Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of nonboxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Coronado VG, McGuire LC, Faul M, Sugerman DE, Pearson WS. 1.  2012. Epidemiology and public health issues. Brain Injury Medicine: Principles and Practice ND Zasler, D Katz, RD Zafonte, DB Arciniegas, MR Bullock, JS Kreutzer 84–100 New York: Demos Med, 2nd ed.. [Google Scholar]
  2. Coronado VG, McGuire LC, Sarmiento K, Bell J, Lionbarger MR. 2.  et al. 2012. Trends in traumatic brain injury in the U.S. and the public health response: 1995–2009. J. Saf. Res. 43:299–307 [Google Scholar]
  3. Faul M, Xu L, Wald MM, Coronado VG. 3.  2010. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths. Atlanta: CDC, Natl. Cent. Inj. Prev. Control [Google Scholar]
  4. 4. CDC (Cent. Dis. Control Prev.) 1999. Traumatic Brain Injury in the United States: A Report to Congress. Atlanta: CDC [Google Scholar]
  5. Finklestein E, Corso P, Miller T. 5.  2006. The Incidence and Economic Burden of Injuries in the United States. New York: Oxford Univ. Press [Google Scholar]
  6. Martland H. 6.  1928. Punch drunk. JAMA 91:1103–7 [Google Scholar]
  7. Millspaugh J. 7.  1937. Dementia pugilistica. U. S. Navy Med. Bull. 35:297–303 [Google Scholar]
  8. Critchley M. 8.  1957. Medical aspects of boxing, particularly from a neurological standpoint. BMJ 1:357–62 [Google Scholar]
  9. Mawdsley C, Ferguson FR. 9.  1963. Neurological disease in boxers. Lancet 282:795–801 [Google Scholar]
  10. Spillane JD. 10.  1962. Five boxers. BMJ 2:1205–10 [Google Scholar]
  11. Omalu B, Bailes J, Hamilton RL, Kamboh MI, Hammers J. 11.  et al. 2011. Emerging histomorphologic phenotypes of chronic traumatic encephalopathy in American athletes. Neurosurgery 69:173–83 [Google Scholar]
  12. Omalu B, Hammers JL, Bailes J, Hamilton RL, Kamboh MI. 12.  et al. 2011. Chronic traumatic encephalopathy in an Iraqi war veteran with posttraumatic stress disorder who committed suicide. Neurosurg. Focus 31:E3 [Google Scholar]
  13. Omalu BI, DeKosky ST, Hamilton RL, Minster RL, Kamboh MI. 13.  et al. 2006. Chronic traumatic encephalopathy in a National Football League player: part II. Neurosurgery 59:1086–93 [Google Scholar]
  14. Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH. 14.  2005. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57:128–34 [Google Scholar]
  15. Omalu BI, Fitzsimmons RP, Hammers J, Bailes J. 15.  2010. Chronic traumatic encephalopathy in a professional American wrestler. J. Forensic Nurs. 6:130–36 [Google Scholar]
  16. Omalu BI, Hamilton RL, Kamboh MI, DeKosky ST, Bailes J. 16.  2010. Chronic traumatic encephalopathy (CTE) in a National Football League player: case report and emerging medicolegal practice questions. J. Forensic Nurs. 6:40–46 [Google Scholar]
  17. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE. 17.  et al. 2009. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol. 68:709–35 [Google Scholar]
  18. McKee AC, Gavett BE, Stern RA, Nowinski CJ, Cantu RC. 18.  et al. 2010. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol. 69:918–29 [Google Scholar]
  19. Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L. 19.  et al. 2012. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 4:134ra60 [Google Scholar]
  20. McKee AC, Stein TD, Nowinski CJ, Stern RA, Daneshvar DH. 20.  et al. 2013. The spectrum of disease in chronic traumatic encephalopathy. Brain 136:43–64 [Google Scholar]
