1932

Abstract

Obesity, a worldwide epidemic, confers increased risk for multiple serious conditions, including cancer, and is increasingly recognized as a growing cause of preventable cancer risk. Chronic inflammation, a well-known mediator of cancer, is a central characteristic of obesity, leading to many of its complications, and obesity-induced inflammation confers additional cancer risk beyond obesity itself. Multiple mechanisms facilitate this strong association between cancer and obesity. Adipose tissue is an important endocrine organ, secreting several hormones, including leptin and adiponectin, and chemokines that can regulate tumor behavior, inflammation, and the tumor microenvironment. Excessive adipose expansion during obesity causes adipose dysfunction and inflammation to increase systemic levels of proinflammatory factors. Cells from adipose tissue, such as cancer-associated adipocytes and adipose-derived stem cells, enter the cancer microenvironment to enhance protumoral effects. Dysregulated metabolism that stems from obesity, including insulin resistance, hyperglycemia, and dyslipidemia, can further impact tumor growth and development. This review describes how adipose tissue becomes inflamed in obesity, summarizes ways these mechanisms impact cancer development, and discusses their role in four adipose-associated cancers that demonstrate elevated incidence or mortality in obesity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-012615-044359
2016-05-23
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/pathol/11/1/annurev-pathol-012615-044359.html?itemId=/content/journals/10.1146/annurev-pathol-012615-044359&mimeType=html&fmt=ahah

Literature Cited

  1. 1. World Health Organ 2015. Obesity and Overweight. Geneva: WHO Media Centre http://who.int/mediacentre/factsheets/fs311/en/ [Google Scholar]
  2. Ogden CL, Carroll MD, Kit BK, Flegal KM. 2.  2014. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311:806–14 [Google Scholar]
  3. Aggarwal BB, Vijayalekshmi RV, Sung B. 3.  2009. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin. Cancer. Res. 15:425–30 [Google Scholar]
  4. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. 4.  2003. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348:171625–38 [Google Scholar]
  5. Arnold M, Pandeya N, Byrnes G, Renehan AG, Stevens GA. 5.  et al. 2015. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 16:36–46 [Google Scholar]
  6. Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST. 6.  et al. 2008. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 25:2097–116 [Google Scholar]
  7. Hanahan D, Coussens LM. 7.  2012. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–22 [Google Scholar]
  8. Kim S, Karin M. 8.  2011. Role of TLR2-dependent inflammation in metastatic progression. Ann. N. Y. Acad. Sci. 1217:191–206 [Google Scholar]
  9. Moore LL, Chadid S, Singer MR, Kreger BE, Denis GV. 9.  2014. Metabolic health reduces risk of obesity-related cancer in Framingham Study adults. Cancer Epidemiol. Biomark. Prev. 23:2057–65 [Google Scholar]
  10. MacDougald OA, Burant CF. 10.  2007. The rapidly expanding family of adipokines. Cell Metab. 6:159–61 [Google Scholar]
  11. Martinez-Santibanez G, Cho KW, Lumeng CN. 11.  2014. Imaging white adipose tissue with confocal microscopy. Methods Enzymol. 537:17–30 [Google Scholar]
  12. Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR. 12.  et al. 2008. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 7:496–507 [Google Scholar]
  13. Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI, Jouihan H, Morel CR. 13.  et al. 2010. IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. PNAS 107:22617–22 [Google Scholar]
  14. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA. 14.  et al. 2011. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–47 [Google Scholar]
  15. Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE. 15.  et al. 2013. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210:535–49 [Google Scholar]
  16. Zeyda M, Wernly B, Demyanets S, Kaun C, Hammerle M. 16.  et al. 2013. Severe obesity increases adipose tissue expression of interleukin-33 and its receptor ST2, both predominantly detectable in endothelial cells of human adipose tissue. Int. J. Obes. (Lond.) 37:658–65 [Google Scholar]
