- Home
- A-Z Publications
- Annual Review of Pathology: Mechanisms of Disease
- Previous Issues
- Volume 11, 2016
Annual Review of Pathology: Mechanisms of Disease - Volume 11, 2016
Volume 11, 2016
-
-
An Odyssey to Viral Pathogenesis
Vol. 11 (2016), pp. 1–19More LessThis odyssey is mine from early junior high school, where my dreams for adventure were shaped by Arthur Conan Doyle's Sherlock Holmes, Percival Christopher Wren's Beau Geste, and best of all the remarkable explorers in Paul de Kruif's Microbe Hunters. My birth site was in Manhattan (my mother was a Vogue model and my father worked in retail), and I traveled to college at the University of Alabama, Tuscaloosa, where my love of history and English literature was shaped along with a sufficient exposure to biology, chemistry, and genetics to meet requirements for entering medical school. By the second year at the University of Maryland School of Medicine, through expert teachers such as Theodore (Ted) Woodward and Sheldon (Shelly) Greisman in medicine and Charles Weissmann in virology and microbiology, I found that understanding why and how people became ill was more my cup of tea than identifying and treating their illnesses. Although I was becoming competent in diagnosis and treatment, I left medical school at the end of my sophomore year to seek a more basic understanding of biology and chemistry. I achieved this by working toward a PhD in biochemistry at Johns Hopkins McCollum-Pratt Institute combined with study of rickettsial toxin at Maryland. This was a very important time in my life, because it convinced me that addressing biologic and medical questions in a disciplined scientific manner was what my life voyage should be. That voyage led me initially, through Woodward's contact, to work a summer in Joe Smadel's unit at Walter Reed (Smadel being one of the deans of American virology) and to meet several times with Carleton Gajdusek and then John Enders at Harvard, who pointed me to Frank Dixon at Scripps in La Jolla, California, for postdoctoral training. Dixon was among the founders of modern immunology and a pathfinder for immunopathology. Training by and association with Dixon and his other postdoctoral fellows, my independent position at Scripps, early polishing by Karl Habel (a superb senior virologist who left the National Institutes of Health and came to Scripps), and the gifted postdoctoral fellows who joined my laboratory over four decades form the log of my scientific voyage. The strong friendships and collaborations developed with other young but growing experimentalists like Bernie Fields and Abner Notkins are the fabric of the tale I will weave and were pivotal in the establishment of viral pathogenesis as a discipline.
-
-
-
Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury
Vol. 11 (2016), pp. 21–45More LessAlmost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of nonboxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article.
-
-
-
Cancer Stem Cells: Basic Concepts and Therapeutic Implications
Vol. 11 (2016), pp. 47–76More LessDifferent mechanisms contribute to intratumor heterogeneity, including genetic mutations, the microenvironment, and the existence of subpopulations of cancer cells with increased renewal capacity and the ability to recapitulate the heterogeneity found in primary tumors, which are referred to as cancer stem cells (CSCs). In this review, we discuss how the concept of CSCs has been defined, what assays are currently used to define the functional properties of CSCs, what intrinsic and extrinsic mechanisms regulate CSC functions, how plastic CSCs are, and the importance of epithelial-to-mesenchymal transition in conferring CSC properties. Finally, we discuss the mechanisms by which CSCs may resist medical therapy and contribute to tumor relapse.
-
-
-
Hypoxia and Mucosal Inflammation
Vol. 11 (2016), pp. 77–100More LessSites of inflammation are defined by significant changes in metabolic activity. Recent studies have suggested that O2 metabolism and hypoxia play a prominent role in inflammation so-called “inflammatory hypoxia,” which results from a combination of recruited inflammatory cells (e.g., neutrophils and monocytes), the local proliferation of multiple cell types, and the activation of multiple O2-consuming enzymes during inflammation. These shifts in energy supply and demand result in localized regions of hypoxia and have revealed the important function off the transcription factor HIF (hypoxia-inducible factor) in the regulation of key target genes that promote inflammatory resolution. Analysis of these pathways has provided multiple opportunities for understanding basic mechanisms of inflammation and has defined new targets for intervention. Here, we review recent work addressing tissue hypoxia and metabolic control of inflammation and immunity.