  21. Johnson VE, Stewart W, Smith DH. 21.  2012. Widespread tau and amyloid-β pathology many years after a single traumatic brain injury in humans. Brain Pathol. 22:142–49 [Google Scholar]
  22. Smith DH, Johnson VE, Stewart W. 22.  2013. Chronic neuropathologies of single and repetitive TBI: substrates of dementia?. Nat. Rev. Neurol. 9:211–21 [Google Scholar]
  23. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. 23.  2013. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136:28–42 [Google Scholar]
  24. Roberts GW, Gentleman SM, Lynch A, Graham DI. 24.  1991. β A4 amyloid protein deposition in brain after head trauma. Lancet 338:1422–23 [Google Scholar]
  25. Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI. 25.  1994. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 57:419–25 [Google Scholar]
  26. Molgaard CA, Stanford EP, Morton DJ, Ryden LA, Schubert KR, Golbeck AL. 26.  1990. Epidemiology of head trauma and neurocognitive impairment in a multi-ethnic population. Neuroepidemiology 9:233–42 [Google Scholar]
  27. Mortimer JA, French LR, Hutton JT, Schuman LM. 27.  1985. Head injury as a risk factor for Alzheimer's disease. Neurology 35:264–67 [Google Scholar]
  28. Mortimer JA, van Duijn CM, Chandra V, Fratiglioni L, Graves AB. 28.  et al. EURODEM Risk Factors Research Group 1991. Head trauma as a risk factor for Alzheimer's disease: a collaborative re-analysis of case-control studies. Int. J. Epidemiol. 20:Suppl. 2S28–35 [Google Scholar]
  29. Graves AB, White E, Koepsell TD, Reifler BV, van Belle G. 29.  et al. 1990. The association between head trauma and Alzheimer's disease. Am. J. Epidemiol. 131:491–501 [Google Scholar]
  30. O'Meara ES, Kukull WA, Sheppard L, Bowen JD, McCormick WC. 30.  et al. 1997. Head injury and risk of Alzheimer's disease by apolipoprotein E genotype. Am. J. Epidemiol. 146:373–84 [Google Scholar]
  31. Salib E, Hillier V. 31.  1997. Head injury and the risk of Alzheimer's disease: a case control study. Int. J. Geriatr. Psychiatry 12:363–68 [Google Scholar]
  32. Guo Z, Cupples LA, Kurz A, Auerbach SH, Volicer L. 32.  et al. 2000. Head injury and the risk of AD in the MIRAGE study. Neurology 54:1316–23 [Google Scholar]
  33. Schofield PW, Tang M, Marder K, Bell K, Dooneief G. 33.  et al. 1997. Alzheimer's disease after remote head injury: an incidence study. J. Neurol. Neurosurg. Psychiatry 62:119–24 [Google Scholar]
  34. Plassman BL, Havlik RJ, Steffens DC, Helms MJ, Newman TN. 34.  et al. 2000. Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias. Neurology 55:1158–66 [Google Scholar]
  35. Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A. 35.  2003. Head injury as a risk factor for Alzheimer's disease: the evidence 10 years on; a partial replication. J. Neurol. Neurosurg. Psychiatry 74:857–62 [Google Scholar]
  36. Shively S, Scher AI, Perl DP, Diaz-Arrastia R. 36.  2012. Dementia resulting from traumatic brain injury: What is the pathology?. Arch. Neurol. 69:1245–51 [Google Scholar]
  37. Roberts G. 37.  1969. Brain Damage in Boxers: A Study of the Prevalence of Traumatic Encephalopathy Among Ex-Professional Boxers London: Pitman [Google Scholar]
  38. 38.  Deleted in proof
  39. McKee AC, Stein TD, Nowinski CJ, Stern RA, Daneshvar DH. 39.  et al. 2013. The spectrum of disease in chronic traumatic encephalopathy. Brain 136:43–64 [Google Scholar]
  40. Stewart W, McNamara PH, Lawlor B, Hutchinson S, Farrell M. 40.  2016. Chronic traumatic encephalopathy: a potential late and under recognized consequence of rugby union?. QJM 10911–15 [Google Scholar]
