Bronchiectasis is a disorder of persistent lung inflammation and recurrent infection, defined by a common pathological end point: irreversible bronchial dilatation arrived at through diverse etiologies. This suggests an interplay between immunogenetic susceptibility, immune dysregulation, bacterial infection, and lung damage. The damaged epithelium impairs mucus removal and facilitates bacterial infection with increased cough, sputum production, and airflow obstruction. Lung infection is caused by respiratory bacterial and fungal pathogens, including , , , and nontuberculous mycobacteria. Recent studies have highlighted the relationship between the lung microbiota and microbial-pathogen niches. Disease may result from environments favoring interleukin-17-driven neutrophilia. Bronchiectasis may present in autoimmune disease, as well as conditions of immune dysregulation, such as combined variable immune deficiency, transporter associated with antigen processing–deficiency syndrome, and hyperimmunoglobulin E syndrome. Differences in prevalence across geography and ethnicity implicate an etiological mix of genetics and environment underpinning susceptibility.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Pasteur MC, Bilton D, Hill AT. 1.  British Thoracic Society Bronchiectasis Non-CF Guideline Group 2010. British Thoracic Society guideline for non-CF bronchiectasis. Thorax 65:577 [Google Scholar]
  2. Wilson R, Boyton RJ. 2.  2006. Bronchiectasis. Encyclopedia of Respiratory Medicine 1 GJ Laurent, SD Shapiro 259–68 Oxford, UK: Elsevier [Google Scholar]
  3. Boyton RJ, Altmann DM. 3.  2012. Immune regulation in idiopathic bronchiectasis. Ann. N. Y. Acad. Sci. 1272:68–72 [Google Scholar]
  4. Boyton RJ. 4.  2009. Regulation of immunity in bronchiectasis. Med. Mycol. 47:Suppl. 1S175–82 [Google Scholar]
  5. Pasteur MC, Helliwell SM, Houghton SJ, Webb SC, Foweraker JE. 5.  et al. 2000. An investigation into causative factors in patients with bronchiectasis. Am. J. Respir. Crit. Care Med. 162:1277–84 [Google Scholar]
  6. Laënnec RTH. 6.  1819. De l'auscultation médiate ou Traité du Diagnostic des Maladies des Poumon et du Coeur Paris: Brosson & Chaudé, 1st ed..The “father of the stethoscope” includes remarkably timeless and accurate descriptions of bronchiectasis.
  7. Hasse CE. 7.  1846. An Anatomical Description of the Diseases of the Organs of Circulation and Respiration Transl. and ed. WE Swaine London: Sydenham Soc.
  8. Wall C, Hoyle JC. 8.  1933. Observations on dry bronchiectasis. BMJ 1:597 [Google Scholar]
  9. Cole PJ. 9.  1986. Inflammation: a two-edged sword—the model of bronchiectasis. Eur. J. Respir. Dis. Suppl. 147:6–15Cole's vicious-cycle hypothesis remains the bedrock of subsequent mechanistic iterations. [Google Scholar]
  10. Cole P. 10.  1989. Host-microbe relationships in chronic respiratory infection. Respiration 55:Suppl. 15–8 [Google Scholar]
  11. Tunney MM, Einarsson GG, Wei L, Drain M, Klem ER. 11.  et al. 2013. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am. J. Respir. Crit. Care Med. 187:1118–26Using 16S rRNA microbiota sequencing in bronchiectasis brought new perspectives on microbial relationships in the lung. [Google Scholar]
  12. Boyton RJ, Reynolds CJ, Quigley KJ, Altmann DM. 12.  2013. Immune mechanisms and the impact of the disrupted lung microbiome in chronic bacterial lung infection and bronchiectasis. Clin. Exp. Immunol. 171:117–23 [Google Scholar]
