1932

Abstract

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver dysfunction in the Western world and is increasing owing to its close association with obesity and insulin resistance. NAFLD represents a spectrum of liver disease that, in a minority of patients, can lead to progressive nonalcoholic steatohepatitis (NASH), fibrosis, and ultimately hepatocellular carcinoma and liver failure. NAFLD is a complex trait resulting from the interaction between environmental exposure and a susceptible polygenic background and comprising multiple independent modifiers of risk, such as the microbiome. The molecular mechanisms that combine to define the transition to NASH and progressive disease are complex, and consequently, no pharmacological therapy currently exists to treat NASH. A better understanding of the pathogenesis of NAFLD is critical if new treatments are to be discovered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-012615-044224
2016-05-23
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/pathol/11/1/annurev-pathol-012615-044224.html?itemId=/content/journals/10.1146/annurev-pathol-012615-044224&mimeType=html&fmt=ahah

Literature Cited

  1. Anstee QM, McPherson S, Day CP. 1.  2011. How big a problem is non-alcoholic fatty liver disease?. Br. Med. J. 343:d3897 [Google Scholar]
  2. de Alwis NM, Day CP. 2.  2008. Non-alcoholic fatty liver disease: The mist gradually clears. J. Hepatol. 48:Suppl. 1S104–12 [Google Scholar]
  3. 3. Sanyal AJ, Am. Gastroenterol. Assoc. 2002. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 123:1705–25 [Google Scholar]
  4. Musso G, Gambino R, Cassader M, Pagano G. 4.  2011. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann. Med. 43:617–49 [Google Scholar]
  5. Ekstedt M, Franzen LE, Mathiesen UL, Thorelius L, Holmqvist M. 5.  et al. 2006. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44:865–73 [Google Scholar]
  6. Ratziu V, Sheikh MY, Sanyal AJ, Lim JK, Conjeevaram H. 6.  et al. 2012. A phase 2, randomized, double-blind, placebo-controlled study of GS-9450 in subjects with nonalcoholic steatohepatitis. Hepatology 55:419–28 [Google Scholar]
  7. Das K, Das K, Mukherjee PS, Ghosh A, Ghosh S. 7.  et al. 2010. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease. Hepatology 51:1593–602 [Google Scholar]
  8. Baumeister SE, Volzke H, Marschall P, John U, Schmidt CO. 8.  et al. 2008. Impact of fatty liver disease on health care utilization and costs in a general population: a 5-year observation. Gastroenterology 134:85–94 [Google Scholar]
  9. Charlton M. 9.  2004. Nonalcoholic fatty liver disease: a review of current understanding and future impact. Clin. Gastroenterol. Hepatol. 2:1048–58 [Google Scholar]
  10. Holmberg SD, Spradling PR, Moorman AC, Denniston MM. 10.  2013. Hepatitis C in the United States. N. Engl. J. Med. 368:1859–61 [Google Scholar]
  11. Cobbold JF, Anstee QM, Taylor-Robinson SD. 11.  2010. The importance of fatty liver disease in clinical practice. Proc. Nutr. Soc. 69:518–27 [Google Scholar]
  12. Ratziu V, Charlotte F, Heurtier A, Gombert S, Giral P. 12.  et al. 2005. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128:1898–906 [Google Scholar]
  13. Argo CK, Caldwell SH. 13.  2009. Epidemiology and natural history of non-alcoholic steatohepatitis. Clin. Liver Dis. 13:511–31 [Google Scholar]
  14. Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F. 14.  2009. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J. Hepatol. 51:433–45 [Google Scholar]
  15. Thomas EL, Hamilton G, Patel N, O'Dwyer R, Dore CJ. 15.  et al. 2005. Hepatic triglyceride content and its relation to body adiposity: a magnetic resonance imaging and proton magnetic resonance spectroscopy study. Gut 54:122–27 [Google Scholar]
  16. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM. 16.  et al. 2012. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55:2005–23 [Google Scholar]
  17. Saadeh S, Younossi ZM, Remer EM, Gramlich T, Ong JP. 17.  et al. 2002. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 123:745–50 [Google Scholar]
  18. Dasarathy S, Dasarathy J, Khiyami A, Joseph R, Lopez R, McCullough AJ. 18.  2009. Validity of real time ultrasound in the diagnosis of hepatic steatosis: a prospective study. J. Hepatol. 51:1061–67 [Google Scholar]
  19. Mofrad P, Contos MJ, Haque M, Sargeant C, Fisher RA. 19.  et al. 2003. Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatology 37:1286–92 [Google Scholar]
  20. Vernon G, Baranova A, Younossi ZM. 20.  2011. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther. 34:274–85 [Google Scholar]
  21. Armstrong MJ, Houlihan DD, Bentham L, Shaw JC, Cramb R. 21.  et al. 2012. Presence and severity of non-alcoholic fatty liver disease in a large prospective primary care cohort. J. Hepatol. 56:234–40 [Google Scholar]
  22. Browning JD, Szczepaniak LS, Dobbins R, Nurenberg P, Horton JD. 22.  et al. 2004. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40:1387–95 [Google Scholar]
  23. Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS. 23.  et al. 2005. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am. J. Physiol. Endocrinol. Metab. 288:E462–68 [Google Scholar]
  24. Ruhl CE, Everhart JE. 24.  2003. Determinants of the association of overweight with elevated serum alanine aminotransferase activity in the United States. Gastroenterology 124:71–79 [Google Scholar]
  25. Minervini MI, Ruppert K, Fontes P, Volpes R, Vizzini G. 25.  et al. 2009. Liver biopsy findings from healthy potential living liver donors: reasons for disqualification, silent diseases and correlation with liver injury tests. J. Hepatol. 50:501–10 [Google Scholar]
  26. Nadalin S, Malago M, Valentin-Gamazo C, Testa G, Baba HA. 26.  et al. 2005. Preoperative donor liver biopsy for adult living donor liver transplantation: risks and benefits. Liver Transplant. 11:980–86 [Google Scholar]
  27. Tran TT, Changsri C, Shackleton CR, Poordad FF, Nissen NN. 27.  et al. 2006. Living donor liver transplantation: histological abnormalities found on liver biopsies of apparently healthy potential donors. J. Gastroenterol. Hepatol. 21:381–83 [Google Scholar]
  28. Ryan CK, Johnson LA, Germin BI, Marcos A. 28.  2002. One hundred consecutive hepatic biopsies in the workup of living donors for right lobe liver transplantation. Liver Transplant. 8:1114–22 [Google Scholar]
  29. Bellentani S, Bedogni G, Miglioli L, Tiribelli C. 29.  2004. The epidemiology of fatty liver. Eur. J. Gastroenterol. Hepatol. 16:1087–93 [Google Scholar]
  30. Targher G, Bertolini L, Padovani R, Rodella S, Tessari R. 30.  et al. 2007. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30:1212–18 [Google Scholar]
  31. Jimba S, Nakagami T, Takahashi M, Wakamatsu T, Hirota Y. 31.  et al. 2005. Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults. Diabet. Med. 22:1141–45 [Google Scholar]