  41. McKee AC, Daneshvar DH, Alvarez VE, Stein TD. 41.  2014. The neuropathology of sport. Acta Neuropathol. 127:29–51 [Google Scholar]
  42. Dams-O'Connor K, Spielman L, Hammond FM, Sayed N, Culver C, Diaz-Arrastia R. 42.  2013. An exploration of clinical dementia phenotypes among individuals with and without traumatic brain injury. NeuroRehabilitation 32:199–209 [Google Scholar]
  43. Sayed N, Culver C, Dams-O'Connor K, Hammond F, Diaz-Arrastia R. 43.  2013. Clinical phenotype of dementia after traumatic brain injury. J. Neurotrauma 30:1117–22 [Google Scholar]
  44. DeKosky ST, Blennow K, Ikonomovic MD, Gandy S. 44.  2013. Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers. Nat. Rev. Neurol. 9:192–200 [Google Scholar]
  45. DeKosky ST, Ikonomovic MD, Gandy S. 45.  2010. Traumatic brain injury—football, warfare, and long-term effects. N. Engl. J. Med. 363:1293–96 [Google Scholar]
  46. Brandenburg W, Hallervorden J. 46.  1954. Dementia pugilistica with anatomical findings. Virchows Arch. 325:680–709 (In German) [Google Scholar]
  47. Payne EE. 47.  1968. Brains of boxers. Neurochirurgia 11:173–88 [Google Scholar]
  48. Neubuerger KT, Sinton DW, Denst J. 48.  1959. Cerebral atrophy associated with boxing. A.M.A. Arch. Neurol. Psychiatry 81:403–8 [Google Scholar]
  49. Constantinidis J, Tissot R. 49.  1967. Generalized Alzheimer's neurofibrillary lesions without senile plaques. (Presentation of one anatomo-clinical case). Schweiz. Arch. Neurol. Neurochir. Psychiatr. 100:117–30 (In French) [Google Scholar]
  50. Ferguson FR, Mawdsley C. 50.  1965. Chronic Encephalopathy in Boxers: 8th International Congress of Neurology, Vienna Vienna: Wiener Med. Akad. [Google Scholar]
  51. Grahmann H, Ule G. 51.  1957. Diagnosis of chronic cerebral symptoms in boxers (dementia pugilistica & traumatic encephalopathy of boxers). Psychiatr. Neurol. 134:261–83 (In German) [Google Scholar]
  52. Corsellis JA, Bruton CJ, Freeman-Browne D. 52.  1973. The aftermath of boxing. Psychol. Med. 3:270–303 [Google Scholar]
  53. Roberts GW, Allsop D, Bruton C. 53.  1990. The occult aftermath of boxing. J. Neurol. Neurosurg. Psychiatry 53:373–78 [Google Scholar]
  54. Jordan BD, Kanik AB, Horwich MS, Sweeney D, Relkin NR. 54.  et al. 1995. Apolipoprotein E ε4 and fatal cerebral amyloid angiopathy associated with dementia pugilistica. Ann. Neurol. 38:698–99 [Google Scholar]
  55. Schmidt ML, Zhukareva V, Newell KL, Lee VM, Trojanowski JQ. 55.  2001. Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer's disease. Acta Neuropathol. 101:518–24 [Google Scholar]
  56. Saing T, Dick M, Nelson PT, Kim RC, Cribbs DH, Head E. 56.  2012. Frontal cortex neuropathology in dementia pugilistica. J. Neurotrauma 29:1054–70 [Google Scholar]
  57. Nowak LA, Smith GG, Reyes PF. 57.  2009. Dementia in a retired world boxing champion: case report and literature review. Clin. Neuropathol. 28:275–80 [Google Scholar]
  58. Williams DJ, Tannenberg AE. 58.  1996. Dementia pugilistica in an alcoholic achondroplastic dwarf. Pathology 28:102–4 [Google Scholar]
  59. Drachman D, Newall K. 59.  1999. Case 12-1999—a 67-year-old man with three years of dementia. N. Engl. J. Med. 340:1269–77 [Google Scholar]
  60. Areza-Fegyveres R, Rosemberg S, Castro RM, Porto CS, Bahia VS. 60.  et al. 2007. Dementia pugilistica with clinical features of Alzheimer's disease. Arq. Neuropsiquiatr. 65:830–33 [Google Scholar]