-
-
-
Pathogenesis of Myeloproliferative Disorders
Vol. 11 (2016), pp. 101–126More LessMyeloproliferative neoplasms (MPNs) are a set of chronic hematopoietic neoplasms with overlapping clinical and molecular features. Recent years have witnessed considerable advances in our understanding of their pathogenetic basis. Due to their protracted clinical course, the evolution to advanced hematological malignancies, and the accessibility of neoplastic tissue, the study of MPNs has provided a window into the earliest stages of tumorigenesis. With the discovery of mutations in CALR, the majority of MPN patients now bear an identifiable marker of clonal disease; however, the mechanism by which mutated CALR perturbs megakaryopoiesis is currently unresolved. We are beginning to understand better the role of JAK2V617F homozygosity, the function of comutations in epigenetic regulators and spliceosome components, and how these mutations cooperate with JAK2V617F to modulate MPN phenotype.
-
-
-
Genetics and Pathogenesis of Inflammatory Bowel Disease
Vol. 11 (2016), pp. 127–148More LessWe are currently in an exciting time when our understanding of genetic underpinnings of inflammatory bowel disease (IBD) has undergone a revolution, based in large part on novel genotyping and sequencing technologies. With >160 susceptible loci identified for IBD, the goal is now to understand at a fundamental level the function of these susceptibility alleles. Determining the clinical relevance of how these susceptible genes shape the development of IBD is also a high priority. The main challenge is to understand how the environment and microbiome play a role in triggering disease in genetically susceptible individuals, as the interactions may be complex. To advance the field, novel in vitro and mouse models that are designed to interrogate complex genetics and functionally test hypotheses are needed. Ultimately, the goal of genetics studies will be to translate genetics to patients with IBD and improve their care.
-
-
-
Origins of Bladder Cancer
Vol. 11 (2016), pp. 149–174More LessBladder cancer, one of the most frequently occurring human cancers, develops via two tracks referred to as papillary and nonpapillary that correspond to clinically different forms of the disease. Most bladder cancers are chemically induced, with tobacco smoking being the leading risk factor. Recent advances in bladder cancer research have enhanced our understanding of the origin of this disease from urothelial progenitor cells via field effects along papillary/luminal and nonpapillary/basal pathways. Evident from the outset of the disease, the diversity of the luminal and basal pathways, together with cell lineage tracing studies, postulates the origin of molecularly distinct subtypes from different uroprogenitor cells. The molecular mechanisms initiating field effects involve a new class of genes referred to as forerunner (FR) genes that generally map around major tumor suppressors such as RB1. These genes are silenced, predominantly by hypermethylation and less frequently by mutations, and drive the expansion of intraurothelial preneoplastic cells. Different FR genes are involved in various molecular subtypes of bladder cancer and they sensitize the uroprogenitor cells to the development of luminal and basal bladder cancers in animal models. In human bladder cancer, luminal and basal forms have dissimilar clinical behavior and response to conventional and targeted chemotherapeutic manipulations. These new research developments hold the promise of expanding our armamentarium of diagnostic and treatment options for patients with bladder cancer and improving our ability to select patients most likely to respond to a specific therapy.