  32. Williams CD, Stengel J, Asike MI, Torres DM, Shaw J. 32.  et al. 2011. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140:124–31 [Google Scholar]
  33. Williamson RM, Price JF, Glancy S, Perry E, Nee LD. 33.  et al. 2011. Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes Care 34:1139–44 [Google Scholar]
  34. Wanless IR, Lentz JS. 34.  1990. Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. Hepatology 12:1106–10 [Google Scholar]
  35. Silverman JF, Pories WJ, Caro JF. 35.  1989. Liver pathology in diabetes mellitus and morbid obesity. Clinical, pathological, and biochemical considerations. Pathol. Annu. 24:Pt 1275–302 [Google Scholar]
  36. Smith BW, Adams LA. 36.  2011. Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment. Nat. Rev. Endocrinol. 7:456–65 [Google Scholar]
  37. Wieckowska A, Feldstein AE. 37.  2008. Diagnosis of nonalcoholic fatty liver disease: invasive versus noninvasive. Semin. Liver Dis. 28:386–95 [Google Scholar]
  38. Loomba R, Wolfson T, Ang B, Hooker J, Behling C. 38.  et al. 2014. Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: a prospective study. Hepatology 60:1920–28 [Google Scholar]
  39. Banerjee R, Pavlides M, Tunnicliffe EM, Piechnik SK, Sarania N. 39.  et al. 2014. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J. Hepatol. 60:69–77 [Google Scholar]
  40. Dyson JK, McPherson S, Anstee QM. 40.  2013. Non-alcoholic fatty liver disease: non-invasive investigation and risk stratification. J. Clin. Pathol. 66:1033–45 [Google Scholar]
  41. Yeh MM, Brunt EM. 41.  2014. Pathological features of fatty liver disease. Gastroenterology 147:754–64 [Google Scholar]
  42. Kleiner DE, Brunt EM. Natta M, Behling C, Contos MJ. 42. , Van et al. 2005. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–21 [Google Scholar]
  43. Lackner C, Gogg-Kamerer M, Zatloukal K, Stumptner C, Brunt EM, Denk H. 43.  2008. Ballooned hepatocytes in steatohepatitis: the value of keratin immunohistochemistry for diagnosis. J. Hepatol. 48:821–28 [Google Scholar]
  44. Brunt EM, Kleiner DE, Wilson LA, Unalp A, Behling CE. 44.  et al. 2009. Portal chronic inflammation in nonalcoholic fatty liver disease (NAFLD): a histologic marker of advanced NAFLD—clinicopathologic correlations from the nonalcoholic steatohepatitis clinical research network. Hepatology 49:809–20 [Google Scholar]
  45. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. 45.  1999. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 94:2467–74 [Google Scholar]
  46. Richardson MM, Jonsson JR, Powell EE, Brunt EM, Neuschwander-Tetri BA. 46.  et al. 2007. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 133:80–90 [Google Scholar]
  47. Brunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander-Tetri BA, Network NCR. 47.  2011. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53:810–20 [Google Scholar]
  48. Younossi ZM, Stepanova M, Rafiq N, Makhlouf H, Younoszai Z. 48.  et al. 2011. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology 53:1874–82 [Google Scholar]
  49. Machado M, Marques-Vidal P, Cortez-Pinto H. 49.  2006. Hepatic histology in obese patients undergoing bariatric surgery. J. Hepatol. 45:600–6 [Google Scholar]
  50. Bedossa P, Poitou C, Veyrie N, Bouillot JL, Basdevant A. 50.  et al. 2012. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 56:1751–59 [Google Scholar]
  51. Sanyal AJ, Brunt EM, Kleiner DE, Kowdley KV, Chalasani N. 51.  et al. 2011. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 54:344–53 [Google Scholar]
  52. 52. Bedossa P, FLIP Pathol. Consort 2014. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60:565–75 [Google Scholar]
  53. Angulo P. 53.  2013. The natural history of NAFLD. Non-Alcoholic Fatty Liver Disease: A Practical Guide GC Farrell, AJ McCulloch, CP Day 37–45 Oxford, UK: Wiley-Blackwell [Google Scholar]
  54. Pais R, Charlotte F, Fedchuk L, Bedossa P, Lebray P. 54.  et al. 2013. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J. Hepatol. 59:550–56 [Google Scholar]
  55. McPherson S, Hardy T, Henderson E, Burt AD, Day CP, Anstee QM. 55.  2015. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J. Hepatol. 62:1148–55 [Google Scholar]
  56. Soderberg C, Stal P, Askling J, Glaumann H, Lindberg G. 56.  et al. 2010. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology 51:595–602 [Google Scholar]
  57. Dam-Larsen S, Becker U, Franzmann MB, Larsen K, Christoffersen P, Bendtsen F. 57.  2009. Final results of a long-term, clinical follow-up in fatty liver patients. Scand. J. Gastroenterol. 44:1236–43 [Google Scholar]
  58. Francque S, De Maeght S, Adler M, Deltenre P, de Galocsy C. 58.  et al. 2011. High prevalence of advanced fibrosis in association with the metabolic syndrome in a Belgian prospective cohort of NAFLD patients with elevated ALT. Results of the Belgian NAFLD registry. Acta Gastro-Enterol. Belg. 74:9–16 [Google Scholar]
  59. Angulo P, Bugianesi E, Bjornsson ES, Charatcharoenwitthaya P, Mills PR. 59.  et al. 2013. Simple noninvasive systems predict long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 145:782–89.e4 [Google Scholar]
  60. Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW, Powell LW. 60.  1990. The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology 11:74–80 [Google Scholar]
  61. Ratziu V, Giral P, Charlotte F, Bruckert E, Thibault V. 61.  et al. 2000. Liver fibrosis in overweight patients. Gastroenterology 118:1117–23 [Google Scholar]
  62. Harrison SA, Torgerson S, Hayashi PH. 62.  2003. The natural history of nonalcoholic fatty liver disease: a clinical histopathological study. Am. J. Gastroenterol. 98:2042–47 [Google Scholar]
  63. Evans CD, Oien KA, MacSween RN, Mills PR. 63.  2002. Non-alcoholic steatohepatitis: a common cause of progressive chronic liver injury?. J. Clin. Pathol. 55:689–92 [Google Scholar]
  64. Adams LA, Sanderson S, Lindor KD, Angulo P. 64.  2005. The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies. J. Hepatol. 42:132–38 [Google Scholar]
  65. Lee RG. 65.  1989. Nonalcoholic steatohepatitis: a study of 49 patients. Hum. Pathol. 20:594–98 [Google Scholar]
  66. Bacon BR, Farahvash MJ, Janney CG, Neuschwander-Tetri BA. 66.  1994. Nonalcoholic steatohepatitis: an expanded clinical entity. Gastroenterology 107:1103–9 [Google Scholar]
  67. Fassio E, Alvarez E, Dominguez N, Landeira G, Longo C. 67.  2004. Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies. Hepatology 40:820–26 [Google Scholar]
  68. Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. 68.  2015. Fibrosis progression in nonalcoholic fatty liver versus nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. 13:643–54.e9 [Google Scholar]
  69. Sanyal A, Poklepovic A, Moyneur E, Barghout V. 69.  2010. Population-based risk factors and resource utilization for HCC: US perspective. Curr. Med. Res. Opin. 26:2183–91 [Google Scholar]