  61. Farbota KD, Sodhi A, Bendlin BB, McLaren DG, Xu G. 61.  et al. 2012. Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study. J. Int. Neuropsychol. Soc. 18:1006–18 [Google Scholar]
  62. Ross DE, Ochs AL, Seabaugh JM, Demark MF, Shrader CR. 62.  et al. 2012. Progressive brain atrophy in patients with chronic neuropsychiatric symptoms after mild traumatic brain injury: a preliminary study. Brain Inj. 26:1500–9 [Google Scholar]
  63. Ross DE. 63.  2011. Review of longitudinal studies of MRI brain volumetry in patients with traumatic brain injury. Brain Inj. 25:1271–78 [Google Scholar]
  64. Tomaiuolo F, Carlesimo GA, Di Paola M, Petrides M, Fera F. 64.  et al. 2004. Gross morphology and morphometric sequelae in the hippocampus, fornix, and corpus callosum of patients with severe non-missile traumatic brain injury without macroscopically detectable lesions: a T1 weighted MRI study. J. Neurol. Neurosurg. Psychiatry 75:1314–22 [Google Scholar]
  65. Warner MA, Marquez de la Plata C, Spence J, Wang JY, Harper C. 65.  et al. 2010. Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury. J. Neurotrauma 27:2121–30 [Google Scholar]
  66. Allsop D, Haga S, Bruton C, Ishii T, Roberts GW. 66.  1990. Neurofibrillary tangles in some cases of dementia pugilistica share antigens with amyloid β-protein of Alzheimer's disease. Am. J. Pathol. 136:255–60 [Google Scholar]
  67. Geddes JF, Vowles GH, Nicoll JA, Revesz T. 67.  1999. Neuronal cytoskeletal changes are an early consequence of repetitive head injury. Acta Neuropathol. 98:171–78 [Google Scholar]
  68. Hof PR, Bouras C, Buee L, Delacourte A, Perl DP, Morrison JH. 68.  1992. Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer's disease cases. Acta Neuropathol. 85:23–30 [Google Scholar]
  69. Hof PR, Knabe R, Bovier P, Bouras C. 69.  1991. Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathol. 82:321–26 [Google Scholar]
  70. Bogdanoff B, Natter HM. 70.  1989. Incidence of cavum septum pellucidum in adults: a sign of boxer's encephalopathy. Neurology 39:991–92 [Google Scholar]
  71. Bodensteiner JB, Schaefer GB. 71.  1997. Dementia pugilistica and cavum septi pellucidi: born to box?. Sports Med. 24:361–65 [Google Scholar]
  72. Macpherson P, Teasdale E. 72.  1988. CT demonstration of a 5th ventricle—a finding to KO boxers?. Neuroradiology 30:506–10 [Google Scholar]
  73. Schwidde JT. 73.  1952. Incidence of cavum septi pellucidi and cavum Vergae in 1,032 human brains. A.M.A. Arch. Neurol. Psychiatry 67:625–32 [Google Scholar]
  74. Casson IR, Siegel O, Sham R, Campbell EA, Tarlau M, DiDomenico A. 74.  1984. Brain damage in modern boxers. JAMA 251:2663–67 [Google Scholar]
  75. Jordan BD, Jahre C, Hauser WA, Zimmerman RD, Zarrelli M. 75.  et al. 1992. CT of 338 active professional boxers. Radiology 185:509–12 [Google Scholar]
  76. Roberts GW, Whitwell HL, Acland PR, Bruton CJ. 76.  1990. Dementia in a punch-drunk wife. Lancet 335:918–19 [Google Scholar]
  77. Johnson VE, Stewart W, Trojanowski JQ, Smith DH. 77.  2011. Acute and chronically increased immunoreactivity to phosphorylation-independent but not pathological TDP-43 after a single traumatic brain injury in humans. Acta Neuropathol. 122:715–26 [Google Scholar]
  78. Tang-Schomer MD, Patel AR, Baas PW, Smith DH. 78.  2010. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J. 24:1401–10 [Google Scholar]
  79. Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH. 79.  2012. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp. Neurol. 233:364–72 [Google Scholar]
