33. Safronetz D, Prescott J, Feldmann F, Haddock E, Rosenke R. 33.  et al. 2014. Pathophysiology of hantavirus pulmonary syndrome in rhesus macaques. PNAS 111:7114–19 [Google Scholar]
  34. Kang JI, Park SH, Lee PW, Ahn BY. 34.  1999. Apoptosis is induced by hantaviruses in cultured cells. Virology 264:99–105 [Google Scholar]
  35. Li XD, Lankinen H, Putkuri N, Vapalahti O, Vaheri A. 35.  2005. Tula hantavirus triggers pro-apoptotic signals of ER stress in Vero E6 cells. Virology 333:180–89 [Google Scholar]
  36. Markotic A, Hensley L, Geisbert T, Spik K, Schmaljohn C. 36.  2003. Hantaviruses induce cytopathic effects and apoptosis in continuous human embryonic kidney cells. J. Gen. Virol. 84:2197–202 [Google Scholar]
  37. Sundstrom JB, McMullan LK, Spiropoulou CF, Hooper WC, Ansari AA. 37.  et al. 2001. Hantavirus infection induces the expression of RANTES and IP-10 without causing increased permeability in human lung microvascular endothelial cells. J. Virol. 75:6070–85 [Google Scholar]
  38. Hardestam J, Klingstrom J, Mattsson K, Lundkvist A. 38.  2005. HFRS causing hantaviruses do not induce apoptosis in confluent Vero E6 and A-549 cells. J. Med. Virol. 76:234–40 [Google Scholar]
  39. Levine JR, Prescott J, Brown KS, Best SM, Ebihara H, Feldmann H. 39.  2010. Antagonism of type I interferon responses by New World hantaviruses. J. Virol. 84:11790–801 [Google Scholar]
  40. Spiropoulou CF, Albarino CG, Ksiazek TG, Rollin PE. 40.  2007. Andes and Prospect Hill hantaviruses differ in early induction of interferon although both can downregulate interferon signaling. J. Virol. 81:2769–76 [Google Scholar]
  41. Alff PJ, Gavrilovskaya IN, Gorbunova E, Endriss K, Chong Y. 41.  et al. 2006. The pathogenic NY-1 hantavirus G1 cytoplasmic tail inhibits RIG-I- and TBK-1-directed interferon responses. J. Virol. 80:9676–86 [Google Scholar]
  42. Borges AA, Donadi EA, Campos GM, de Figueiredo GG, Saggioro FP. 42.  et al. 2013. Polymorphisms in human leukocyte antigens, human platelet antigens, and cytokine genes in hantavirus cardiopulmonary syndrome patients from Ribeirao Preto, Brazil. J. Med. Virol. 86:111962–70 [Google Scholar]
  43. Saggioro FP, Rossi MA, Duarte MI, Martin CC, Alves VA. 43.  et al. 2007. Hantavirus infection induces a typical myocarditis that may be responsible for myocardial depression and shock in hantavirus pulmonary syndrome. J. Infect. Dis. 195:1541–49 [Google Scholar]
  44. Linderholm M, Ahlm C, Settergren B, Waage A, Tarnvik A. 44.  1996. Elevated plasma levels of tumor necrosis factor (TNF)-α, soluble TNF receptors, interleukin (IL)-6, and IL-10 in patients with hemorrhagic fever with renal syndrome. J. Infect. Dis. 173:38–43 [Google Scholar]
  45. Gavrilovskaya I, Gorbunova E, Koster F, Mackow E. 45.  2012. Elevated VEGF levels in pulmonary edema fluid and PBMCs from patients with acute hantavirus pulmonary syndrome. Adv. Virol. 2012:674360 [Google Scholar]
  46. Temonen M, Mustonen J, Helin H, Pasternack A, Vaheri A, Holthofer H. 46.  1996. Cytokines, adhesion molecules, and cellular infiltration in nephropathia epidemica kidneys: an immunohistochemical study. Clin. Immunol. Immunopathol. 78:47–55 [Google Scholar]
  47. Mori M, Rothman AL, Kurane I, Montoya JM, Nolte KB. 47.  et al. 1999. High levels of cytokine-producing cells in the lung tissues of patients with fatal hantavirus pulmonary syndrome. J. Infect. Dis. 179:295–302 [Google Scholar]
  48. Schountz T, Prescott J, Cogswell AC, Oko L, Mirowsky-Garcia K. 48.  et al. 2007. Regulatory T cell-like responses in deer mice persistently infected with Sin Nombre virus. PNAS 104:15496–501 [Google Scholar]