  17. Hams E, Locksley RM, McKenzie AN, Fallon PG. 17.  2013. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J. Immunol. 191:5349–53 [Google Scholar]
  18. Huang Q, Niu Z, Tan J, Yang J, Liu Y. 18.  et al. 2015. IL-25 elicits innate lymphoid cells and multipotent progenitor type 2 cells that reduce renal ischemic/reperfusion injury. J. Am. Soc. Nephrol. 26:2199–211 [Google Scholar]
  19. Cipolletta D. 19.  2014. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology 142:517–25 [Google Scholar]
  20. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J. 20.  et al. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15:930–39 [Google Scholar]
  21. Winer S, Chan Y, Paltser G, Truong D, Tsui H. 21.  et al. 2009. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15:921–29 [Google Scholar]
  22. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J. 22.  et al. 2012. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486:549–53 [Google Scholar]
  23. Vasanthakumar A, Moro K, Xin A, Liao Y, Gloury R. 23.  et al. 2015. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16:276–85 [Google Scholar]
  24. Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T. 24.  et al. 2009. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58:2574–82 [Google Scholar]
  25. Carbone F, La Rocca C, Matarese G. 25.  2012. Immunological functions of leptin and adiponectin. Biochimie 94:2082–88 [Google Scholar]
  26. Ouchi N, Higuchi A, Ohashi K, Oshima Y, Gokce N. 26.  et al. 2010. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science 329:454–57 [Google Scholar]
  27. McNelis JC, Olefsky JM. 27.  2014. Macrophages, immunity, and metabolic disease. Immunity 41:36–48 [Google Scholar]
  28. Mathis D. 28.  2013. Immunological goings-on in visceral adipose tissue. Cell Metab. 17:851–59 [Google Scholar]
  29. Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V. 29.  et al. 2014. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20:614–25 [Google Scholar]
  30. Deng T, Lyon CJ, Minze LJ, Lin J, Zou J. 30.  et al. 2013. Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab. 17:411–22 [Google Scholar]
  31. Biswas SK, Mantovani A. 31.  2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11:889–96 [Google Scholar]
  32. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H. 32.  et al. 2009. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15:914–20 [Google Scholar]
  33. Wensveen FM, Jelencic V, Valentic S, Sestan M, Wensveen TT. 33.  et al. 2015. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat. Immunol. 16:376–85 [Google Scholar]
  34. Xu H, Barnes GT, Yang Q, Tan G, Yang D. 34.  et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 112:1821–30 [Google Scholar]
  35. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V. 35.  et al. 2007. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447:1116–20 [Google Scholar]
  36. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW. 36.  et al. 2005. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 11:191–98 [Google Scholar]
  37. Han MS, Jung DY, Morel C, Lakhani SA, Kim JK. 37.  et al. 2013. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339:218–22 [Google Scholar]
  38. Eguchi J, Kong X, Tenta M, Wang X, Kang S, Rosen ED. 38.  2013. Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization. Diabetes 62:3394–403 [Google Scholar]
  39. Bai Y, Sun Q. 39.  2015. Macrophage recruitment in obese adipose tissue. Obes. Rev. 16:127–36 [Google Scholar]
  40. Hanahan D, Weinberg RA. 40.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  41. Chen F, Zhuang X, Lin L, Yu P, Wang Y. 41.  et al. 2015. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 13:45 [Google Scholar]
  42. Balkwill F, Mantovani A. 42.  2001. Inflammation and cancer: back to Virchow?. Lancet 357:539–45 [Google Scholar]
  43. Grivennikov SI, Greten FR, Karin M. 43.  2010. Immunity, inflammation, and cancer. Cell 140:883–99 [Google Scholar]
  44. Noy R, Pollard JW. 44.  2014. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61 [Google Scholar]
  45. Motz GT, Coukos G. 45.  2011. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11:702–11 [Google Scholar]