  70. Parkin DM. 70.  2006. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 118:3030–44 [Google Scholar]
  71. Starley BQ, Calcagno CJ, Harrison SA. 71.  2010. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 51:1820–32 [Google Scholar]
  72. Hashimoto E, Yatsuji S, Tobari M, Taniai M, Torii N. 72.  et al. 2009. Hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. J. Gastroenterol. 44:Suppl. 1989–95 [Google Scholar]
  73. Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN. 73.  2010. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 51:1972–78 [Google Scholar]
  74. Yatsuji S, Hashimoto E. 74.  2006. [Natural history of Japanese patients with non-alcoholic fatty liver disease (NAFLD), especially non-alcoholic steatohepatitis (NASH) patients with hepatocellular carcinoma (HCC)]. Nihon Rinsho. Jpn. J. Clin. Med. 64:1173–79 [Google Scholar]
  75. Sanyal AJ, Banas C, Sargeant C, Luketic VA, Sterling RK. 75.  et al. 2006. Similarities and differences in outcomes of cirrhosis due to nonalcoholic steatohepatitis and hepatitis C. Hepatology 43:682–89 [Google Scholar]
  76. Bhala N, Angulo P, van der Poorten D, Lee E, Hui JM. 76.  et al. 2011. The natural history of nonalcoholic fatty liver disease with advanced fibrosis or cirrhosis: an international collaborative study. Hepatology 54:1208–16 [Google Scholar]
  77. Hui JM, Kench JG, Chitturi S, Sud A, Farrell GC. 77.  et al. 2003. Long-term outcomes of cirrhosis in nonalcoholic steatohepatitis compared with hepatitis C. Hepatology 38:420–27 [Google Scholar]
  78. Yasui K, Hashimoto E, Tokushige K, Koike K, Shima T. 78.  et al. 2012. Clinical and pathological progression of non-alcoholic steatohepatitis to hepatocellular carcinoma. Hepatol. Res. 42:767–73 [Google Scholar]
  79. El-Serag HB, Rudolph KL. 79.  2007. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–76 [Google Scholar]
  80. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. 80.  2003. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348:1625–38 [Google Scholar]
  81. Larsson SC, Wolk A. 81.  2007. Overweight, obesity and risk of liver cancer: a meta-analysis of cohort studies. Br. J. Cancer 97:1005–8 [Google Scholar]
  82. Nair S, Mason A, Eason J, Loss G, Perrillo RP. 82.  2002. Is obesity an independent risk factor for hepatocellular carcinoma in cirrhosis?. Hepatology 36:150–55 [Google Scholar]
  83. El-Serag HB, Tran T, Everhart JE. 83.  2004. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology 126:460–68 [Google Scholar]
  84. N'Kontchou G, Paries J, Htar MT, Ganne-Carrie N, Costentin L. 84.  et al. 2006. Risk factors for hepatocellular carcinoma in patients with alcoholic or viral C cirrhosis. Clin. Gastroenterol. Hepatol. 4:1062–68 [Google Scholar]
  85. Yasui K, Hashimoto E, Komorizono Y, Koike K, Arii S. 85.  et al. 2011. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin. Gastroenterol. Hepatol. 9:428–33 quiz e50 [Google Scholar]
  86. Dyson J, Jaques B, Chattopadyhay D, Lochan R, Graham J. 86.  et al. 2014. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J. Hepatol. 60:110–17 [Google Scholar]
  87. Sanches SC, Ramalho LN, Augusto MJ, da Silva DM, Ramalho FS. 87.  2015. Nonalcoholic steatohepatitis: a search for factual animal models. Biomed. Res. Int. 2015:574832 [Google Scholar]
  88. Mayer J, Bates MW, Dickie MM. 88.  1951. Hereditary diabetes in genetically obese mice. Science 113:746–47 [Google Scholar]
  89. Leclercq IA, Field J, Farrell GC. 89.  2003. Leptin-specific mechanisms for impaired liver regeneration in ob/ob mice after toxic injury. Gastroenterology 124:1451–64 [Google Scholar]
  90. Chalasani N, Crabb DW, Cummings OW, Kwo PY, Asghar A. 90.  et al. 2003. Does leptin play a role in the pathogenesis of human nonalcoholic steatohepatitis?. Am. J. Gastroenterol. 98:2771–76 [Google Scholar]
  91. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X. 91.  et al. 1996. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–95 [Google Scholar]
  92. Maehama T, Dixon JE. 92.  1998. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273:13375–78 [Google Scholar]
  93. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K. 93.  et al. 2004. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Investig. 113:1774–83 [Google Scholar]
  94. Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander-Tetri BA. 94.  2008. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am. J. Physiol. Gastrointest. Liver Physiol. 295:G987–95 [Google Scholar]
  95. Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE. 95.  et al. 2010. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 52:934–44 [Google Scholar]
  96. Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T. 96.  et al. 2007. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46:1392–403 [Google Scholar]
  97. Van Rooyen DM, Larter CZ, Haigh WG, Yeh MM, Ioannou G. 97.  et al. 2011. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 141:1393–403, 1403.e1–5 [Google Scholar]
  98. Gao D, Wei C, Chen L, Huang J, Yang S, Diehl AM. 98.  2004. Oxidative DNA damage and DNA repair enzyme expression are inversely related in murine models of fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G1070–77 [Google Scholar]
  99. Kirsch R, Clarkson V, Shephard EG, Marais DA, Jaffer MA. 99.  et al. 2003. Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J. Gastroenterol. Hepatol. 18:1272–82 [Google Scholar]
  100. Weltman MD, Farrell GC, Liddle C. 100.  1996. Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology 111:1645–53 [Google Scholar]
  101. Denda A, Kitayama W, Kishida H, Murata N, Tsutsumi M. 101.  et al. 2002. Development of hepatocellular adenomas and carcinomas associated with fibrosis in C57BL/6J male mice given a choline-deficient, L-amino acid–defined diet. Jpn. J. Cancer Res. 93:125–32 [Google Scholar]
  102. De Minicis S, Agostinelli L, Rychlicki C, Sorice GP, Saccomanno S. 102.  et al. 2014. HCC development is associated to peripheral insulin resistance in a mouse model of NASH. PLOS ONE 9:e97136 [Google Scholar]
  103. Anstee QM, Goldin RD. 103.  2006. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 87:1–16 [Google Scholar]
  104. Anstee QM, Targher G, Day CP. 104.  2013. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. 10:330–44 [Google Scholar]
  105. Samuel VT, Petersen KF, Shulman GI. 105.  2010. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267–77 [Google Scholar]
  106. Anstee QM, Day CP. 106.  2013. The genetics of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 10:645–55 [Google Scholar]
  107. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. 107.  2010. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11:467–78 [Google Scholar]