  49. Easterbrook JD, Zink MC, Klein SL. 49.  2007. Regulatory T cells enhance persistence of the zoonotic pathogen Seoul virus in its reservoir host. PNAS 104:15502–7 [Google Scholar]
  50. Borges AA, Campos GM, Moreli ML, Moro Souza RL, Saggioro FP. 50.  et al. 2008. Role of mixed Th1 and Th2 serum cytokines on pathogenesis and prognosis of hantavirus pulmonary syndrome. Microbes Infect. 10:1150–57 [Google Scholar]
  51. Kilpatrick ED, Terajima M, Koster FT, Catalina MD, Cruz J, Ennis FA. 51.  2004. Role of specific CD8+ T cells in the severity of a fulminant zoonotic viral hemorrhagic fever, hantavirus pulmonary syndrome. J. Immunol. 172:3297–304 [Google Scholar]
  52. Hayasaka D, Maeda K, Ennis FA, Terajima M. 52.  2007. Increased permeability of human endothelial cell line EA.hy926 induced by hantavirus-specific cytotoxic T lymphocytes. Virus Res. 123:120–27 [Google Scholar]
  53. Borges AA, Donadi EA, Campos GM, Moreli ML, de Sousa RL. 53.  et al. 2010. Association of −308G/A polymorphism in the tumor necrosis factor-alpha gene promoter with susceptibility to development of hantavirus cardiopulmonary syndrome in the Ribeirao Preto region, Brazil. Arch. Virol. 155:971–75 [Google Scholar]
  54. Hammerbeck CD, Hooper JW. 54.  2011. T cells are not required for pathogenesis in the Syrian hamster model of hantavirus pulmonary syndrome. J. Virol. 85:9929–44 [Google Scholar]
  55. Brocato RL, Hammerbeck CD, Bell TM, Wells JB, Queen LA, Hooper JW. 55.  2014. A lethal disease model for hantavirus pulmonary syndrome in immunosuppressed Syrian hamsters infected with Sin Nombre virus. J. Virol. 88:811–19 [Google Scholar]
  56. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A. 56.  et al. 2000. Nipah virus: a recently emergent deadly paramyxovirus. Science 288:1432–35 [Google Scholar]
  57. Marsh GA, de Jong C, Barr JA, Tachedjian M, Smith C. 57.  et al. 2012. Cedar virus: a novel henipavirus isolated from Australian bats. PLOS Pathog. 8:e1002836 [Google Scholar]
  58. Lo MK, Lowe L, Hummel KB, Sazzad HM, Gurley ES. 58.  et al. 2012. Characterization of Nipah virus from outbreaks in Bangladesh, 2008–2010. Emerg. Infect. Dis. 18:248–55 [Google Scholar]
  59. Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH. 59.  et al. 2002. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect. 4:145–51 [Google Scholar]
  60. Rahman SA, Hassan SS, Olival KJ, Mohamed M, Chang LY. 60.  et al. 2010. Characterization of Nipah virus from naturally infected Pteropus vampyrus bats, Malaysia. Emerg. Infect. Dis. 16:1990–93 [Google Scholar]
  61. Sohayati AR, Hassan L, Sharifah SH, Lazarus K, Zaini CM. 61.  et al. 2011. Evidence for Nipah virus recrudescence and serological patterns of captive Pteropus vampyrus. Epidemiol. Infect. 139:1570–79 [Google Scholar]
  62. Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA. 62.  et al. 2007. Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). J. Comp. Pathol. 136:266–72 [Google Scholar]
  63. Rockx B. 63.  2014. Recent developments in experimental animal models of Henipavirus infection. Pathog. Dis. 71:199–206 [Google Scholar]
  64. Mohd Nor MN, Gan CH, Ong BL. 64.  2000. Nipah virus infection of pigs in peninsular Malaysia. Rev. Sci. Tech. 19:160–65 [Google Scholar]
  65. Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE. 65.  et al. 2006. Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg. Infect. Dis. 12:235–40 [Google Scholar]
  66. Hsu VP, Hossain MJ, Parashar UD, Ali MM, Ksiazek TG. 66.  et al. 2004. Nipah virus encephalitis reemergence, Bangladesh. Emerg. Infect. Dis. 10:2082–87 [Google Scholar]