  46. Dalamaga M, Diakopoulos KN, Mantzoros CS. 46.  2012. The role of adiponectin in cancer: a review of current evidence. Endocr. Rev. 33:547–94 [Google Scholar]
  47. Vansaun MN. 47.  2013. Molecular pathways: adiponectin and leptin signaling in cancer. Clin. Cancer Res. 19:1926–32 [Google Scholar]
  48. Gong TT, Wu QJ, Wang YL, Ma XX. 48.  2015. Circulating adiponectin, leptin and adiponectin-leptin ratio and endometrial cancer risk: evidence from a meta-analysis of epidemiologic studies. Int. J. Cancer 137:81967–78 [Google Scholar]
  49. Iyengar NM, Hudis CA, Dannenberg AJ. 49.  2015. Obesity and cancer: local and systemic mechanisms. Annu. Rev. Med. 66:297–309 [Google Scholar]
  50. Naugler WE, Karin M. 50.  2008. The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol. Med. 14:109–19 [Google Scholar]
  51. Ghosh S, Ashcraft K. 51.  2013. An IL-6 link between obesity and cancer. Front. Biosci. (Elite Ed.) 5:461–78 [Google Scholar]
  52. Balkwill F. 52.  2009. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9:361–71 [Google Scholar]
  53. Grivennikov SI, Karin M. 53.  2010. Inflammatory cytokines in cancer: Tumour necrosis factor and interleukin 6 take the stage. Ann. Rheum. Dis. 70:Suppl. 1i104–8 [Google Scholar]
  54. Xu J, Yin Z, Cao S, Gao W, Liu L. 54.  et al. 2013. Systematic review and meta-analysis on the association between IL-1B polymorphisms and cancer risk. PLOS ONE 8:e63654 [Google Scholar]
  55. Lewis AM, Varghese S, Xu H, Alexander HR. 55.  2006. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J. Transl. Med. 4:48 [Google Scholar]
  56. Deng T, Cui J, Lyon CJ, Zhang N, Wang HY. 56.  et al. 2013. Inflammasomes and obesity. Obesity, Inflammation and Cancer AJ Dannenberg, NA Berger 25–60 New York: Springer [Google Scholar]
  57. Nomiyama T, Perez-Tilve D, Ogawa D, Gizard F, Zhao Y. 57.  et al. 2007. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J. Clin. Investig. 117:2877–88 [Google Scholar]
  58. Rangaswami H, Bulbule A, Kundu GC. 58.  2006. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol. 16:79–87 [Google Scholar]
  59. El-Mesallamy HO, Mostafa AM, Amin AI, El Demerdash E. 59.  2011. The interplay of YKL-40 and leptin in type 2 diabetic obese patients. Diabetes Res. Clin. Pract. 93:e113–16 [Google Scholar]
  60. Johansen JS. 60.  2006. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan. Med. Bull. 53:172–209 [Google Scholar]
  61. Tilg H, Moschen AR. 61.  2006. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6:772–83 [Google Scholar]
  62. Park J, Scherer PE. 62.  2012. Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Investig 122:114243–56 [Google Scholar]
  63. Nieman KM, Romero IL, Van Houten B, Lengyel E. 63.  2013. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim. Biophys. Acta 1831:1533–41 [Google Scholar]
  64. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S. 64.  et al. 2011. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71:2455–65 [Google Scholar]
  65. Freese KE, Kokai L, Edwards RP, Philips BJ, Sheikh MA, Kelley J. 65.  et al. 2015. Adipose-derived stems cells and their role in human cancer development, growth, progression, and metastasis: a systematic review. Cancer Res. 75:1161–68 [Google Scholar]
  66. Bellows CF, Zhang Y, Simmons PJ, Khalsa AS, Kolonin MG. 66.  2011. Influence of BMI on level of circulating progenitor cells. Obesity (Silver Spring) 19:1722–26 [Google Scholar]
  67. Strong AL, Burow ME, Gimble JM, Bunnell BA. 67.  2015. Concise review: the obesity cancer paradigm: exploration of the interactions and crosstalk with adipose stem cells. Stem Cells 33:318–26 [Google Scholar]
  68. Moore LL, Bradlee ML, Singer MR, Splansky GL, Proctor MH. 68.  et al. 2004. BMI and waist circumference as predictors of lifetime colon cancer risk in Framingham Study adults. Int. J. Obes. Relat. Metab. Disord. 28:559–67 [Google Scholar]
  69. Huang Z, Willett WC, Colditz GA, Hunter DJ, Manson JE. 69.  et al. 1999. Waist circumference, waist:hip ratio, and risk of breast cancer in the Nurses' Health Study. Am. J. Epidemiol. 150:1316–24 [Google Scholar]
  70. Palou M, Priego T, Sanchez J, Rodriguez AM, Palou A, Pico C. 70.  2009. Gene expression patterns in visceral and subcutaneous adipose depots in rats are linked to their morphologic features. Cell Physiol. Biochem. 24:547–56 [Google Scholar]