  108. Yamaguchi K, Yang L, McCall S, Huang J, Yu XX. 108.  et al. 2007. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45:1366–74 [Google Scholar]
  109. Malhi H, Gores GJ, Lemasters JJ. 109.  2006. Apoptosis and necrosis in the liver: a tale of two deaths?. Hepatology 43:S31–44 [Google Scholar]
  110. Farrell GC, Larter CZ, Hou JY, Zhang RH, Yeh MM. 110.  et al. 2009. Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression. J. Gastroenterol. Hepatol. 24:443–52 [Google Scholar]
  111. Anstee QM, Concas D, Kudo H, Levene A, Pollard J. 111.  et al. 2010. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J. Hepatol. 53:542–50 [Google Scholar]
  112. Iredale JP. 112.  2007. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Investig. 117:539–48 [Google Scholar]
  113. Mansbach CM II, Gorelick F. 113.  2007. Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am. J. Physiol. Gastrointest. Liver Physiol. 293:G645–50 [Google Scholar]
  114. Merkel M, Eckel RH, Goldberg IJ. 114.  2002. Lipoprotein lipase: genetics, lipid uptake, and regulation. J. Lipid Res. 43:1997–2006 [Google Scholar]
  115. Matherly SC, Puri P. 115.  2012. Mechanisms of simple hepatic steatosis: not so simple after all. Clin. Liver Dis. 16:505–24 [Google Scholar]
  116. Cha JY, Repa JJ. 116.  2007. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J. Biol. Chem. 282:743–51 [Google Scholar]
  117. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM. 117.  et al. 2000. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 14:2819–30 [Google Scholar]
  118. Mitro N, Mak PA, Vargas L, Godio C, Hampton E. 118.  et al. 2007. The nuclear receptor LXR is a glucose sensor. Nature 445:219–23 [Google Scholar]
  119. Vacca M, Degirolamo C, Mariani-Costantini R, Palasciano G, Moschetta A. 119.  2011. Lipid-sensing nuclear receptors in the pathophysiology and treatment of the metabolic syndrome. Wiley Interdiscip. Rev. Syst. Biol. Med. 3:562–87 [Google Scholar]
  120. Neuschwander-Tetri BA. 120.  2010. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 52:774–88 [Google Scholar]
  121. Sato R, Miyamoto W, Inoue J, Terada T, Imanaka T, Maeda M. 121.  1999. Sterol regulatory element-binding protein negatively regulates microsomal triglyceride transfer protein gene transcription. J. Biol. Chem. 274:24714–20 [Google Scholar]
  122. Berk PD. 122.  2008. Regulatable fatty acid transport mechanisms are central to the pathophysiology of obesity, fatty liver, and metabolic syndrome. Hepatology 48:1362–76 [Google Scholar]
  123. Hubbard B, Doege H, Punreddy S, Wu H, Huang X. 123.  et al. 2006. Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation and are protected from obesity. Gastroenterology 130:1259–69 [Google Scholar]
  124. Doege H, Grimm D, Falcon A, Tsang B, Storm TA. 124.  et al. 2008. Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver disease and improves hyperglycemia. J. Biol. Chem. 283:22186–92 [Google Scholar]
  125. Berlanga A, Guiu-Jurado E, Porras JA, Auguet T. 125.  2014. Molecular pathways in non-alcoholic fatty liver disease. Clin. Exp. Gastroenterol. 7:221–39 [Google Scholar]
  126. Greco D, Kotronen A, Westerbacka J, Puig O, Arkkila P. 126.  et al. 2008. Gene expression in human NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G1281–87 [Google Scholar]
  127. Bechmann LP, Gieseler RK, Sowa JP, Kahraman A, Erhard J. 127.  et al. 2010. Apoptosis is associated with CD36/fatty acid translocase upregulation in non-alcoholic steatohepatitis. Liver Int. 30:850–59 [Google Scholar]
  128. McGarry JD, Brown NF. 128.  1997. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 244:1–14 [Google Scholar]
  129. Rogue A, Renaud MP, Claude N, Guillouzo A, Spire C. 129.  2011. Comparative gene expression profiles induced by PPARγ and PPARα/γ agonists in rat hepatocytes. Toxicol. Appl. Pharmacol. 254:18–31 [Google Scholar]
  130. Reddy JK. 130.  2001. Nonalcoholic steatosis and steatohepatitis. III. Peroxisomal β-oxidation, PPARα, and steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 281:G1333–39 [Google Scholar]
  131. Nguyen P, Leray V, Diez M, Serisier S, Le Bloc'h J. 131.  et al. 2008. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 92:272–83 [Google Scholar]
  132. Dentin R, Girard J, Postic C. 132.  2005. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87:81–86 [Google Scholar]
  133. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. 133.  2005. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 115:1343–51 [Google Scholar]
  134. Dries DR, Gallegos LL, Newton AC. 134.  2007. A single residue in the C1 domain sensitizes novel protein kinase C isoforms to cellular diacylglycerol production. J. Biol. Chem. 282:826–30 [Google Scholar]
  135. Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG. 135.  et al. 2007. Inhibition of protein kinase Cε prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Investig. 117:739–45 [Google Scholar]
  136. Kumashiro N, Erion DM, Zhang D, Kahn M, Beddow SA. 136.  et al. 2011. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. PNAS 108:16381–85 [Google Scholar]
  137. Fain JN, Bahouth SW, Madan AK. 137.  2004. TNFα release by the nonfat cells of human adipose tissue. Int. J. Obes. Relat. Metab. Disord. 28:616–22 [Google Scholar]
  138. Sabio G, Das M, Mora A, Zhang Z, Jun JY. 138.  et al. 2008. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322:1539–43 [Google Scholar]
  139. Bruun JM, Lihn AS, Pedersen SB, Richelsen B. 139.  2005. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J. Clin. Endocrinol. Metab. 90:2282–89 [Google Scholar]
  140. Yamauchi T, Hara K, Kubota N, Terauchi Y, Tobe K. 140.  et al. 2003. Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Curr. Drug Targets Immune Endocr. Metab. Disord. 3:243–54 [Google Scholar]
  141. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. 141.  2006. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 116:1784–92 [Google Scholar]
  142. Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. 142.  2003. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Investig. 112:91–100 [Google Scholar]
  143. Matsubara M. 143.  2004. Plasma adiponectin decrease in women with nonalcoholic fatty liver. Endocr. J. 51:587–93 [Google Scholar]
  144. Andreelli F, Foretz M, Knauf C, Cani PD, Perrin C. 144.  et al. 2006. Liver adenosine monophosphate-activated kinase-α2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 147:2432–41 [Google Scholar]
  145. Rabe K, Lehrke M, Parhofer KG, Broedl UC. 145.  2008. Adipokines and insulin resistance. Mol. Med. 14:741–51 [Google Scholar]
  146. Myers MG, Cowley MA, Munzberg H. 146.  2008. Mechanisms of leptin action and leptin resistance. Annu. Rev. Physiol. 70:537–56 [Google Scholar]
  147. Seol W, Choi HS, Moore DD. 147.  1995. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 9:72–85 [Google Scholar]
