Annual Review of Pathology: Mechanisms of Disease - Current Issue
Volume 19, 2024
-
-
Chance and Opportunity: A Personal Story
Vol. 19 (2024), pp. 1–10More LessThis article summarizes my personal life story, from early education in India to research, teaching, and other activities in Boston and San Francisco. I have tried to illustrate how unplanned events shape one's path, and why the willingness to go with the flow is among one's most valuable attributes.
-
-
-
Diffuse Pleural Mesothelioma: Advances in Molecular Pathogenesis, Diagnosis, and Treatment
Vol. 19 (2024), pp. 11–42More LessDiffuse pleural mesothelioma (DPM) is a highly aggressive malignant neoplasm arising from the mesothelial cells lining the pleural surfaces. While DPM is a well-recognized disease linked to asbestos exposure, recent advances have expanded our understanding of molecular pathogenesis and transformed our clinical practice. This comprehensive review explores the current concepts and emerging trends in DPM, including risk factors, pathobiology, histologic subtyping, and therapeutic management, with an emphasis on a multidisciplinary approach to this complex disease.
-
-
-
Dynamic Multiplex Tissue Imaging in Inflammation Research
Vol. 19 (2024), pp. 43–67More LessInflammation is a highly dynamic process with immune cells that continuously interact with each other and parenchymal components as they migrate through tissue. The dynamic cellular responses and interaction patterns are a function of the complex tissue environment that cannot be fully reconstructed ex vivo, making it necessary to assess cell dynamics and changing spatial patterning in vivo. These dynamics often play out deep within tissues, requiring the optical focus to be placed far below the surface of an opaque organ. With the emergence of commercially available two-photon excitation lasers that can be combined with existing imaging systems, new avenues for imaging deep tissues over long periods of time have become available. We discuss a selected subset of studies illustrating how two-photon microscopy (2PM) has helped to relate the dynamics of immune cells to their in situ function and to understand the molecular patterns that govern their behavior in vivo. We also review some key practical aspects of 2PM methods and point out issues that can confound the results, so that readers can better evaluate the reliability of conclusions drawn using this technology.
-
-
-
Antibody and B Cell Responses to SARS-CoV-2 Infection and Vaccination: The End of the Beginning
Vol. 19 (2024), pp. 69–97More LessAs the COVID-19 pandemic has evolved during the past years, interactions between human immune systems, rapidly mutating and selected SARS-CoV-2 viral variants, and effective vaccines have complicated the landscape of individual immunological histories. Here, we review some key findings for antibody and B cell–mediated immunity, including responses to the highly mutated omicron variants; immunological imprinting and other impacts of successive viral antigenic variant exposures on antibody and B cell memory; responses in secondary lymphoid and mucosal tissues and non-neutralizing antibody-mediated immunity; responses in populations vulnerable to severe disease such as those with cancer, immunodeficiencies, and other comorbidities, as well as populations showing apparent resistance to severe disease such as many African populations; and evidence of antibody involvement in postacute sequelae of infection or long COVID. Despite the initial phase of the pandemic ending, human populations will continue to face challenges presented by this unpredictable virus.
-
-
-
Genetics and Pathogenesis of Dystonia
Vol. 19 (2024), pp. 99–131More LessDystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
-
-
-
Update on Epithelial-Mesenchymal Plasticity in Cancer Progression
Vol. 19 (2024), pp. 133–156More LessEpithelial-mesenchymal transition (EMT) is a cellular process by which epithelial cells lose their characteristics and acquire mesenchymal traits to promote cell movement. This program is aberrantly activated in human cancers and endows tumor cells with increased abilities in tumor initiation, cell migration, invasion, metastasis, and therapy resistance. The EMT program in tumors is rarely binary and often leads to a series of gradual or intermediate epithelial-mesenchymal states. Functionally, epithelial-mesenchymal plasticity (EMP) improves the fitness of cancer cells during tumor progression and in response to therapies. Here, we discuss the most recent advances in our understanding of the diverse roles of EMP in tumor initiation, progression, metastasis, and therapy resistance and address major clinical challenges due to EMP-driven phenotypic heterogeneity in cancer. Uncovering novel molecular markers and key regulators of EMP in cancer will aid the development of new therapeutic strategies to prevent cancer recurrence and overcome therapy resistance.