  80. Ahmadzadeh H, Smith DH, Shenoy VB. 80.  2014. Viscoelasticity of tau proteins leads to strain rate-dependent breaking of microtubules during axonal stretch injury: predictions from a mathematical model. Biophys. J. 106:1123–33 [Google Scholar]
  81. Smith C, Graham DI, Murray LS, Nicoll JA. 81.  2003. Tau immunohistochemistry in acute brain injury. Neuropathol. Appl. Neurobiol. 29:496–502 [Google Scholar]
  82. Geddes JF, Vowles GH, Robinson SF, Sutcliffe JC. 82.  1996. Neurofibrillary tangles, but not Alzheimer-type pathology, in a young boxer. Neuropathol. Appl. Neurobiol. 22:12–16 [Google Scholar]
  83. Johnson VE, Stewart W, Smith DH. 83.  2013. Axonal pathology in traumatic brain injury. Exp. Neurol. 246:35–43 [Google Scholar]
  84. Adams JH, Graham DI, Murray LS, Scott G. 84.  1982. Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann. Neurol. 12:557–63 [Google Scholar]
  85. Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. 85.  1989. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 15:49–59 [Google Scholar]
  86. Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW. 86.  1993. β-amyloid precursor protein (βAPP) as a marker for axonal injury after head injury. Neurosci. Lett. 160:139–44 [Google Scholar]
  87. Sherriff FE, Bridges LR, Sivaloganathan S. 87.  1994. Early detection of axonal injury after human head trauma using immunocytochemistry for β-amyloid precursor protein. Acta Neuropathol. 87:55–62 [Google Scholar]
  88. Smith DH, Chen XH, Iwata A, Graham DI. 88.  2003. Amyloid β accumulation in axons after traumatic brain injury in humans. J. Neurosurg. 98:1072–77 [Google Scholar]
  89. Smith DH, Uryu K, Saatman KE, Trojanowski JQ, McIntosh TK. 89.  2003. Protein accumulation in traumatic brain injury. Neuromolecular Med. 4:59–72 [Google Scholar]
  90. Smith DH, Chen XH, Nonaka M, Trojanowski JQ, Lee VM. 90.  et al. 1999. Accumulation of amyloid β and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J. Neuropathol. Exp. Neurol. 58:982–92 [Google Scholar]
  91. Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. 91.  2004. Long-term accumulation of amyloid-β, β-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am. J. Pathol. 165:357–71 [Google Scholar]
  92. Chen XH, Johnson VE, Uryu K, Trojanowski JQ, Smith DH. 92.  2009. A lack of amyloid β plaques despite persistent accumulation of amyloid β in axons of long-term survivors of traumatic brain injury. Brain Pathol. 19:214–23 [Google Scholar]
  93. Johnson VE, Stewart W, Smith DH. 93.  2010. Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease?. Nat. Rev. Neurosci. 11:361–70 [Google Scholar]
  94. Ikonomovic MD, Uryu K, Abrahamson EE, Ciallella JR, Trojanowski JQ. 94.  et al. 2004. Alzheimer's pathology in human temporal cortex surgically excised after severe brain injury. Exp. Neurol. 190:192–203 [Google Scholar]
  95. Stein TD, Montenigro PH, Alvarez VE, Xia W, Crary JF. 95.  et al. 2015. β-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol. 130:21–34 [Google Scholar]
  96. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC. 96.  et al. 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–33 [Google Scholar]
  97. Chen-Plotkin AS, Lee VM, Trojanowski JQ. 97.  2010. TAR DNA-binding protein 43 in neurodegenerative disease. Nat. Rev. Neurol. 6:211–20 [Google Scholar]
  98. Geser F, Martinez-Lage M, Kwong LK, Lee VM, Trojanowski JQ. 98.  2009. Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J. Neurol. 256:1205–14 [Google Scholar]