-
-
-
Mechanisms of Disease: Pemphigus and Bullous Pemphigoid
Vol. 11 (2016), pp. 175–197More LessPemphigus and bullous pemphigoid are autoantibody-mediated blistering skin diseases. In pemphigus, keratinocytes in epidermis and mucous membranes lose cell-cell adhesion, and in pemphigoid, the basal keratinocytes lose adhesion to the basement membrane. Pemphigus lesions are mediated directly by the autoantibodies, whereas the autoantibodies in pemphigoid fix complement and mediate inflammation. In both diseases, the autoantigens have been cloned and characterized; pemphigus antigens are desmogleins (cell adhesion molecules in desmosomes), and pemphigoid antigens are found in hemidesmosomes (which mediate adhesion to the basement membrane). This knowledge has enabled diagnostic testing for these diseases by enzyme-linked immunosorbent assays and dissection of various pathophysiological mechanisms, including direct inhibition of cell adhesion, antibody-induced internalization of antigen, and cell signaling. Understanding these mechanisms of disease has led to rational targeted therapeutic strategies.
-
-
-
Organoids as Models for Neoplastic Transformation
Vol. 11 (2016), pp. 199–220More LessCancer models strive to recapitulate the incredible diversity inherent in human tumors. A key challenge in accurate tumor modeling lies in capturing the panoply of homo- and heterotypic cellular interactions within the context of a three-dimensional tissue microenvironment. To address this challenge, researchers have developed organotypic cancer models (organoids) that combine the 3D architecture of in vivo tissues with the experimental facility of 2D cell lines. Here we address the benefits and drawbacks of these systems, as well as their most recent advances. In particular, we focus on the application of such models to the discovery of novel cancer drivers, the study of tumor biology, and the development of novel therapeutic approaches for the treatment of cancer.
-
-
-
Dendritic Spine Pathology in Neurodegenerative Diseases
Vol. 11 (2016), pp. 221–250More LessSubstantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models.
-
-
-
Disorders of Vascular Permeability
Vol. 11 (2016), pp. 251–281More LessThe endothelial barrier maintains vascular and tissue homeostasis and modulates many physiological processes, such as angiogenesis. Vascular barrier integrity can be disrupted by a variety of soluble permeability factors, and changes in barrier function can exacerbate tissue damage during disease progression. Understanding endothelial barrier function is critical for vascular homeostasis. Many of the signaling pathways promoting vascular permeability can also be triggered during disease, resulting in prolonged or uncontrolled vascular leak. It is believed that recovery of the normal vasculature requires diminishing this hyperpermeable state. Although the molecular mechanisms governing vascular leak have been studied over the last few decades, recent advances have identified new therapeutic targets that have begun to show preclinical and clinical promise. These approaches have been successfully applied to an increasing number of disease conditions. New perspectives regarding how vascular leak impacts the progression of various diseases are highlighted in this review.
-
-
-
Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies
Vol. 11 (2016), pp. 283–312More LessDuring tumor evolution, cancer cells can accumulate numerous genetic alterations, ranging from single nucleotide mutations to whole-chromosomal changes. Although a great deal of progress has been made in the past decades in characterizing genomic alterations, recent cancer genome sequencing studies have provided a wealth of information on the detailed molecular profiles of such alterations in various types of cancers. Here, we review our current understanding of the mechanisms and consequences of cancer genome instability, focusing on the findings uncovered through analysis of exome and whole-genome sequencing data. These analyses have shown that most cancers have evidence of genome instability, and the degree of instability is variable within and between cancer types. Importantly, we describe some recent evidence supporting the idea that chromosomal instability could be a major driving force in tumorigenesis and cancer evolution, actively shaping the genomes of cancer cells to maximize their survival advantage.
-
-
-
The Role of Surgical Pathology in Guiding Cancer Immunotherapy
Vol. 11 (2016), pp. 313–341More LessThe recognition that the immune system can identify and destroy tumor cells has driven a paradigm shift in our understanding of human cancer. Therapies designed to enhance this capacity, including cancer vaccines and coinhibitory receptor blockade, have demonstrated clinical efficacy in treating tumors refractory to conventional therapy. In this review, we discuss how the analysis of the immune microenvironment in primary tissue biopsy samples can be used to stratify patients according to clinical outcome, identify patients likely to benefit from specific immunotherapies, and tailor combination immunotherapy to individual patients and tumor types. As immunotherapy gains in complexity and is used in combination with agents that target oncogenic, intracellular signaling pathways, diagnostic pathologists will play an increasingly important part in identifying and quantifying cellular and molecular biomarkers in tissue samples that reflect the nature and magnitude of the antitumor immune response.