-
-
-
Control of Cell Death in Health and Disease
Vol. 19 (2024), pp. 157–180More LessApoptosis, necroptosis, and pyroptosis are genetically programmed cell death mechanisms that eliminate obsolete, damaged, infected, and self-reactive cells. Apoptosis fragments cells in a manner that limits immune cell activation, whereas the lytic death programs of necroptosis and pyroptosis release proinflammatory intracellular contents. Apoptosis fine-tunes tissue architecture during mammalian development, promotes tissue homeostasis, and is crucial for averting cancer and autoimmunity. All three cell death mechanisms are deployed to thwart the spread of pathogens. Disabling regulators of cell death signaling in mice has revealed how excessive cell death can fuel acute or chronic inflammation. Here we review strategies for modulating cell death in the context of disease. For example, BCL-2 inhibitor venetoclax, an inducer of apoptosis, is approved for the treatment of certain hematologic malignancies. By contrast, inhibition of RIPK1, NLRP3, GSDMD, or NINJ1 to limit proinflammatory cell death and/or the release of large proinflammatory molecules from dying cells may benefit patients with inflammatory diseases.
-
-
-
Role of the Microenvironment in Glioma Pathogenesis
Vol. 19 (2024), pp. 181–201More LessGliomas are a diverse group of primary central nervous system tumors that affect both children and adults. Recent studies have revealed a dynamic cross talk that occurs between glioma cells and components of their microenvironment, including neurons, astrocytes, immune cells, and the extracellular matrix. This cross talk regulates fundamental aspects of glioma development and growth. In this review, we discuss recent discoveries about the impact of these interactions on gliomas and highlight how tumor cells actively remodel their microenvironment to promote disease. These studies provide a better understanding of the interactions in the microenvironment that are important in gliomas, offer insight into the cross talk that occurs, and identify potential therapeutic vulnerabilities that can be utilized to improve clinical outcomes.
-
-
-
Within-Host Evolution of Bacterial Pathogens in Acute and Chronic Infection
Vol. 19 (2024), pp. 203–226More LessBacterial pathogens undergo remarkable adaptive change in response to the selective forces they encounter during host colonization and infection. Studies performed over the past few decades have demonstrated that many general evolutionary processes can be discerned during the course of host adaptation, including genetic diversification of lineages, clonal succession events, convergent evolution, and balanced fitness trade-offs. In some cases, elevated mutation rates resulting from mismatch repair or proofreading deficiencies accelerate evolution, and active mobile genetic elements or phages may facilitate genome plasticity. The host immune response provides another critical component of the fitness landscapes guiding adaptation, and selection operating on pathogens at this level may lead to immune evasion and the establishment of chronic infection. This review summarizes recent advances in this field, with a special focus on different forms of bacterial genome plasticity in the context of infection, and considers clinical consequences of adaptive changes for the host.
-
-
-
Neutrophils in Physiology and Pathology
Vol. 19 (2024), pp. 227–259More LessInfections, cardiovascular disease, and cancer are major causes of disease and death worldwide. Neutrophils are inescapably associated with each of these health concerns, by either protecting from, instigating, or aggravating their impact on the host. However, each of these disorders has a very different etiology, and understanding how neutrophils contribute to each of them requires understanding the intricacies of this immune cell type, including their immune and nonimmune contributions to physiology and pathology. Here, we review some of these intricacies, from basic concepts in neutrophil biology, such as their production and acquisition of functional diversity, to the variety of mechanisms by which they contribute to preventing or aggravating infections, cardiovascular events, and cancer. We also review poorly explored aspects of how neutrophils promote health by favoring tissue repair and discuss how discoveries about their basic biology inform the development of new therapeutic strategies.
-
-
-
Genome Instability and DNA Repair in Somatic and Reproductive Aging
Vol. 19 (2024), pp. 261–290More LessGenetic material is constantly subjected to genotoxic insults and is critically dependent on DNA repair. Genome maintenance mechanisms differ in somatic and germ cells as the soma only requires maintenance during an individual's lifespan, while the germline indefinitely perpetuates its genetic information. DNA lesions are recognized and repaired by mechanistically highly diverse repair machineries. The DNA damage response impinges on a vast array of homeostatic processes and can ultimately result in cell fate changes such as apoptosis or cellular senescence. DNA damage causally contributes to the aging process and aging-associated diseases, most prominently cancer. By causing mutations, DNA damage in germ cells can lead to genetic diseases and impact the evolutionary trajectory of a species. The mechanisms ensuring tight control of germline DNA repair could be highly instructive in defining strategies for improved somatic DNA repair. They may provide future interventions to maintain health and prevent disease during aging.