  99. Neumann M, Kwong LK, Sampathu DM, Trojanowski JQ, Lee VM. 99.  2007. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch. Neurol. 64:1388–94 [Google Scholar]
  100. Sato T, Takeuchi S, Saito A, Ding W, Bamba H. 100.  et al. 2009. Axonal ligation induces transient redistribution of TDP-43 in brainstem motor neurons. Neuroscience 164:1565–78 [Google Scholar]
  101. Moisse K, Mepham J, Volkening K, Welch I, Hill T, Strong MJ. 101.  2009. Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL−/− mice: support for a role for TDP-43 in the physiological response to neuronal injury. Brain Res.1296176–86 [Google Scholar]
  102. Moisse K, Volkening K, Leystra-Lantz C, Welch I, Hill T, Strong MJ. 102.  2009. Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy: implications for TDP-43 in the physiological response to neuronal injury. Brain Res.1249202–11 [Google Scholar]
  103. King A, Sweeney F, Bodi I, Troakes C, Maekawa S, Al-Sarraj S. 103.  2010. Abnormal TDP-43 expression is identified in the neocortex in cases of dementia pugilistica, but is mainly confined to the limbic system when identified in high and moderate stages of Alzheimer's disease. Neuropathology 30:408–19 [Google Scholar]
  104. Perry VH, Nicoll JA, Holmes C. 104.  2010. Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6:193–201 [Google Scholar]
  105. Brettschneider J, Toledo JB, Van Deerlin VM, Elman L, McCluskey L. 105.  et al. 2012. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLOS ONE 7:e39216 [Google Scholar]
  106. Brettschneider J, Libon DJ, Toledo JB, Xie SX, McCluskey L. 106.  et al. 2012. Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol. 123:395–407 [Google Scholar]
  107. Town T, Laouar Y, Pittenger C, Mori T, Szekely CA. 107.  et al. 2008. Blocking TGF-β-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat. Med. 14:681–87 [Google Scholar]
  108. Wright AL, Zinn R, Hohensinn B, Konen LM, Beynon SB. 108.  et al. 2013. Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer's disease. PLOS ONE 8:e59586 [Google Scholar]
  109. Yamamoto M, Kiyota T, Horiba M, Buescher JL, Walsh SM. 109.  et al. 2007. Interferon-γ and tumor necrosis factor-α regulate amyloid-β plaque deposition and β-secretase expression in Swedish mutant APP transgenic mice. Am. J. Pathol. 170:680–92 [Google Scholar]
  110. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N. 110.  et al. 2007. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–51 [Google Scholar]
  111. Juengst SB, Kumar RG, Arenth PM, Wagner AK. 111.  2014. Exploratory associations with tumor necrosis factor-α, disinhibition and suicidal endorsement after traumatic brain injury. Brain Behav. Immun. 41:134–43 [Google Scholar]
  112. Lindqvist D, Wolkowitz OM, Mellon S, Yehuda R, Flory JD. 112.  et al. 2014. Proinflammatory milieu in combat-related PTSD is independent of depression and early life stress. Brain Behav. Immun. 42:81–88 [Google Scholar]
  113. Kumar RG, Boles JA, Wagner AK. 113.  2015. Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury. J. Head Trauma Rehabil. 30369–81 [Google Scholar]
  114. Loane DJ, Byrnes KR. 114.  2010. Role of microglia in neurotrauma. Neurotherapeutics 7:366–77 [Google Scholar]
  115. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE. 115.  et al. 2011. Inflammation after trauma: microglial activation and traumatic brain injury. Ann. Neurol. 70:374–83 [Google Scholar]
  116. Adams CW, Bruton CJ. 116.  1989. The cerebral vasculature in dementia pugilistica. J. Neurol. Neurosurg. Psychiatry 52:600–4 [Google Scholar]