  148. Forman BM, Goode E, Chen J, Oro AE, Bradley DJ. 148.  et al. 1995. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81:687–93 [Google Scholar]
  149. Caron S, Huaman Samanez C, Dehondt H, Ploton M, Briand O. 149.  et al. 2013. Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. Mol. Cell. Biol. 33:2202–11 [Google Scholar]
  150. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. 150.  2009. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89:147–91 [Google Scholar]
  151. Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart JC, Staels B. 151.  2003. Bile acids induce the expression of the human peroxisome proliferator-activated receptor α gene via activation of the farnesoid X receptor. Mol. Endocrinol. 17:259–72 [Google Scholar]
  152. Claudel T, Inoue Y, Barbier O, Duran-Sandoval D, Kosykh V. 152.  et al. 2003. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 125:544–55 [Google Scholar]
  153. Lefebvre P, Staels B. 153.  2014. Failing FXR expression in the liver links aging to hepatic steatosis. J. Hepatol. 60:689–90 [Google Scholar]
  154. Anstee QM, Daly AK, Day CP. 154.  2011. Genetic modifiers of non-alcoholic fatty liver disease progression. Biochim. Biophys. Acta 1812:1557–66 [Google Scholar]
  155. Li ZZ, Berk M, McIntyre TM, Feldstein AE. 155.  2009. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J. Biol. Chem. 284:5637–44 [Google Scholar]
  156. Mari M, Caballero F, Colell A, Morales A, Caballeria J. 156.  et al. 2006. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 4:185–98 [Google Scholar]
  157. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J. 157.  et al. 2007. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46:1081–90 [Google Scholar]
  158. Robertson G, Leclercq I, Farrell GC. 158.  2001. Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress. Am. J. Physiol. Gastrointest. Liver Physiol. 281:G1135–39 [Google Scholar]
  159. Dentin R. 159.  2006. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55:2159–70 [Google Scholar]
  160. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ. 160.  et al. 2001. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120:1183–92 [Google Scholar]
  161. George J, Pera N, Phung N, Leclercq I, Yun Hou J, Farrell G. 161.  2003. Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J. Hepatol. 39:756–64 [Google Scholar]
  162. Todd DJ, Lee AH, Glimcher LH. 162.  2008. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat. Rev. Immunol. 8:663–74 [Google Scholar]
  163. Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW. 163.  et al. 2008. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134:568–76 [Google Scholar]
  164. Tilg H, Moschen AR. 164.  2010. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:1836–46 [Google Scholar]
  165. Hotamisligil GS. 165.  2010. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–17 [Google Scholar]
  166. Wei Y, Wang D, Topczewski F, Pagliassotti MJ. 166.  2006. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am. J. Physiol. Endocrinol. Metab. 291:E275–81 [Google Scholar]
  167. Wei Y, Wang D, Pagliassotti MJ. 167.  2007. Saturated fatty acid-mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells. Mol. Cell. Biochem. 303:105–13 [Google Scholar]
  168. Medzhitov R. 168.  2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1:135–45 [Google Scholar]
  169. Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. 169.  2007. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J. Hepatol. 47:571–79 [Google Scholar]
  170. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C. 170.  et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–72 [Google Scholar]
  171. Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. 171.  1997. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. PNAS 94:2557–62 [Google Scholar]
  172. Hritz I, Mandrekar P, Velayudham A, Catalano D, Dolganiuc A. 172.  et al. 2008. The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology 48:1224–31 [Google Scholar]
  173. Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T. 173.  et al. 2010. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1β in mice. Gastroenterology 139:323–34.e7 [Google Scholar]
  174. Petrasek J, Dolganiuc A, Csak T, Kurt-Jones EA, Szabo G. 174.  2011. Type I interferons protect from Toll-like receptor 9-associated liver injury and regulate IL-1 receptor antagonist in mice. Gastroenterology 140:697–708.e4 [Google Scholar]
  175. Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. 175.  2013. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57:577–89 [Google Scholar]
  176. Rivera CA, Gaskin L, Allman M, Pang J, Brady K. 176.  et al. 2010. Toll-like receptor-2 deficiency enhances non-alcoholic steatohepatitis. BMC Gastroenterol. 10:52 [Google Scholar]
  177. Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ. 177.  et al. 2003. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125:437–43 [Google Scholar]
  178. Malhi H, Barreyro FJ, Isomoto H, Bronk SF, Gores GJ. 178.  2007. Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity. Gut 56:1124–31 [Google Scholar]
  179. Crespo J, Cayon A, Fernandez-Gil P, Hernandez-Guerra M, Mayorga M. 179.  et al. 2001. Gene expression of tumor necrosis factor αand TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 34:1158–63 [Google Scholar]
  180. McClain CJ, Barve S, Deaciuc I. 180.  2007. Good fat/bad fat. Hepatology 45:1343–46 [Google Scholar]
  181. Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF. 181.  et al. 2004. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology 40:185–94 [Google Scholar]
  182. Li Z, Berk M, McIntyre TM, Gores GJ, Feldstein AE. 182.  2008. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 47:1495–503 [Google Scholar]
  183. Feldstein AE, Werneburg NW, Li Z, Bronk SF, Gores GJ. 183.  2006. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G1339–46 [Google Scholar]
  184. Wieckowska A, Zein NN, Yerian LM, Lopez AR, McCullough AJ, Feldstein AE. 184.  2006. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology 44:27–33 [Google Scholar]
  185. Witek RP, Stone WC, Karaca FG, Syn WK, Pereira TA. 185.  et al. 2009. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 50:1421–30 [Google Scholar]
  186. Malhi H, Guicciardi ME, Gores GJ. 186.  2010. Hepatocyte death: a clear and present danger. Physiol. Rev. 90:1165–94 [Google Scholar]
  187. Gautheron J, Vucur M, Reisinger F, Cardenas DV, Roderburg C. 187.  et al. 2014. A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol. Med. 6:1062–74 [Google Scholar]
  188. Petrasek J, Bala S, Csak T, Lippai D, Kodys K. 188.  et al. 2012. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Investig. 122:3476–89 [Google Scholar]
  189. Wree A, Eguchi A, McGeough MD, Pena CA, Johnson CD. 189.  et al. 2014. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59:898–910 [Google Scholar]