  67. 67. Int. Cent. Diarrheal Dis. Res. Bangladesh 2003. Outbreaks of encephalitis due to Nipah/Hendra-like viruses, Western Bangladesh. Health Sci. Bull. 1:1–6 [Google Scholar]
  68. Luby SP, Rahman M, Hossain MJ, Blum LS, Husain MM. 68.  et al. 2006. Foodborne transmission of Nipah virus, Bangladesh. Emerg. Infect. Dis. 12:1888–94 [Google Scholar]
  69. Rahman MA, Hossain MJ, Sultana S, Homaira N, Khan SU. 69.  et al. 2011. Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008. Vector Borne Zoonotic Dis. 12:65–72 [Google Scholar]
  70. Chong HT, Hossain J, Tan CT. 70.  2008. Differences in epidemiologic and clinical features of Nipah virus encephalitis between the Malaysian and Bangladesh outbreaks. Neurol. Asia 13:23–26 [Google Scholar]
  71. Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S. 71.  et al. 2009. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg. Infect. Dis. 15:1229–35 [Google Scholar]
  72. Chong HT, Kunjapan SR, Thayaparan T, Tong J, Petharunam V. 72.  et al. 2002. Nipah encephalitis outbreak in Malaysia, clinical features in patients from Seremban. Can. J. Neurol. Sci. 29:83–87 [Google Scholar]
  73. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS. 73.  et al. 1999. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354:1257–59 [Google Scholar]
  74. Goh KJ, Tan CT, Chew NK, Tan PS, Kamarulzaman A. 74.  et al. 2000. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N. Engl. J. Med. 342:1229–35 [Google Scholar]
  75. Hossain MJ, Gurley ES, Montgomery JM, Bell M, Carroll DS. 75.  et al. 2008. Clinical presentation of Nipah virus infection in Bangladesh. Clin. Infect. Dis. 46:977–84 [Google Scholar]
  76. Paton NI, Leo YS, Zaki SR, Auchus AP, Lee KE. 76.  et al. 1999. Outbreak of Nipah-virus infection among abattoir workers in Singapore. Lancet 354:1253–56 [Google Scholar]
  77. Lee KE, Umapathi T, Tan CB, Tjia HT, Chua TS. 77.  et al. 1999. The neurological manifestations of Nipah virus encephalitis, a novel paramyxovirus. Ann. Neurol. 46:428–32 [Google Scholar]
  78. Sarji SA, Abdullah BJ, Goh KJ, Tan CT, Wong KT. 78.  2000. MR imaging features of Nipah encephalitis. Am. J. Roentgenol. 175:437–42 [Google Scholar]
  79. Abdullah S, Chang LY, Rahmat K, Goh KJ, Tan CT. 79.  2012. Late-onset Nipah virus encephalitis 11 years after the initial outbreak: a case report. Neurol. Asia 17:71–74 [Google Scholar]
  80. Sejvar JJ, Hossain J, Saha SK, Gurley ES, Banu S. 80.  et al. 2007. Long-term neurological and functional outcome in Nipah virus infection. Ann. Neurol. 62:235–42 [Google Scholar]
  81. Tan CT, Goh KJ, Wong KT, Sarji SA, Chua KB. 81.  et al. 2002. Relapsed and late-onset Nipah encephalitis. Ann. Neurol. 51:703–8 [Google Scholar]
  82. Wong SC, Ooi MH, Wong MN, Tio PH, Solomon T, Cardosa MJ. 82.  2001. Late presentation of Nipah virus encephalitis and kinetics of the humoral immune response. J. Neurol. Neurosurg. Psychiatry 71:552–54 [Google Scholar]
  83. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W. 83.  et al. 2002. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am. J. Pathol. 161:2153–67 [Google Scholar]
  84. Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G. 84.  et al. 2009. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. PLOS Pathog. 5:e1000642 [Google Scholar]
  85. de Wit E, Bushmaker T, Scott D, Feldmann H, Munster VJ. 85.  2011. Nipah virus transmission in a hamster model. PLOS Negl. Trop. Dis. 5:e1432 [Google Scholar]
  86. Geisbert TW, Daddario-DiCaprio KM, Hickey AC, Smith MA, Chan YP. 86.  et al. 2010. Development of an acute and highly pathogenic nonhuman primate model of Nipah virus infection. PLOS ONE 5:e10690 [Google Scholar]