  13. Rogers GB, van der Gast CJ, Cuthbertson L, Thomson SK, Bruce KD. 13.  et al. 2013. Clinical measures of disease in adult non-CF bronchiectasis correlate with airway microbiota composition. Thorax 68:731–37 [Google Scholar]
  14. Rogers GB, Zain NM, Bruce KD, Burr LD, Chen AC. 14.  et al. 2014. A novel microbiota stratification system predicts future exacerbations in bronchiectasis. Ann. Am. Thorac. Soc. 11:496–503 [Google Scholar]
  15. Dickson RP, Martinez FJ, Huffnagle GB. 15.  2014. The role of the microbiome in exacerbations of chronic lung diseases. Lancet 384:691–702 [Google Scholar]
  16. Hurst JR. 16.  2014. Microbial dysbiosis in bronchiectasis. Lancet Respir. Med. 2:945–47 [Google Scholar]
  17. Purcell P, Jary H, Perry A, Perry JD, Stewart CJ. 17.  et al. 2014. Polymicrobial airway bacterial communities in adult bronchiectasis patients. BMC Microbiol. 14:130 [Google Scholar]
  18. Singleton R, Morris A, Redding G, Poll J, Holck P. 18.  et al. 2000. Bronchiectasis in Alaska Native children: causes and clinical courses. Pediatr. Pulmonol. 29:182–87 [Google Scholar]
  19. Twiss J, Metcalfe R, Edwards E, Byrnes C. 19.  2005. New Zealand national incidence of bronchiectasis “too high” for a developed country. Arch. Dis. Child. 90:737–40 [Google Scholar]
  20. Chang AB, Grimwood K, Mulholland EK, Torzillo PJ. 20.  Working Group on Indigenous Paediatric Respiratory Health 2002. Bronchiectasis in indigenous children in remote Australian communities. Med. J. Aust. 177:200–4 [Google Scholar]
  21. Boyton RJ, Smith J, Ward R, Jones M, Ozerovitch L. 21.  et al. 2006. HLA-C and killer cell immunoglobulin-like receptor genes in idiopathic bronchiectasis. Am. J. Respir. Crit. Care Med. 173:327–33 [Google Scholar]
  22. Wynn-Williams N. 22.  1953. Bronchiectasis: a study centred on Bedford and its environs. BMJ 1:1194–99 [Google Scholar]
  23. Ringshausen FC, de Roux A, Pletz MW, Hämäläinen N, Welte T. 23.  et al. 2013. Bronchiectasis-associated hospitalizations in Germany, 2005–2011: a population-based study of disease burden and trends. PLOS ONE 8:e71109 [Google Scholar]
  24. Seitz AE, Olivier KN, Adjemian J, Holland SM, Prevots R. 24.  2000. Trends in bronchiectasis among Medicare beneficiaries in the United States, 2000 to 2007. Chest 142:432–39 [Google Scholar]
  25. Seitz AE, Olivier KN, Steiner CA, Montes de Oca R, Holland SM. 25.  et al. 2010. Trends and burden of bronchiectasis-associated hospitalizations in the United States, 1993–2006. Chest 138:944–49 [Google Scholar]
  26. Roberts HJ, Hubbard R. 26.  2010. Trends in bronchiectasis mortality in England and Wales. Respir. Med. 104:981–85 [Google Scholar]
  27. Loebinger MR, Wells AU, Hansell DM, Chinyanganya N, Devaraj A. 27.  et al. 2009. Mortality in bronchiectasis: a long-term study assessing the factors influencing survival. Eur. Respir. J. 34:843–49 [Google Scholar]
  28. Onen ZP, Gulbay BE, Sen E, Yildiz OA, Saryal S. 28.  et al. 2007. Analysis of the factors related to mortality in patients with bronchiectasis. Respir. Med. 101:1390–97 [Google Scholar]
  29. Goeminne PC, Nawrot TS, Ruttens D, Seys S, Dupont LJ. 29.  2014. Mortality in non-cystic fibrosis bronchiectasis: a prospective cohort analysis. Respir. Med. 108:287–96 [Google Scholar]
  30. Goeminne PC, Bijnens E, Nemery B, Nawrot TS, Dupont LJ. 30.  2014. Impact of traffic related air pollution indicators on non-cystic fibrosis bronchiectasis mortality: a cohort analysis. Respir. Res. 15:108 [Google Scholar]
  31. Kunst H, Wickremasinghe M, Wells A, Wilson R. 31.  2006. Nontuberculous mycobacterial disease and Aspergillus-related lung disease in bronchiectasis. Eur. Respir. J. 28:352–57 [Google Scholar]