  71. Renehan AG, Frystyk J, Flyvbjerg A. 71.  2006. Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol. Metab. 17:328–36 [Google Scholar]
  72. Pollak M. 72.  2008. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8:915–28 [Google Scholar]
  73. Gallagher EJ, LeRoith D. 73.  2011. Minireview: IGF, insulin, and cancer. Endocrinology 152:2546–51 [Google Scholar]
  74. Tsugane S, Inoue M. 74.  2010. Insulin resistance and cancer: epidemiological evidence. Cancer Sci. 101:1073–79 [Google Scholar]
  75. Guilherme A, Virbasius JV, Puri V, Czech MP. 75.  2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9:367–77 [Google Scholar]
  76. Kew MC. 76.  2015. Obesity as a cause of hepatocellular carcinoma. Ann. Hepatol. 14:299–303 [Google Scholar]
  77. White DL, Kanwal F, El-Serag HB. 77.  2012. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin. Gastroenterol. Hepatol. 10:1342–59.e2 [Google Scholar]
  78. Rosmorduc O, Fartoux L. 78.  2012. HCC and NASH: How strong is the clinical demonstration?. Clin. Res. Hepatol. Gastroenterol. 36:202–8 [Google Scholar]
  79. Kitahara CM, Berrington de Gonzalez A, Freedman ND, Huxley R, Mok Y. 79.  et al. 2011. Total cholesterol and cancer risk in a large prospective study in Korea. J. Clin. Oncol. 29:1592–98 [Google Scholar]
  80. Rodrigues Dos Santos C, Fonseca I, Dias S, Mendes de Almeida JC. 80.  2014. Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression. BMC Cancer 14:132 [Google Scholar]
  81. Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S. 81.  et al. 2012. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342:1094–98 [Google Scholar]
  82. Musso G, Gambino R, Cassader M. 82.  2013. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog. Lipid Res. 52:175–91 [Google Scholar]
  83. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. 83.  2010. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140:49–61 [Google Scholar]
  84. Jee SH, Ohrr H, Sull JW, Yun JE, Ji M, Samet JM. 84.  2005. Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293:194–202 [Google Scholar]
  85. Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P. 85.  et al. 2011. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 364:829–41 [Google Scholar]
  86. Ryu TY, Park J, Scherer PE. 86.  2014. Hyperglycemia as a risk factor for cancer progression. Diabetes Metab. J. 38:330–36 [Google Scholar]
  87. Brownlee M. 87.  2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–20 [Google Scholar]
  88. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T. 88.  et al. 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–90 [Google Scholar]
  89. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F. 89.  et al. 2002. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106:2067–72 [Google Scholar]
  90. Park J, Sarode VR, Euhus D, Kittler R, Scherer PE. 90.  2012. Neuregulin 1-HER axis as a key mediator of hyperglycemic memory effects in breast cancer. PNAS 109:21058–63 [Google Scholar]
  91. Sabharwal SS, Schumacker PT. 91.  2014. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?. Nat. Rev. Cancer 14:709–21 [Google Scholar]
  92. Dikalov SI, Nazarewicz RR. 92.  2014. Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid. Redox Signal. 19:1085–94 [Google Scholar]
  93. 93. US Cancer Stat. Work. Group 2014. United States cancer statistics: 1999–2011 cancer incidence and mortality data Rep., Dep. Health Hum. Serv., Cent. Dis. Control Prev., Natl. Cancer Inst., Atlanta. http://nccd.cdc.gov/uscs/ [Google Scholar]
  94. Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. 94.  2014. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet 384:755–65 [Google Scholar]
  95. Protani M, Coory M, Martin JH. 95.  2010. Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res. Treat. 123:627–35 [Google Scholar]
  96. Stove C, Bracke M. 96.  2004. Roles for neuregulins in human cancer. Clin. Exp. Metastasis 21:665–84 [Google Scholar]
  97. Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG. 97.  et al. 2013. 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep. 5:637–45 [Google Scholar]
  98. Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S. 98.  et al. 2013. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342:1094–98 [Google Scholar]