  87. Rockx B, Brining D, Kramer J, Callison J, Ebihara H. 87.  et al. 2011. Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection. J. Virol. 85:7658–71 [Google Scholar]
  88. Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M. 88.  et al. 2003. A golden hamster model for human acute Nipah virus infection. Am. J. Pathol. 163:2127–37 [Google Scholar]
  89. Munster VJ, Prescott JB, Bushmaker T, Long D, Rosenke R. 89.  et al. 2012. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci. Rep. 2:736 [Google Scholar]
  90. Weingartl H, Czub S, Copps J, Berhane Y, Middleton D. 90.  et al. 2005. Invasion of the central nervous system in a porcine host by Nipah virus. J. Virol. 79:7528–34 [Google Scholar]
  91. Mathieu C, Pohl C, Szecsi J, Trajkovic-Bodennec S, Devergnas S. 91.  et al. 2011. Nipah virus uses leukocytes for efficient dissemination within a host. J. Virol. 85:7863–71 [Google Scholar]
  92. Dhondt KP, Mathieu C, Chalons M, Reynaud JM, Vallve A. 92.  et al. 2013. Type I interferon signaling protects mice from lethal henipavirus infection. J. Infect. Dis. 207:142–51 [Google Scholar]
  93. Yoneda M, Guillaume V, Ikeda F, Sakuma Y, Sato H. 93.  et al. 2006. Establishment of a Nipah virus rescue system. PNAS 103:16508–13 [Google Scholar]
  94. Mathieu C, Guillaume V, Volchkova VA, Pohl C, Jacquot F. 94.  et al. 2012. Nonstructural Nipah virus C protein regulates both the early host proinflammatory response and viral virulence. J. Virol. 86:10766–75 [Google Scholar]
  95. Yoneda M, Guillaume V, Sato H, Fujita K, Georges-Courbot MC. 95.  et al. 2010. The nonstructural proteins of Nipah virus play a key role in pathogenicity in experimentally infected animals. PLOS ONE 5:e12709 [Google Scholar]
  96. Basler CF. 96.  2012. Nipah and Hendra virus interactions with the innate immune system. Curr. Top. Microbiol. Immunol. 359:123–52 [Google Scholar]
  97. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS. 97.  et al. 2012. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio 3:e00473–12 [Google Scholar]
  98. Cotten M, Lam TT, Watson SJ, Palser AL, Petrova V. 98.  et al. 2013. Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus. Emerg. Infect. Dis. 19:736–42 [Google Scholar]
  99. Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu M. 99.  et al. 2013. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 19:456–59 [Google Scholar]
  100. Anthony SJ, Ojeda-Flores R, Rico-Chavez O, Navarette-Macias I, Zambrana-Torrelio CM. 100.  et al. 2013. Coronaviruses in bats from Mexico. J. Gen. Virol. 94:1028–38 [Google Scholar]
  101. Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR. 101.  et al. 2013. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg. Infect. Dis. 191697–99
  102. Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V. 102.  et al. 2013. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg. Infect. Dis. 19:1819–23 [Google Scholar]
  103. Reusken C, Haagmans BL, Muller MA, Gutierrez C, Godeke GJ. 103.  et al. 2013. MERS-CoV neutralizing serum antibodies in dromedary camels: a comparative survey. Lancet Infect. Dis. 13:859–66 [Google Scholar]
  104. Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC. 104.  et al. 2014. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. mBio 5:e00884–14 [Google Scholar]
  105. Alexandersen S, Kobinger GP, Soule G, Wernery U. 105.  2014. Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005. Transbound. Emerg. Dis. 61:105–8 [Google Scholar]
  106. Haagmans BL, Al Dhahiry SH, Reusken CB, Raj VS, Galiano M. 106.  et al. 2014. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect. Dis. 14:140–45 [Google Scholar]