-
-
-
Hypoxia-Induced Signaling in Gut and Liver Pathobiology
Vol. 19 (2024), pp. 291–317More LessOxygen (O2) is essential for cellular metabolism and biochemical reactions. When the demand for O2 exceeds the supply, hypoxia occurs. Hypoxia-inducible factors (HIFs) are essential to activate adaptive and survival responses following hypoxic stress. In the gut (intestines) and liver, the presence of oxygen gradients or physiologic hypoxia is necessary to maintain normal homeostasis. While physiologic hypoxia is beneficial and aids in normal functions, pathological hypoxia is harmful as it exacerbates inflammatory responses and tissue dysfunction and is a hallmark of many cancers. In this review, we discuss the role of gut and liver hypoxia-induced signaling, primarily focusing on HIFs, in the physiology and pathobiology of gut and liver diseases. Additionally, we examine the function of HIFs in various cell types during gut and liver diseases, beyond intestinal epithelial and hepatocyte HIFs. This review highlights the importance of understanding hypoxia-induced signaling in the pathogenesis of gut and liver diseases and emphasizes the potential of HIFs as therapeutic targets.
-
-
-
Pediatric Cholestatic Diseases: Common and Unique Pathogenic Mechanisms
Vol. 19 (2024), pp. 319–344More LessCholestasis is the predominate feature of many pediatric hepatobiliary diseases. The physiologic flow of bile requires multiple complex processes working in concert. Bile acid (BA) synthesis and excretion, the formation and flow of bile, and the enterohepatic reuptake of BAs all function to maintain the circulation of BAs, a key molecule in lipid digestion, metabolic and cellular signaling, and, as discussed in the review, a crucial mediator in the pathogenesis of cholestasis. Disruption of one or several of these steps can result in the accumulation of toxic BAs in bile ducts and hepatocytes leading to inflammation, fibrosis, and, over time, biliary and hepatic cirrhosis. Biliary atresia, progressive familial intrahepatic cholestasis, primary sclerosing cholangitis, and Alagille syndrome are four of the most common pediatric cholestatic conditions. Through understanding the commonalities and differences in these diseases, the important cellular mechanistic underpinnings of cholestasis can be greater appreciated.
-
-
-
Neurodegenerative Disease Tauopathies
Vol. 19 (2024), pp. 345–370More LessTauopathies are a diverse group of progressive and fatal neurodegenerative diseases characterized by aberrant tau inclusions in the central nervous system. Tau protein forms pathologic fibrillar aggregates that are typically closely associated with neuronal cell death, leading to varied clinical phenotypes including dementia, movement disorders, and motor neuron disease. In this review, we describe the clinicopathologic features of tauopathies and highlight recent advances in understanding the mechanisms that lead to spread of pathologic aggregates through interconnected neuronal pathways. The cell-to-cell propagation of tauopathy is then linked to posttranslational modifications, tau fibril structural variants, and the breakdown of cellular protein quality control.
-
-
-
Epigenomic Characterization of Lymphoid Neoplasms
Vol. 19 (2024), pp. 371–396More LessLymphoid neoplasms represent a heterogeneous group of disease entities and subtypes with markedly different molecular and clinical features. Beyond genetic alterations, lymphoid tumors also show widespread epigenomic changes. These severely affect the levels and distribution of DNA methylation, histone modifications, chromatin accessibility, and three-dimensional genome interactions. DNA methylation stands out as a tracer of cell identity and memory, as B cell neoplasms show epigenetic imprints of their cellular origin and proliferative history, which can be quantified by an epigenetic mitotic clock. Chromatin-associated marks are informative to uncover altered regulatory regions and transcription factor networks contributing to the development of distinct lymphoid tumors. Tumor-intrinsic epigenetic and genetic aberrations cooperate and interact with microenvironmental cells to shape the transcriptome at different phases of lymphoma evolution, and intraclonal heterogeneity can now be characterized by single-cell profiling. Finally, epigenetics offers multiple clinical applications, including powerful diagnostic and prognostic biomarkers as well as therapeutic targets.