  99. Siiteri PK. 99.  1987. Adipose tissue as a source of hormones. Am. J. Clin. Nutr. 45:277–82 [Google Scholar]
  100. Esfahlan RJ, Zarghami N, Esfahlan AJ, Mollazadeh M, Nejati K, Nasiri M. 100.  2011. The possible impact of obesity on androgen, progesterone and estrogen receptors (ERα and ERβ) gene expression in breast cancer patients. Breast Cancer (Auckl.) 5:227–37 [Google Scholar]
  101. Newman G, Gonzalez-Perez RR. 101.  2014. Leptin-cytokine crosstalk in breast cancer. Mol. Cell Endocrinol. 382:570–82 [Google Scholar]
  102. Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR. 102.  2012. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochim. Biophys. Acta 1825:207–22 [Google Scholar]
  103. Ando S, Barone I, Giordano C, Bonofiglio D, Catalano S. 103.  2014. The multifaceted mechanism of leptin signaling within tumor microenvironment in driving breast cancer growth and progression. Front. Oncol. 4:340 [Google Scholar]
  104. Perrier S, Caldefie-Chezet F, Vasson MP. 104.  2009. IL-1 family in breast cancer: potential interplay with leptin and other adipocytokines. FEBS Lett. 583:259–65 [Google Scholar]
  105. Dethlefsen C, Hojfeldt G, Hojman P. 105.  2013. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res. Treat. 138:657–64 [Google Scholar]
  106. Karagozian R, Derdak Z, Baffy G. 106.  2014. Obesity-associated mechanisms of hepatocarcinogenesis. Metabolism 63:607–17 [Google Scholar]
  107. Michelotti GA, Machado MV, Diehl AM. 107.  2013. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10:656–65 [Google Scholar]
  108. Polyzos SA, Kountouras J, Mantzoros CS. 108.  2015. Leptin in nonalcoholic fatty liver disease: a narrative review. Metabolism 64:60–78 [Google Scholar]
  109. Tilg H, Moschen AR. 109.  2010. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:1836–46 [Google Scholar]
  110. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. 110.  2005. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–90 [Google Scholar]
  111. Park EJ, Lee JH, Yu GY, He G, Ali SR. 111.  et al. 2010. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208 [Google Scholar]
  112. Sakurai T, Maeda S, Chang L, Karin M. 112.  2006. Loss of hepatic NF-κB activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. PNAS 103:10544–51 [Google Scholar]
  113. Schwabe RF, Bradham CA, Uehara T, Hatano E, Bennett BL. 113.  et al. 2003. c-Jun-N-terminal kinase drives cyclin D1 expression and proliferation during liver regeneration. Hepatology 37:824–32 [Google Scholar]
  114. He G, Yu GY, Temkin V, Ogata H, Kuntzen C. 114.  et al. 2010. Hepatocyte IKKβ/NF-κB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 17:286–97 [Google Scholar]
  115. Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G. 115.  et al. 2013. The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed. Res. Int. 2013:187204 [Google Scholar]
  116. Fu J, Xu D, Liu Z, Shi M, Zhao P. 116.  et al. 2007. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132:2328–39 [Google Scholar]
  117. Wu Y, Brodt P, Sun H, Mejia W, Novosyadlyy R. 117.  et al. 2010. Insulin-like growth factor-I regulates the liver microenvironment in obese mice and promotes liver metastasis. Cancer Res. 70:57–67 [Google Scholar]
  118. Donohoe CL, O'Farrell NJ, Doyle SL, Reynolds JV. 118.  2014. The role of obesity in gastrointestinal cancer: evidence and opinion. Ther. Adv. Gastroenterol. 7:38–50 [Google Scholar]
  119. Khandekar MJ, Cohen P, Spiegelman BM. 119.  2011. Molecular mechanisms of cancer development in obesity. Nat. Rev. Cancer 11:886–95 [Google Scholar]
  120. Farraye FA, Odze RD, Eaden J, Itzkowitz SH. 120.  2010. AGA technical review on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology 138:746–74 [Google Scholar]
  121. Ogino S, Kirkner GJ, Nosho K, Irahara N, Kure S. 121.  et al. 2008. Cyclooxygenase-2 expression is an independent predictor of poor prognosis in colon cancer. Clin. Cancer Res. 14:8221–27 [Google Scholar]
  122. Flossmann E, Rothwell PM. 122.  2007. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet 369:1603–13 [Google Scholar]
  123. Nan H, Hutter CM, Lin Y, Jacobs EJ, Ulrich CM. 123.  et al. 2015. Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA 313:1133–42 [Google Scholar]