  107. Perera RA, Wang P, Gomaa MR, El-Shesheny R, Kandeil A. 107.  et al. 2013. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Eurosurveillance 18:20574 [Google Scholar]
  108. Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS. 108.  et al. 2014. Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med. 370:2499–505 [Google Scholar]
  109. Memish ZA, Cotten M, Meyer B, Watson SJ, Alsahafi AJ. 109.  et al. 2014. Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg. Infect. Dis. 20:1012–15 [Google Scholar]
  110. van Doremalen N, de Wit E, Falzarano D, Scott D, Schountz T. 110.  et al. 2014. Modeling the host ecology of Middle East respiratory syndrome coronavirus (MERS-CoV): from host reservoir to disease Annu. Meet. Am. Soc. Virol., 33rd, Fort Collins [Google Scholar]
  111. Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA. 111.  et al. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495:251–54 [Google Scholar]
  112. Barlan A, Zhao J, Sarkar MK, Li K, McCray PB Jr. 112.  2014. Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection. J. Virol. 88:4953–61 [Google Scholar]
  113. Cockrell AS, Peck KM, Yount BL, Agnihothram SS, Scobey T. 113.  et al. 2014. Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection. J. Virol. 88:5195–99 [Google Scholar]
  114. Raj VS, Smits SL, Provacia LB, van den Brand JM, Wiersma L. 114.  et al. 2014. Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus. J. Virol. 88:1834–38 [Google Scholar]
  115. van Doremalen N, Miazgowicz KL, Milne-Price S, Bushmaker T, Robertson S. 115.  et al. 2014. Host species restriction of Middle East respiratory syndrome coronavirus through its receptor dipeptidyl peptidase 4. J. Virol. 88:9220–32 [Google Scholar]
  116. Mou H, Raj VS, van Kuppeveld FJ, Rottier PJ, Haagmans BL, Bosch BJ. 116.  2013. The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J. Virol. 87:9379–83 [Google Scholar]
  117. Coleman CM, Matthews KL, Goicochea L, Frieman MB. 117.  2014. Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus. J. Gen. Virol. 95:408–12 [Google Scholar]
  118. de Wit E, Prescott J, Baseler L, Bushmaker T, Thomas T. 118.  et al. 2013. The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters. PLOS ONE 8:e69127 [Google Scholar]
  119. de Wit E, Rasmussen AL, Falzarano D, Bushmaker T, Feldmann F. 119.  et al. 2013. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. PNAS 110:16598–603 [Google Scholar]
  120. Falzarano D, de Wit E, Feldmann F, Rasmussen AL, Okumura A. 120.  et al. 2014. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLOS Pathog. 10:e1004250 [Google Scholar]
  121. Munster VJ, de Wit E, Feldmann H. 121.  2013. Pneumonia from human coronavirus in a macaque model. N. Engl. J. Med. 368:1560–62 [Google Scholar]
  122. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 122.  2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367:1814–20 [Google Scholar]
  123. Wise J. 123.  2013. Patient dies from novel coronavirus in UK. BMJ 346:f1133 [Google Scholar]
  124. Assiri A, McGeer A, Perl TM, Price CS. Rabeeah AA. 124. , Al et al. 2013. Hospital outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. Med. 369:407–16 [Google Scholar]
  125. 125. World Health Organ 2014. Global alert and response (GAR). Coronavirus infections. http://www.who.int/csr/don/archive/disease/coronavirus_infections/en/index.html [Google Scholar]
  126. Albarrak AM, Stephens GM, Hewson R, Memish ZA. 126.  2012. Recovery from severe novel coronavirus infection. Saudi Med. J. 33:1265–69 [Google Scholar]
  127. Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S. 127.  et al. 2013. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect. Dis. 13:752–61 [Google Scholar]