  190. Amir M, Czaja MJ. 190.  2011. Autophagy in nonalcoholic steatohepatitis. Expert Rev. Gastroenterol. Hepatol. 5:159–66 [Google Scholar]
  191. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I. 191.  et al. 2009. Autophagy regulates lipid metabolism. Nature 458:1131–35 [Google Scholar]
  192. Kim I, Rodriguez-Enriquez S, Lemasters JJ. 192.  2007. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462:245–53 [Google Scholar]
  193. Mei S, Ni HM, Manley S, Bockus A, Kassel KM. 193.  et al. 2011. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J. Pharmacol. Exp. Ther. 339:487–98 [Google Scholar]
  194. Hernandez-Gea V, Friedman SL. 194.  2011. Pathogenesis of liver fibrosis. Annu. Rev. Pathol. 6:425–56 [Google Scholar]
  195. Lomonaco R, Ortiz-Lopez C, Orsak B, Webb A, Hardies J. 195.  et al. 2012. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology 55:1389–97 [Google Scholar]
  196. Leclercq IA, Farrell GC, Schriemer R, Robertson GR. 196.  2002. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J. Hepatol. 37:206–13 [Google Scholar]
  197. Marra F. 197.  2007. Leptin and liver tissue repair: Do rodent models provide the answers?. J. Hepatol. 46:12–18 [Google Scholar]
  198. Jiang JX, Mikami K, Shah VH, Torok NJ. 198.  2008. Leptin induces phagocytosis of apoptotic bodies by hepatic stellate cells via a Rho guanosine triphosphatase-dependent mechanism. Hepatology 48:1497–505 [Google Scholar]
  199. Ding X, Saxena NK, Lin S, Xu A, Srinivasan S, Anania FA. 199.  2005. The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am. J. Pathol. 166:1655–69 [Google Scholar]
  200. Wang J, Leclercq I, Brymora JM, Xu N, Ramezani-Moghadam M. 200.  et al. 2009. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology 137:713–23 [Google Scholar]
  201. Kamada Y, Tamura S, Kiso S, Matsumoto H, Saji Y. 201.  et al. 2003. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 125:1796–807 [Google Scholar]
  202. Caligiuri A, Bertolani C, Guerra CT, Aleffi S, Galastri S. 202.  et al. 2008. Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells. Hepatology 47:668–76 [Google Scholar]
  203. Lanthier N, Horsmans Y, Leclercq IA. 203.  2009. The metabolic syndrome: how it may influence hepatic stellate cell activation and hepatic fibrosis. Curr. Opin. Clin. Nutr. Metab. Care 12:404–11 [Google Scholar]
  204. Oakley F, Teoh V, Ching ASG, Bataller R, Colmenero J. 204.  et al. 2009. Angiotensin II activates I kappaB kinase phosphorylation of RelA at Ser 536 to promote myofibroblast survival and liver fibrosis. Gastroenterology 136:2334–44.e1 [Google Scholar]
  205. Paradis V, Perlemuter G, Bonvoust F, Dargere D, Parfait B. 205.  et al. 2001. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology 34:738–44 [Google Scholar]
  206. Miyahara T, Schrum L, Rippe R, Xiong S, Yee HF Jr. 206.  2000. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J. Biol. Chem. 275:35715–22 [Google Scholar]
  207. Marra F, Efsen E, Romanelli RG, Caligiuri A, Pastacaldi S. 207.  et al. 2000. Ligands of peroxisome proliferator–activated receptor γ modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology 119:466–78 [Google Scholar]
  208. Moran-Salvador E, Titos E, Rius B, Gonzalez-Periz A, Garcia-Alonso V. 208.  et al. 2013. Cell-specific PPARγ deficiency establishes anti-inflammatory and anti-fibrogenic properties for this nuclear receptor in non-parenchymal liver cells. J. Hepatol. 59:1045–53 [Google Scholar]
  209. Staels B, Rubenstrunk A, Noel B, Rigou G, Delataille P. 209.  et al. 2013. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 58:1941–52 [Google Scholar]
  210. Wagner M, Zollner G, Trauner M. 210.  2008. Nuclear bile acid receptor farnesoid X receptor meets nuclear factor-kappaB: new insights into hepatic inflammation. Hepatology 48:1383–86 [Google Scholar]
  211. Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. 211.  2008. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 48:1632–43 [Google Scholar]
  212. Zhang S, Wang J, Liu Q, Harnish DC. 212.  2009. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J. Hepatol. 51:380–88 [Google Scholar]
  213. Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU. 213.  et al. 2013. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145:574–82.e1 [Google Scholar]
  214. Tomita K, Teratani T, Suzuki T, Shimizu M, Sato H. 214.  et al. 2014. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology 59:154–69 [Google Scholar]
  215. Van Rooyen DM, Gan LT, Yeh MM, Haigh WG, Larter CZ. 215.  et al. 2013. Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J. Hepatol. 59:144–52 [Google Scholar]
  216. Teixeira-Clerc F, Julien B, Grenard P, Tran Van Nhieu J, Deveaux V. 216.  et al. 2006. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat. Med. 12:671–76 [Google Scholar]
  217. Julien B, Grenard P, Teixeira-Clerc F, Van Nhieu JT, Li L. 217.  et al. 2005. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 128:742–55 [Google Scholar]
  218. Campisi J, d'Adda di Fagagna F. 218.  2007. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8:729–40 [Google Scholar]
  219. Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U. 219.  2007. Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev. 128:36–44 [Google Scholar]
  220. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J. 220.  et al. 2010. Fat tissue, aging, and cellular senescence. Aging Cell 9:667–84 [Google Scholar]
  221. Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F. 221.  et al. 2012. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras–induced DNA damage and subsequent senescence. Oncogene 31:1117–29 [Google Scholar]
  222. Burton DG. 222.  2009. Cellular senescence, ageing and disease. Age 31:1–9 [Google Scholar]
  223. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J. 223.  et al. 2008. Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–67 [Google Scholar]
  224. Aravinthan A, Scarpini C, Tachtatzis P, Verma S, Penrhyn-Lowe S. 224.  et al. 2013. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J. Hepatol. 58:549–56 [Google Scholar]
  225. Choi SS, Omenetti A, Witek RP, Moylan CA, Syn WK. 225.  et al. 2009. Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 297:G1093–106 [Google Scholar]
  226. Choi SS, Omenetti A, Syn WK, Diehl AM. 226.  2011. The role of Hedgehog signaling in fibrogenic liver repair. Int. J. Biochem. Cell Biol. 43:238–44 [Google Scholar]
  227. Syn WK, Jung Y, Omenetti A, Abdelmalek M, Guy CD. 227.  et al. 2009. Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology 137:1478–88.e8 [Google Scholar]
  228. Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI. 228.  et al. 2012. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142:938–46 [Google Scholar]
  229. Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. 229.  2012. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol. 302:G1310–21 [Google Scholar]