  124. Morikawa T, Kuchiba A, Lochhead P, Nishihara R, Yamauchi M. 124.  et al. 2013. Prospective analysis of body mass index, physical activity, and colorectal cancer risk associated with β-catenin (CTNNB1) status. Cancer Res. 73:1600–10 [Google Scholar]
  125. Playford MP, Bicknell D, Bodmer WF, Macaulay VM. 125.  2000. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of β-catenin. PNAS 97:12103–8 [Google Scholar]
  126. Drew JE. 126.  2012. Molecular mechanisms linking adipokines to obesity-related colon cancer: focus on leptin. Proc. Nutr. Soc. 71:175–80 [Google Scholar]
  127. Hebbard L, Ranscht B. 127.  2014. Multifaceted roles of adiponectin in cancer. Best Pract. Res. Clin. Endocrinol. Metab. 28:59–69 [Google Scholar]
  128. Tutino V, Notarnicola M, Guerra V, Lorusso D, Caruso MG. 128.  2011. Increased soluble leptin receptor levels are associated with advanced tumor stage in colorectal cancer patients. Anticancer Res. 31:3381–83 [Google Scholar]
  129. Hardwick JC, Van Den Brink GR, Offerhaus GJ, Van Deventer SJ, Peppelenbosch MP. 129.  2001. Leptin is a growth factor for colonic epithelial cells. Gastroenterology 121:79–90 [Google Scholar]
  130. Endo H, Hosono K, Uchiyama T, Sakai E, Sugiyama M. 130.  et al. 2011. Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut 60:1363–71 [Google Scholar]
  131. Edwards RA, Witherspoon M, Wang K, Afrasiabi K, Pham T. 131.  et al. 2009. Epigenetic repression of DNA mismatch repair by inflammation and hypoxia in inflammatory bowel disease–associated colorectal cancer. Cancer Res. 69:6423–29 [Google Scholar]
  132. Moon HS, Liu X, Nagel JM, Chamberland JP, Diakopoulos KN. 132.  et al. 2013. Salutary effects of adiponectin on colon cancer: in vivo and in vitro studies in mice. Gut 62:561–70 [Google Scholar]
  133. Saxena A, Chumanevich A, Fletcher E, Larsen B, Lattwein K. 133.  et al. 2012. Adiponectin deficiency: role in chronic inflammation induced colon cancer. Biochim. Biophys. Acta 1822:527–36 [Google Scholar]
  134. Padidar S, Farquharson AJ, Williams LM, Kelaiditi E, Hoggard N. 134.  et al. 2011. Leptin up-regulates pro-inflammatory cytokines in discrete cells within mouse colon. J. Cell. Physiol 226:2123–30 [Google Scholar]
  135. Fenton JI, Birmingham JM. 135.  2010. Adipokine regulation of colon cancer: Adiponectin attenuates interleukin-6-induced colon carcinoma cell proliferation via STAT-3. Mol. Carcinog. 49:700–9 [Google Scholar]
  136. O'Toole A, Michielsen AJ, Nolan B, Tosetto M, Sheahan K. 136.  et al. 2014. Tumour microenvironment of both early- and late-stage colorectal cancer is equally immunosuppressive. Br. J. Cancer 111:927–32 [Google Scholar]
  137. Salama P, Phillips M, Grieu F, Morris M, Zeps N. 137.  et al. 2009. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J. Clin. Oncol. 27:186–92 [Google Scholar]
  138. Scurr M, Ladell K, Besneux M, Christian A, Hockey T. 138.  et al. 2014. Highly prevalent colorectal cancer-infiltrating LAP+ Foxp3 T cells exhibit more potent immunosuppressive activity than Foxp3+ regulatory T cells. Mucosal Immunol. 7:428–39 [Google Scholar]
  139. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. 139.  2007. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 67:10019–26 [Google Scholar]
  140. Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM. 140.  et al. 2010. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J. Immunol. 185:1836–45 [Google Scholar]
  141. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. 141.  2008. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569–78 [Google Scholar]
  142. Rosato V, Tavani A, Bosetti C, Pelucchi C, Talamini R. 142.  et al. 2011. Metabolic syndrome and pancreatic cancer risk: a case-control study in Italy and meta-analysis. Metabolism 60:1372–78 [Google Scholar]
  143. Grote VA, Rohrmann S, Nieters A, Dossus L, Tjonneland A. 143.  et al. 2011. Diabetes mellitus, glycated haemoglobin and C-peptide levels in relation to pancreatic cancer risk: a study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Diabetologia 54:3037–46 [Google Scholar]
  144. Kang R, Tang D, Lotze MT, Zeh HJ 3rd. 144.  2012. AGER/RAGE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway. Autophagy 8:989–91 [Google Scholar]