-
-
-
Pathogenesis of Staphylococcus aureus Bloodstream Infections
Vol. 11 (2016), pp. 343–364More LessStaphylococcus aureus, a Gram-positive bacterium colonizing nares, skin, and the gastrointestinal tract, frequently invades the skin, soft tissues, and bloodstreams of humans. Even with surgical and antibiotic therapy, bloodstream infections are associated with significant mortality. The secretion of coagulases, proteins that associate with and activate the host hemostatic factor prothrombin, and the bacterial surface display of agglutinins, proteins that bind polymerized fibrin, are key virulence strategies for the pathogenesis of S. aureus bloodstream infections, which culminate in the establishment of abscess lesions. Pathogen-controlled processes, involving a wide spectrum of secreted factors, are responsible for the recruitment and destruction of immune cells, transforming abscess lesions into purulent exudate, with which staphylococci disseminate to produce new infectious lesions or to infect new hosts. Research on S. aureus bloodstream infections is a frontier for the characterization of protective vaccine antigens and the development of immune therapeutics aiming to prevent disease or improve outcomes.
-
-
-
Mechanisms of Disease of Eosinophilic Esophagitis
Vol. 11 (2016), pp. 365–393More LessEosinophilic esophagitis (EoE) is a recently recognized inflammatory disease of the esophagus with clinical symptoms derived from esophageal dysfunction. The etiology of EoE is now being elucidated, and food hypersensitivity is emerging as the central cornerstone of disease pathogenesis. Herein, we present a thorough picture of the current clinical, pathologic, and molecular understanding of the disease with a focus on disease mechanisms.
-
-
-
Genetics of Cardiac Developmental Disorders: Cardiomyocyte Proliferation and Growth and Relevance to Heart Failure
Vol. 11 (2016), pp. 395–419More LessCardiac developmental disorders represent the most common of human birth defects, and anomalies in cardiomyocyte proliferation drive many of these disorders. This review highlights the molecular mechanisms of prenatal cardiac growth. Trabeculation represents the initial ventricular growth phase and is necessary for embryonic survival. Later in development, the bulk of the ventricular wall derives from the compaction process, yet the arrest of this process can still be compatible with life. Cardiomyocyte proliferation and growth form the basis of both trabeculation and compaction, and mouse models indicate that cardiomyocyte interactions with the surrounding environment are critical for these proliferative processes. The human genetics of left ventricular noncompaction cardiomyopathy suggest that cardiomyocyte cell-autonomous mechanisms contribute to the compaction process. Understanding the determinants of prenatal or early postnatal cardiomyocyte proliferation and growth provides critical information that identifies risk factors for cardiovascular disease, including heart failure and its associated complications of arrhythmias and thromboembolic events.
-
-
-
Obesity, Inflammation, and Cancer
Vol. 11 (2016), pp. 421–449More LessObesity, a worldwide epidemic, confers increased risk for multiple serious conditions, including cancer, and is increasingly recognized as a growing cause of preventable cancer risk. Chronic inflammation, a well-known mediator of cancer, is a central characteristic of obesity, leading to many of its complications, and obesity-induced inflammation confers additional cancer risk beyond obesity itself. Multiple mechanisms facilitate this strong association between cancer and obesity. Adipose tissue is an important endocrine organ, secreting several hormones, including leptin and adiponectin, and chemokines that can regulate tumor behavior, inflammation, and the tumor microenvironment. Excessive adipose expansion during obesity causes adipose dysfunction and inflammation to increase systemic levels of proinflammatory factors. Cells from adipose tissue, such as cancer-associated adipocytes and adipose-derived stem cells, enter the cancer microenvironment to enhance protumoral effects. Dysregulated metabolism that stems from obesity, including insulin resistance, hyperglycemia, and dyslipidemia, can further impact tumor growth and development. This review describes how adipose tissue becomes inflamed in obesity, summarizes ways these mechanisms impact cancer development, and discusses their role in four adipose-associated cancers that demonstrate elevated incidence or mortality in obesity.