  128. Drosten C, Seilmaier M, Corman VM, Hartmann W, Scheible G. 128.  et al. 2013. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect. Dis. 13:745–51 [Google Scholar]
  129. Guberina H, Witzke O, Timm J, Dittmer U, Muller MA. 129.  et al. 2014. A patient with severe respiratory failure caused by novel human coronavirus. Infection 42:203–6 [Google Scholar]
  130. Guery B, Poissy J, El Mansouf L, Sejourne C, Ettahar N. 130.  et al. 2013. Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: a report of nosocomial transmission. Lancet 381:2265–72 [Google Scholar]
  131. Memish ZA, Zumla AI, Al-Hakeem RF, Al-Rabeeah AA, Stephens GM. 131.  2013. Family cluster of Middle East respiratory syndrome coronavirus infections. N. Engl. J. Med. 368:2487–94 [Google Scholar]
  132. Memish ZA, Zumla AI, Assiri A. 132.  2013. Middle East respiratory syndrome coronavirus infections in health care workers. N. Engl. J. Med. 369:884–86 [Google Scholar]
  133. Puzelli S, Azzi A, Santini MG. Martino A, Facchini M. 133. , Di et al. 2013. Investigation of an imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Florence, Italy, May to June 2013. Eurosurveillance 18:20564 [Google Scholar]
  134. Zhou J, Chu H, Li C, Wong BH, Cheng ZS. 134.  et al. 2013. Active replication of Middle East respiratory syndrome coronavirus replication and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J. Infect. Dis. 209:1331–42 [Google Scholar]
  135. Hocke AC, Becher A, Knepper J, Peter A, Holland G. 135.  et al. 2013. Emerging human Middle East respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs. Am. J. Respir. Crit. Care Med. 188:882–86 [Google Scholar]
  136. Chan RW, Chan MC, Agnihothram S, Chan LL, Kuok DI. 136.  et al. 2013. Tropism and innate immune responses of the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. J. Virol. 87:6604–14 [Google Scholar]
  137. Yao Y, Bao L, Deng W, Xu L, Li F. 137.  et al. 2014. An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus. J. Infect. Dis. 209:236–42 [Google Scholar]
  138. Zhao J, Li K, Wohlford-Lenane C, Agnihothram SS, Fett C. 138.  et al. 2014. Rapid generation of a mouse model for Middle East respiratory syndrome. PNAS 111:4970–75 [Google Scholar]
  139. Kindler E, Jonsdottir HR, Muth D, Hamming OJ, Hartmann R. 139.  et al. 2013. Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. mBio 4:e00611–12 [Google Scholar]
  140. Zielecki F, Weber M, Eickmann M, Spiegelberg L, Zaki AM. 140.  et al. 2013. Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus. J. Virol. 87:5300–4 [Google Scholar]
  141. Matthews KL, Coleman CM, van der Meer Y, Snijder EJ, Frieman MB. 141.  2014. The ORF4b-encoded accessory proteins of MERS-coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signaling. J. Gen. Virol. 95:Pt. 4874–82 [Google Scholar]
  142. Niemeyer D, Zillinger T, Muth D, Zielecki F, Horvath G. 142.  et al. 2013. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J. Virol. 87:12489–95 [Google Scholar]
  143. Yang Y, Zhang L, Geng H, Deng Y, Huang B. 143.  et al. 2013. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4:951–61 [Google Scholar]
  144. Siu KL, Yeung ML, Kok KH, Yuen KS, Kew C. 144.  et al. 2014. Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in innate antiviral response. J. Virol. 88:4866–76 [Google Scholar]
  145. Prescott J, De Wit E, Falzarano D, Scott D, Feldmann H, Munster VJ. 145.  2014. Defining the effects of immunosuppression in the rhesus model of Middle East respiratory syndrome (MERS) Annu. Meet. Am. Soc. Virol., 33rd, Fort Collins [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error