  117. Mouzon BC, Bachmeier C, Ferro A, Ojo JO, Crynen G. 117.  et al. 2014. Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann. Neurol. 75:241–54 [Google Scholar]
  118. Petraglia AL, Plog BA, Dayawansa S, Dashnaw ML, Czerniecka K. 118.  et al. 2014. The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg. Neurol. Int. 5:184 [Google Scholar]
  119. Kumar A, Stoica BA, Sabirzhanov B, Burns MP, Faden AI, Loane DJ. 119.  2013. Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiol. Aging 34:1397–411 [Google Scholar]
  120. Loane DJ, Kumar A, Stoica BA, Cabatbat R, Faden AI. 120.  2014. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J. Neuropathol. Exp. Neurol. 73:14–29 [Google Scholar]
  121. Shaw K, MacKinnon MA, Raghupathi R, Saatman KE, McLntosh TK, Graham DI. 121.  2001. TUNEL-positive staining in white and grey matter after fatal head injury in man. Clin. Neuropathol. 20:106–12 [Google Scholar]
  122. Maxwell WL, Dhillon K, Harper L, Espin J, MacIntosh TK. 122.  et al. 2003. There is differential loss of pyramidal cells from the human hippocampus with survival after blunt head injury. J. Neuropathol. Exp. Neurol. 62:272–79 [Google Scholar]
  123. Williams S, Raghupathi R, MacKinnon MA, McIntosh TK, Saatman KE, Graham DI. 123.  2001. In situ DNA fragmentation occurs in white matter up to 12 months after head injury in man. Acta Neuropathol. 102:581–90 [Google Scholar]
  124. Maxwell WL, MacKinnon MA, Smith DH, McIntosh TK, Graham DI. 124.  2006. Thalamic nuclei after human blunt head injury. J. Neuropathol. Exp. Neurol. 65:478–88 [Google Scholar]
  125. Corsellis JA, Bruton CJ, Freeman-Browne D. 125.  1973. The aftermath of boxing. Psychol. Med. 3:270–303 [Google Scholar]
  126. Mann DM, Yates PO, Hawkes J. 126.  1983. The pathology of the human locus ceruleus. Clin. Neuropathol. 2:1–7 [Google Scholar]
  127. Strich SJ. 127.  1956. Diffuse degeneration of the cerebral white matter in severe dementia following head injury. J. Neurol. Neurosurg. Psychiatry 19:163–85 [Google Scholar]
  128. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC. 128.  et al. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–23 [Google Scholar]
  129. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA. 129.  et al. 1993. Association of apolipoprotein E allele ε4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43:1467–72 [Google Scholar]
  130. Jack CR Jr, Wiste HJ, Weigand SD, Knopman DS, Vemuri P. 130.  et al. 2015. Age, sex, and APOE ε4 effects on memory, brain structure, and β-amyloid across the adult life span. JAMA Neurol. 72:511–19 [Google Scholar]
  131. Teasdale GM, Nicoll JA, Murray G, Fiddes M. 131.  1997. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 350:1069–71 [Google Scholar]
  132. Sorbi S, Nacmias B, Piacentini S, Repice A, Latorraca S. 132.  et al. 1995. ApoE as a prognostic factor for post-traumatic coma. Nat. Med. 1:852 [Google Scholar]
  133. Friedman G, Froom P, Sazbon L, Grinblatt I, Shochina M. 133.  et al. 1999. Apolipoprotein E-ε4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology 52:244–48 [Google Scholar]
  134. Liberman JN, Stewart WF, Wesnes K, Troncoso J. 134.  2002. Apolipoprotein E ε4 and short-term recovery from predominantly mild brain injury. Neurology 58:1038–44 [Google Scholar]
  135. Sundstrom A, Marklund P, Nilsson LG, Cruts M, Adolfsson R. 135.  et al. 2004. APOE influences on neuropsychological function after mild head injury: within-person comparisons. Neurology 62:1963–66 [Google Scholar]