  145. Stolzenberg-Solomon RZ, Schairer C, Moore S, Hollenbeck A, Silverman DT. 145.  2013. Lifetime adiposity and risk of pancreatic cancer in the NIH-AARP Diet and Health Study cohort. Am. J. Clin. Nutr. 98:1057–65 [Google Scholar]
  146. Elena JW, Steplowski E, Yu K, Hartge P, Tobias GS. 146.  et al. 2013. Diabetes and risk of pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Cancer Causes Control 24:13–25 [Google Scholar]
  147. Bao Y, Giovannucci EL, Kraft P, Stampfer MJ, Ogino S. 147.  et al. 2013. A prospective study of plasma adiponectin and pancreatic cancer risk in five US cohorts. J. Natl. Cancer Inst. 105:95–103 [Google Scholar]
  148. Huang B, Cheng X, Wang D, Peng M, Xue Z. 148.  et al. 2014. Adiponectin promotes pancreatic cancer progression by inhibiting apoptosis via the activation of AMPK/Sirt1/PGC-1α signaling. Oncotarget 5:4732–45 [Google Scholar]
  149. Petersen GM, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ. 149.  et al. 2010. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet. 42:224–28 [Google Scholar]
  150. Stolzenberg-Solomon RZ, Graubard BI, Chari S, Limburg P, Taylor PR. 150.  et al. 2005. Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers. JAMA 294:2872–78 [Google Scholar]
  151. Somasundar P, Yu AK, Vona-Davis L, McFadden DW. 151.  2003. Differential effects of leptin on cancer in vitro. J. Surg. Res. 113:50–55 [Google Scholar]
  152. Zyromski NJ, Mathur A, Pitt HA, Wade TE, Wang S. 152.  et al. 2009. Obesity potentiates the growth and dissemination of pancreatic cancer. Surgery 146:258–63 [Google Scholar]
  153. Mendonsa AM, Chalfant MC, Gorden LD, VanSaun MN. 153.  2015. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells. PLOS ONE 10:e0126686 [Google Scholar]
  154. Lesina M, Wormann SM, Neuhofer P, Song L, Algul H. 154.  2014. Interleukin-6 in inflammatory and malignant diseases of the pancreas. Semin. Immunol. 26:80–87 [Google Scholar]
  155. Ebrahimi B, Tucker SL, Li D, Abbruzzese JL, Kurzrock R. 155.  2004. Cytokines in pancreatic carcinoma: correlation with phenotypic characteristics and prognosis. Cancer 101:2727–36 [Google Scholar]
  156. Angst E, Reber HA, Hines OJ, Eibl G. 156.  2008. Mononuclear cell-derived interleukin-1 beta confers chemoresistance in pancreatic cancer cells by upregulation of cyclooxygenase-2. Surgery 144:57–65 [Google Scholar]
  157. Muerkoster S, Wegehenkel K, Arlt A, Witt M, Sipos B. 157.  et al. 2004. Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1β. Cancer Res. 64:1331–37 [Google Scholar]
  158. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB. 158.  et al. 2012. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491:399–405 [Google Scholar]
  159. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. 159.  2012. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21:836–47 [Google Scholar]
  160. Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M. 160.  et al. 2009. Inflammation and mitochondrial fatty acid β-oxidation link obesity to early tumor promotion. PNAS 106:3354–59 [Google Scholar]
  161. Ben-Neriah Y, Karin M. 161.  2011. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 12:715–23 [Google Scholar]
  162. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. 162.  2007. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 67:9518–27 [Google Scholar]
  163. Mace TA, Ameen Z, Collins A, Wojcik S, Mair M. 163.  et al. 2013. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res. 73:3007–18 [Google Scholar]
  164. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD. 164.  et al. 2012. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:822–35 [Google Scholar]
  165. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A. 165.  et al. 2000. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96:1723–32 [Google Scholar]
  166. Clement K, Viguerie N, Poitou C, Carette C, Pelloux V. 166.  et al. 2004. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB. J. 18:1657–69 [Google Scholar]
  167. Nicklas BJ, Ambrosius W, Messier SP, Miller GD, Penninx BW. 167.  et al. 2004. Diet-induced weight loss, exercise, and chronic inflammation in older, obese adults: a randomized controlled clinical trial. Am. J. Clin. Nutr. 79:544–51 [Google Scholar]