  230. Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M. 230.  et al. 2012. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61:416–26 [Google Scholar]
  231. Baeck C, Wei X, Bartneck M, Fech V, Heymann F. 231.  et al. 2014. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice. Hepatology 59:1060–72 [Google Scholar]
  232. Hirschhorn JN, Daly MJ. 232.  2005. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6:95–108 [Google Scholar]
  233. Schwimmer JB, Celedon MA, Lavine JE, Salem R, Campbell N. 233.  et al. 2009. Heritability of nonalcoholic fatty liver disease. Gastroenterology 136:1585–92 [Google Scholar]
  234. Makkonen J, Pietilainen KH, Rissanen A, Kaprio J, Yki-Jarvinen H. 234.  2009. Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: a study in monozygotic and dizygotic twins. J. Hepatol. 50:1035–42 [Google Scholar]
  235. Bambha K, Belt P, Abraham M, Wilson LA, Pabst M. 235.  et al. 2012. Ethnicity and nonalcoholic fatty liver disease. Hepatology 55:769–80 [Google Scholar]
  236. Wang WY, Barratt BJ, Clayton DG, Todd JA. 236.  2005. Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6:109–18 [Google Scholar]
  237. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D. 237.  et al. 2008. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40:1461–65 [Google Scholar]
  238. Yuan X, Waterworth D, Perry JR, Lim N, Song K. 238.  et al. 2008. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am. J. Hum. Genet. 83:520–28 [Google Scholar]
  239. Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ. 239.  et al. 2011. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLOS Genet. 7:e1001324 [Google Scholar]
  240. Chambers JC, Zhang W, Sehmi J, Li X, Wass MN. 240.  et al. 2011. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet. 43:1131–38 [Google Scholar]
  241. Feitosa MF, Wojczynski MK, North KE, Zhang Q, Province MA. 241.  et al. 2013. The ERLIN1-CHUK-CWF19L1 gene cluster influences liver fat deposition and hepatic inflammation in the NHLBI Family Heart Study. Atherosclerosis 228:175–80 [Google Scholar]
  242. Valenti L, Al-Serri A, Daly AK, Galmozzi E, Rametta R. 242.  et al. 2010. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 51:1209–17 [Google Scholar]
  243. Rotman Y, Koh C, Zmuda JM, Kleiner DE, Liang TJ, Nash CRN. 243.  2010. The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology 52:894–903 [Google Scholar]
  244. Kollerits B, Coassin S, Kiechl S, Hunt SC, Paulweber B. 244.  et al. 2010. A common variant in the adiponutrin gene influences liver enzyme values. J. Med. Genet. 47:116–19 [Google Scholar]
  245. Liu YL, Patman GL, Leathart JB, Piguet AC, Burt AD. 245.  et al. 2014. Carriage of the PNPLA3 rs738409 C > G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J. Hepatol. 61:75–81 [Google Scholar]
  246. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R. 246.  et al. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–86 [Google Scholar]
  247. Rydel TJ, Williams JM, Krieger E, Moshiri F, Stallings WC. 247.  et al. 2003. The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a Ser-Asp catalytic dyad. Biochemistry 42:6696–708 [Google Scholar]
  248. He S, McPhaul C, Li JZ, Garuti R, Kinch L. 248.  et al. 2010. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285:6706–15 [Google Scholar]
  249. Romeo S, Sentinelli F, Dash S, Yeo GS, Savage DB. 249.  et al. 2010. Morbid obesity exposes the association between PNPLA3 I148M (rs738409) and indices of hepatic injury in individuals of European descent. Int. J. Obes. 34:190–94 [Google Scholar]
  250. Pirazzi C, Adiels M, Burza MA, Mancina RM, Levin M. 250.  et al. 2012. Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. J. Hepatol. 57:1276–82 [Google Scholar]
  251. Lake AC, Sun Y, Li JL, Kim JE, Johnson JW. 251.  et al. 2005. Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members. J. Lipid Res. 46:2477–87 [Google Scholar]
  252. Wilson PA, Gardner SD, Lambie NM, Commans SA, Crowther DJ. 252.  2006. Characterization of the human patatin-like phospholipase family. J. Lipid Res. 47:1940–49 [Google Scholar]
  253. Kotronen A, Johansson LE, Johansson LM, Roos C, Westerbacka J. 253.  et al. 2009. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia 52:1056–60 [Google Scholar]
  254. Huang Y, He S, Li JZ, Seo YK, Osborne TF. 254.  et al. 2010. A feed-forward loop amplifies nutritional regulation of PNPLA3. PNAS 107:7892–97 [Google Scholar]
  255. Chen W, Chang B, Li L, Chan L. 255.  2010. Patatin-like phospholipase domain–containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology 52:1134–42 [Google Scholar]
  256. Li JZ, Huang Y, Karaman R, Ivanova PT, Brown HA. 256.  et al. 2012. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J. Clin. Investig. 122:4130–44 [Google Scholar]
  257. Basantani MK, Sitnick MT, Cai L, Brenner DS, Gardner NP. 257.  et al. 2011. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J. Lipid Res. 52:2318–29 [Google Scholar]
  258. Perttilä J, Huaman-Samanez C, Caron S, Tanhuanpää K, Staels B. 258.  et al. 2012. PNPLA3 is regulated by glucose in human hepatocytes, and its I148M mutant slows down triglyceride hydrolysis. Am. J. Physiol. Endocrinol. Metab. 302:9E1063–69 [Google Scholar]
  259. Kumari M, Schoiswohl G, Chitraju C, Paar M, Cornaciu I. 259.  et al. 2012. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 15:5691–702 [Google Scholar]
  260. Pirazzi C, Valenti L, Motta BM, Pingitore P, Hedfalk K. 260.  et al. 2014. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum. Mol. Genet. 23:4077–85 [Google Scholar]
  261. Jha P, Claudel T, Baghdasaryan A, Mueller M, Halilbasic E. 261.  et al. 2014. Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia. Hepatology 59:858–69 [Google Scholar]
  262. Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PR. 262.  et al. 2009. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum. Mol. Genet. 18:4081–88 [Google Scholar]
  263. Valenti L, Alisi A, Nobili V. 263.  2012. Unraveling the genetics of fatty liver in obese children: additive effect of P446L GCKR and I148M PNPLA3 polymorphisms. Hepatology 55:661–63 [Google Scholar]
  264. Palmer ND, Musani SK, Yerges-Armstrong LM, Feitosa MF, Bielak LF. 264.  et al. 2013. Characterization of European ancestry nonalcoholic fatty liver disease–associated variants in individuals of African and Hispanic descent. Hepatology 58:966–75 [Google Scholar]
  265. Kozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH. 265.  et al. 2014. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46:352–56 [Google Scholar]
  266. Holmen OL, Zhang H, Fan Y, Hovelson DH, Schmidt EM. 266.  et al. 2014. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat. Genet. 46:345–51 [Google Scholar]