  136. Lichtman SW, Seliger G, Tycko B, Marder K. 136.  2000. Apolipoprotein E and functional recovery from brain injury following postacute rehabilitation. Neurology 55:1536–39 [Google Scholar]
  137. Liaquat I, Dunn LT, Nicoll JA, Teasdale GM, Norrie JD. 137.  2002. Effect of apolipoprotein E genotype on hematoma volume after trauma. J. Neurosurg. 96:90–96 [Google Scholar]
  138. Smith C, Graham DI, Murray LS, Stewart J, Nicoll JA. 138.  2006. Association of APOE e4 and cerebrovascular pathology in traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 77:363–66 [Google Scholar]
  139. Diaz-Arrastia R, Gong Y, Fair S, Scott KD, Garcia MC. 139.  et al. 2003. Increased risk of late posttraumatic seizures associated with inheritance of APOE ε4 allele. Arch. Neurol. 60:818–22 [Google Scholar]
  140. Teasdale GM, Murray GD, Nicoll JA. 140.  2005. The association between APOE ε4, age and outcome after head injury: a prospective cohort study. Brain 128:2556–61 [Google Scholar]
  141. Mayeux R, Ottman R, Maestre G, Ngai C, Tang MX. 141.  et al. 1995. Synergistic effects of traumatic head injury and apolipoprotein-ε4 in patients with Alzheimer's disease. Neurology 45:555–57 [Google Scholar]
  142. Katzman R, Aronson M, Fuld P, Kawas C, Brown T. 142.  et al. 1989. Development of dementing illnesses in an 80-year-old volunteer cohort. Ann. Neurol. 25:317–24 [Google Scholar]
  143. Mauri M, Sinforiani E, Bono G, Cittadella R, Quattrone A. 143.  et al. 2006. Interaction between apolipoprotein ε4 and traumatic brain injury in patients with Alzheimer's disease and mild cognitive impairment. Funct. Neurol. 21:223–28 [Google Scholar]
  144. Kristman VL, Tator CH, Kreiger N, Richards D, Mainwaring L. 144.  et al. 2008. Does the apolipoprotein ε4 allele predispose varsity athletes to concussion? A prospective cohort study. Clin. J. Sport Med. 18:322–28 [Google Scholar]
  145. Tierney RT, Mansell JL, Higgins M, McDevitt JK, Toone N. 145.  et al. 2010. Apolipoprotein E genotype and concussion in college athletes. Clin. J. Sport Med. 20:464–68 [Google Scholar]
  146. Jordan BD, Relkin NR, Ravdin LD, Jacobs AR, Bennett A, Gandy S. 146.  1997. Apolipoprotein E ε4 associated with chronic traumatic brain injury in boxing. JAMA 278:136–40 [Google Scholar]
  147. Kutner KC, Erlanger DM, Tsai J, Jordan B, Relkin NR. 147.  2000. Lower cognitive performance of older football players possessing apolipoprotein E ε4. Neurosurgery 47:651–58 [Google Scholar]
  148. Nicoll JA, Roberts GW, Graham DI. 148.  1995. Apolipoprotein E ε4 allele is associated with deposition of amyloid β-protein following head injury. Nat. Med. 1:135–37 [Google Scholar]
  149. Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M. 149.  et al. 2000. Identification of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical and pathological deposition. Nat. Med. 6:143–50 [Google Scholar]
  150. Turner AJ, Isaac RE, Coates D. 150.  2001. The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. BioEssays 23:261–69 [Google Scholar]
  151. Yasojima K, Akiyama H, McGeer EG, McGeer PL. 151.  2001. Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of β-amyloid peptide. Neurosci. Lett. 297:97–100 [Google Scholar]
  152. Johnson VE, Stewart W, Stewart JE, Graham DI, Praestgaard AH, Smith DH. 152.  2009. A neprilysin polymorphism and amyloid-β plaques following traumatic brain injury. J. Neurotrauma 261197–202 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error