  168. Lakhdar N, Denguezli M, Zaouali M, Zbidi A, Tabka Z, Bouassida A. 168.  2013. Diet and diet combined with chronic aerobic exercise decreases body fat mass and alters plasma and adipose tissue inflammatory markers in obese women. Inflammation 36:1239–47 [Google Scholar]
  169. Kong LC, Wuillemin PH, Bastard JP, Sokolovska N, Gougis S. 169.  et al. 2013. Insulin resistance and inflammation predict kinetic body weight changes in response to dietary weight loss and maintenance in overweight and obese subjects by using a Bayesian network approach. Am. J. Clin. Nutr. 98:1385–94 [Google Scholar]
  170. Pendyala S, Neff LM, Suarez-Farinas M, Holt PR. 170.  2011. Diet-induced weight loss reduces colorectal inflammation: implications for colorectal carcinogenesis. Am. J. Clin. Nutr. 93:234–42 [Google Scholar]
  171. Raju J, Bird RP. 171.  2003. Energy restriction reduces the number of advanced aberrant crypt foci and attenuates the expression of colonic transforming growth factor β and cyclooxygenase isoforms in Zucker obese (fa/fa) rats. Cancer Res. 63:6595–601 [Google Scholar]
  172. Fabian CJ, Kimler BF, Donnelly JE, Sullivan DK, Klemp JR. 172.  et al. 2013. Favorable modulation of benign breast tissue and serum risk biomarkers is associated with >10% weight loss in postmenopausal women. Breast Cancer Res. Treat. 142:119–32 [Google Scholar]
  173. Rapp K, Klenk J, Ulmer H, Concin H, Diem G. 173.  et al. 2008. Weight change and cancer risk in a cohort of more than 65,000 adults in Austria. Ann. Oncol. 19:641–48 [Google Scholar]
  174. Wickremesekera K, Miller G, Naotunne TD, Knowles G, Stubbs RS. 174.  2005. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes. Surg. 15:474–81 [Google Scholar]
  175. Schauer PR, Ikramuddin S, Gourash W, Ramanathan R, Luketich J. 175.  2000. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann. Surg. 232:515–29 [Google Scholar]
  176. Arterburn DE, Courcoulas AP. 176.  2014. Bariatric surgery for obesity and metabolic conditions in adults. BMJ 349:g3961 [Google Scholar]
  177. Maestro A, Rigla M, Caixas A. 177.  2015. Does bariatric surgery reduce cancer risk? A review of the literature. Endocrinol. Nutr. 62:138–43 [Google Scholar]
  178. Sjöström L, Gummesson A, Sjöström CD, Narbro K, Peltonen M. 178.  et al. 2009. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 10:653–62 [Google Scholar]
  179. Adams TD, Stroup AM, Gress RE, Adams KF, Calle EE. 179.  et al. 2009. Cancer incidence and mortality after gastric bypass surgery. Obesity(Silver Spring) 17:796–802 [Google Scholar]
  180. Upala S, Anawin S. 180.  2015. Bariatric surgery and risk of postoperative endometrial cancer: a systematic review and meta-analysis. Surg. Obes. Relat. Dis. 11:4949–55 [Google Scholar]
  181. Afshar S, Kelly SB, Seymour K, Lara J, Woodcock S, Mathers JC. 181.  2014. The effects of bariatric surgery on colorectal cancer risk: systematic review and meta-analysis. Obes. Surg. 24:1793–99 [Google Scholar]
  182. Derogar M, Hull MA, Kant P, Ostlund M, Lu Y, Lagergren J. 182.  2013. Increased risk of colorectal cancer after obesity surgery. Ann. Surg. 258:983–88 [Google Scholar]
  183. Yang L, Colditz GA. 183.  2015. Prevalence of overweight and obesity in the United States, 2007–2012. JAMA Intern. Med. 175:81412–13 [Google Scholar]
  184. Bowers LW, Maximo IX, Brenner AJ, Beeram M, Hursting SD. 184.  et al. 2014. NSAID use reduces breast cancer recurrence in overweight and obese women: role of prostaglandin-aromatase interactions. Cancer Res. 74:4446–57 [Google Scholar]
  185. Cui Y, Deming-Halverson SL, Shrubsole MJ, Beeghly-Fadiel A, Cai H. 185.  et al. 2014. Use of nonsteroidal anti-inflammatory drugs and reduced breast cancer risk among overweight women. Breast Cancer Res. Treat. 146:439–46 [Google Scholar]
  186. Shebl FM, Hsing AW, Park Y, Hollenbeck AR, Chu LW. 186.  et al. 2014. Non-steroidal anti-inflammatory drugs use is associated with reduced risk of inflammation-associated cancers: NIH-AARP study. PLOS ONE 9:e114633 [Google Scholar]
/content/journals/10.1146/annurev-pathol-012615-044359
Loading
/content/journals/10.1146/annurev-pathol-012615-044359
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error