  267. Liu YL, Reeves HL, Burt AD, Tiniakos D, McPherson S. 267.  et al. 2014. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 5:4309 [Google Scholar]
  268. Dongiovanni P, Petta S, Maglio C, Fracanzani AL, Pipitone R. 268.  et al. 2015. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 61:506–14 [Google Scholar]
  269. Sookoian S, Castano GO, Scian R, Mallardi P, Fernandez Gianotti T. 269.  et al. 2015. Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology 61:515–25 [Google Scholar]
  270. Wong VW, Vergniol J, Wong GL, Foucher J, Chan HL. 270.  et al. 2010. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 51:454–62 [Google Scholar]
  271. Teratani T, Tomita K, Suzuki T, Oshikawa T, Yokoyama H. 271.  et al. 2012. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 142:152–64.e10 [Google Scholar]
  272. Mann DA. 272.  2014. Epigenetics in liver disease. Hepatology 60:1418–25 [Google Scholar]
  273. Mann J, Chu DC, Maxwell A, Oakley F, Zhu NL. 273.  et al. 2010. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology 138:705–14, 714.e1–4 [Google Scholar]
  274. Zeybel M, Hardy T, Wong YK, Mathers JC, Fox CR. 274.  et al. 2012. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat. Med. 18:1369–77 [Google Scholar]
  275. Murphy SK, Yang H, Moylan CA, Pang H, Dellinger A. 275.  et al. 2013. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology 145:1076–87 [Google Scholar]
  276. Zeybel M, Hardy T, Robinson SM, Fox C, Anstee QM. 276.  et al. 2015. Differential DNA methylation of genes involved in fibrosis progression in non-alcoholic fatty liver disease and alcoholic liver disease. Clin. Epigenet. 725
  277. Esau C, Davis S, Murray SF, Yu XX, Pandey SK. 277.  et al. 2006. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3:87–98 [Google Scholar]
  278. Sekiya M, Yahagi N, Matsuzaka T, Najima Y, Nakakuki M. 278.  et al. 2003. Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology 38:1529–39 [Google Scholar]
  279. Dentin R, Benhamed F, Pegorier JP, Foufelle F, Viollet B. 279.  et al. 2005. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J. Clin. Investig. 115:2843–54 [Google Scholar]
  280. Parker HM, Johnson NA, Burdon CA, Cohn JS, O'Connor HT, George J. 280.  2012. Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J. Hepatol. 56:944–51 [Google Scholar]
  281. Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M. 281.  et al. 2004. Increase in long-chain polyunsaturated fatty acid n − 6/n − 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. 106:635–43 [Google Scholar]
  282. Abid A, Taha O, Nseir W, Farah R, Grosovski M, Assy N. 282.  2009. Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. J. Hepatol. 51:918–24 [Google Scholar]
  283. Abdelmalek MF, Suzuki A, Guy C, Unalp-Arida A, Colvin R. 283.  et al. 2010. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51:1961–71 [Google Scholar]
  284. Bergheim I, Weber S, Vos M, Kramer S, Volynets V. 284.  et al. 2008. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J. Hepatol. 48:983–92 [Google Scholar]
  285. Lee JH, Wada T, Febbraio M, He JH, Matsubara T. 285.  et al. 2010. A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. Gastroenterology 139:653–63 [Google Scholar]
  286. Peters RL. 286.  1977. Patterns of hepatic morphology in jejunoileal bypass patients. Am. J. Clin. Nutr. 30:53–57 [Google Scholar]
  287. Drenick EJ, Fisler J, Johnson D. 287.  1982. Hepatic steatosis after intestinal bypass—prevention and reversal by metronidazole, irrespective of protein-calorie malnutrition. Gastroenterology 82:535–48 [Google Scholar]
  288. Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. 288.  2001. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor α in the pathogenesis of non-alcoholic steatohepatitis. Gut 48:206–11 [Google Scholar]
  289. Zietz B, Lock G, Straub RH, Braun B, Scholmerich J, Palitzsch KD. 289.  2000. Small-bowel bacterial overgrowth in diabetic subjects is associated with cardiovascular autonomic neuropathy. Diabetes Care 23:1200–1 [Google Scholar]
  290. Ruiz AG, Casafont F, Crespo J, Cayon A, Mayorga M. 290.  et al. 2007. Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes. Surg. 17:1374–80 [Google Scholar]
  291. Miele L, Valenza V, La Torre G, Montalto M, Cammarota G. 291.  et al. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49:1877–87 [Google Scholar]
  292. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA. 292.  et al. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–57 [Google Scholar]
  293. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ. 293.  et al. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–85 [Google Scholar]
  294. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 294.  2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31 [Google Scholar]
  295. Backhed F, Ding H, Wang T, Hooper LV, Koh GY. 295.  et al. 2004. The gut microbiota as an environmental factor that regulates fat storage. PNAS 101:15718–23 [Google Scholar]
  296. Backhed F, Manchester JK, Semenkovich CF, Gordon JI. 296.  2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. PNAS 104:979–84 [Google Scholar]
  297. Vernia P, Marcheggiano A, Caprilli R, Frieri G, Corrao G. 297.  et al. 1995. Short-chain acid topical treatment in distal ulcerative-colitis. Aliment. Pharmacol. Ther. 9:309–13 [Google Scholar]
  298. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F. 298.  et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–886 [Google Scholar]
  299. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F. 299.  et al. 2008. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. PNAS 105:16767–72 [Google Scholar]
  300. Blumberg H, McCollum EV. 300.  1941. The prevention by choline of liver cirrhosis in rats on high fat, low protein diets. Science 93:598–99 [Google Scholar]
  301. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C. 301.  et al. 2006. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. PNAS 103:12511–16 [Google Scholar]
  302. Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK. 302.  et al. 2013. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58:120–27 [Google Scholar]
  303. Zhu LX, Baker SS, Gill C, Liu WS, Alkhouri RH. 303.  et al. 2013. Characterization of the gut microbiomes in non-alcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57:601–9 [Google Scholar]
  304. De Minicis S, Rychlicki C, Agostinelli L, Saccomanno S, Trozzi L. 304.  et al. 2014. Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology 59:1738–49 [Google Scholar]
  305. Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK. 305.  et al. 2012. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21:504–16 [Google Scholar]
/content/journals/10.1146/annurev-pathol-012615-044224
Loading
/content/journals/10.1146/annurev-pathol-012615-044224
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error