-
-
-
Nonalcoholic Fatty Liver Disease: Pathogenesis and Disease Spectrum
Vol. 11 (2016), pp. 451–496More LessNonalcoholic fatty liver disease (NAFLD) is the most common cause of liver dysfunction in the Western world and is increasing owing to its close association with obesity and insulin resistance. NAFLD represents a spectrum of liver disease that, in a minority of patients, can lead to progressive nonalcoholic steatohepatitis (NASH), fibrosis, and ultimately hepatocellular carcinoma and liver failure. NAFLD is a complex trait resulting from the interaction between environmental exposure and a susceptible polygenic background and comprising multiple independent modifiers of risk, such as the microbiome. The molecular mechanisms that combine to define the transition to NASH and progressive disease are complex, and consequently, no pharmacological therapy currently exists to treat NASH. A better understanding of the pathogenesis of NAFLD is critical if new treatments are to be discovered.
-
-
-
Gliomas Genomics and Epigenomics: Arriving at the Start and Knowing It for the First Time
Vol. 11 (2016), pp. 497–521More LessGliomas are the most common primary human brain tumors and occur in both adults and children. Over the past few years, systematic large-scale genomic and epigenomic profiling has provided unprecedented insight into their pathogenesis, uncovering alterations in an unanticipated number of genes and regulatory elements. In this review, we discuss recent discoveries about the genomics and epigenomics of adult and pediatric gliomas and highlight how some of the founding genetic mutations reshape the cancer epigenome. These studies provide an in-depth view of the molecular routes leading to glioma development, offer insight into the cancer stem cell model, help refine classifications, and should lay the foundation for improved clinical care.
-
-
-
Bronchiectasis: Current Concepts in Pathogenesis, Immunology, and Microbiology
Vol. 11 (2016), pp. 523–554More LessBronchiectasis is a disorder of persistent lung inflammation and recurrent infection, defined by a common pathological end point: irreversible bronchial dilatation arrived at through diverse etiologies. This suggests an interplay between immunogenetic susceptibility, immune dysregulation, bacterial infection, and lung damage. The damaged epithelium impairs mucus removal and facilitates bacterial infection with increased cough, sputum production, and airflow obstruction. Lung infection is caused by respiratory bacterial and fungal pathogens, including Pseudomonas aeruginosa, Haemophilus, Aspergillus fumigatus, and nontuberculous mycobacteria. Recent studies have highlighted the relationship between the lung microbiota and microbial-pathogen niches. Disease may result from environments favoring interleukin-17-driven neutrophilia. Bronchiectasis may present in autoimmune disease, as well as conditions of immune dysregulation, such as combined variable immune deficiency, transporter associated with antigen processing–deficiency syndrome, and hyperimmunoglobulin E syndrome. Differences in prevalence across geography and ethnicity implicate an etiological mix of genetics and environment underpinning susceptibility.
-
Previous Volumes
-
Volume 19 (2024)
-
Volume 18 (2023)
-
Volume 17 (2022)
-
Volume 16 (2021)
-
Volume 15 (2020)
-
Volume 14 (2019)
-
Volume 13 (2018)
-
Volume 12 (2017)
-
Volume 11 (2016)
-
Volume 10 (2015)
-
Volume 9 (2014)
-
Volume 8 (2013)
-
Volume 7 (2012)
-
Volume 6 (2011)
-
Volume 5 (2010)
-
Volume 4 (2009)
-
Volume 3 (2008)
-
Volume 2 (2007)
-
Volume 1 (2006)
-
Volume 0 (1932)