-
-
-
Cancer as a Disease of Development Gone Awry
Vol. 19 (2024), pp. 397–421More LessIn the 160 years since Rudolf Virchow first postulated that neoplasia arises by the same law that regulates embryonic development, scientists have come to recognize the striking overlap between the molecular and cellular programs used by cancers and embryos. Advances in cancer biology and molecular techniques have further highlighted the similarities between carcinogenesis and embryogenesis, where cellular growth, differentiation, motility, and intercellular cross talk are mediated by common drivers and regulatory networks. This review highlights the many connections linking cancer biology and developmental biology to provide a deeper understanding of how a tissue's developmental history may both enable and constrain cancer cell evolution.
-
-
-
Comparative Pathogenesis of Severe Acute Respiratory Syndrome Coronaviruses
Vol. 19 (2024), pp. 423–451More LessOver the last two decades the world has witnessed the global spread of two genetically related highly pathogenic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, the impact of these outbreaks differed significantly with respect to the hospitalizations and fatalities seen worldwide. While many studies have been performed recently on SARS-CoV-2, a comparative pathogenesis analysis with SARS-CoV may further provide critical insights into the mechanisms of disease that drive coronavirus-induced respiratory disease. In this review, we comprehensively describe clinical and experimental observations related to transmission and pathogenesis of SARS-CoV-2 in comparison with SARS-CoV, focusing on human, animal, and in vitro studies. By deciphering the similarities and disparities of SARS-CoV and SARS-CoV-2, in terms of transmission and pathogenesis mechanisms, we offer insights into the divergent characteristics of these two viruses. This information may also be relevant to assessing potential novel introductions of genetically related highly pathogenic coronaviruses.
-
-
-
Acetaminophen Hepatotoxicity: Paradigm for Understanding Mechanisms of Drug-Induced Liver Injury
Vol. 19 (2024), pp. 453–478More LessAcetaminophen (APAP) overdose is the clinically most relevant drug hepatotoxicity in western countries, and, because of translational relevance of animal models, APAP is mechanistically the most studied drug. This review covers intracellular signaling events starting with drug metabolism and the central role of mitochondrial dysfunction involving oxidant stress and peroxynitrite. Mitochondria-derived endonucleases trigger nuclear DNA fragmentation, the point of no return for cell death. In addition, adaptive mechanisms that limit cell death are discussed including autophagy, mitochondrial morphology changes, and biogenesis. Extensive evidence supports oncotic necrosis as the mode of cell death; however, a partial overlap with signaling events of apoptosis, ferroptosis, and pyroptosis is the basis for controversial discussions. Furthermore, an update on sterile inflammation in injury and repair with activation of Kupffer cells, monocyte-derived macrophages, and neutrophils is provided. Understanding these mechanisms of cell death led to discovery of N-acetylcysteine and recently fomepizole as effective antidotes against APAP toxicity.
-
-
-
Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy
Vol. 19 (2024), pp. 479–506More LessSomatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.
-
-
-
ENPP1 in Blood and Bone: Skeletal and Soft Tissue Diseases Induced by ENPP1 Deficiency
Vol. 19 (2024), pp. 507–540More LessThe enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein that hydrolyzes extracellular ATP to generate pyrophosphate (PPi) and adenosine monophosphate, thereby contributing to downstream purinergic signaling pathways. The clinical phenotypes induced by ENPP1 deficiency are seemingly contradictory and include early-onset osteoporosis in middle-aged adults and life-threatening vascular calcifications in the large arteries of infants with generalized arterial calcification of infancy. The progressive overmineralization of soft tissue and concurrent undermineralization of skeleton also occur in the general medical population, where it is referred to as paradoxical mineralization to highlight the confusing pathophysiology. This review summarizes the clinical presentation and pathophysiology of paradoxical mineralization unveiled by ENPP1 deficiency and the bench-to-bedside development of a novel ENPP1 biologics designed to treat mineralization disorders in the rare disease and general medical population.
-
Previous Volumes
-
Volume 19 (2024)
-
Volume 18 (2023)
-
Volume 17 (2022)
-
Volume 16 (2021)
-
Volume 15 (2020)
-
Volume 14 (2019)
-
Volume 13 (2018)
-
Volume 12 (2017)
-
Volume 11 (2016)
-
Volume 10 (2015)
-
Volume 9 (2014)
-
Volume 8 (2013)
-
Volume 7 (2012)
-
Volume 6 (2011)
-
Volume 5 (2010)
-
Volume 4 (2009)
-
Volume 3 (2008)
-
Volume 2 (2007)
-
Volume 1 (2006)
-
Volume 0 (1932)