  32. Poppelwell L, Chalmers JD. 32.  2014. Defining severity in non-cystic fibrosis bronchiectasis. Expert Rev. Respir. Med. 8:249–62 [Google Scholar]
  33. Martínez-García , de Gracia J, Vendrell Relat M, Girón RM, Máiz Carro L. 33.  et al. 2014. Multidimensional approach to non-cystic fibrosis bronchiectasis: the FACED score. Eur. Respir. J. 43:1357–67 [Google Scholar]
  34. Chalmers JD, Goeminne P, Aliberti S, McDonnell MJ, Lonni S. 34.  et al. 2014. The Bronchiectasis Severity Index: an international derivation and validation study. Am. J. Respir. Crit. Care Med. 189:576–85 [Google Scholar]
  35. Dorman SE, Picard C, Lammas D, Heyne K, van Dissel JT. 35.  et al. 2004. Clinical features of dominant and recessive interferon γ receptor 1 deficiencies. Lancet 364:2113–21 [Google Scholar]
  36. Jenkins MR, Rudd-Schmidt JA, Lopez JA, Ramsbottom KM, Mannering SI. 36.  et al. 2015. Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. J. Exp. Med. 212:307–17 [Google Scholar]
  37. Orange JS. 37.  2013. Natural killer cell deficiency. J. Allergy Clin. Immunol. 132:515–25 [Google Scholar]
  38. Potter JL, Matthews LW, Spector S, Lemm J. 38.  1967. Studies on pulmonary secretions. II. Osmolality and the ionic environment of pulmonary secretions from patients with cystic fibrosis, bronchiectasis, and laryngectomy. Am. Rev. Respir. Dis. 96:83–87 [Google Scholar]
  39. Gaga M, Bentley AM, Humbert M, Barkans J, O'Brien F. 39.  et al. 1998. Increases in CD4+ T lymphocytes, macrophages, neutrophils and interleukin 8 positive cells in the airways of patients with bronchiectasis. Thorax 53:685–91 [Google Scholar]
  40. Tsang KW, Chan K, Ho P, Zheng L, Ooi GC. 40.  et al. 2000. Sputum elastase in steady-state bronchiectasis. Chest 117:420–26 [Google Scholar]
  41. Watt AP, Brown V, Courtney J, Kelly M, Garske L. 41.  et al. 2004. Neutrophil apoptosis, proinflammatory mediators and cell counts in bronchiectasis. Thorax 59:231–36 [Google Scholar]
  42. Chen AC, Martin ML, Lourie R, Rogers GB, Burr LD. 42.  et al. 2015. Adult non-cystic fibrosis bronchiectasis is characterised by airway luminal Th17 pathway activation. PLOS ONE 10:e0119325 [Google Scholar]
  43. Altmann D, Boyton R. 43.  2015. Nomenclature: replace ‘pathogens’ with ‘perceptogens’. Nature 518:35 [Google Scholar]
  44. King PT, Holdsworth SR, Freezer NJ, Villanueva E, Holmes PW. 44.  2007. Microbiologic follow-up study in adult bronchiectasis. Respir. Med. 101:1633–38 [Google Scholar]
  45. Angrill J, Agustí C, de Celis R, Rañó A, Gonzalez J. 45.  et al. 2002. Bacterial colonisation in patients with bronchiectasis: microbiological pattern and risk factors. Thorax 57:15–19 [Google Scholar]
  46. Hare KM, Binks MJ, Grimwood K, Chang AB, Leach AJ. 46.  et al. 2012. Culture and PCR detection of Haemophilus influenzae and Haemophilus haemolyticus in Australian Indigenous children with bronchiectasis. J. Clin. Microbiol. 50:2444–45 [Google Scholar]
  47. McDonnell MJ, Jary HR, Perry A, MacFarlane JG, Hester KL. 47.  2015. Non cystic fibrosis bronchiectasis: a longitudinal retrospective observational cohort study of Pseudomonas persistence and resistance. Respir. Med. 109:716–26 [Google Scholar]
  48. Miszkiel KA, Wells AU, Rubens MB, Cole PJ, Hansell DM. 48.  1997. Effects of airway infection by Pseudo-monas aeruginosa: a computed tomographic study. Thorax 52:260–64 [Google Scholar]
  49. Davies G, Wells AU, Doffman S, Watanabe S, Wilson R. 49.  2006. The effect of Pseudomonas aeruginosa on pulmonary function in patients with bronchiectasis. Eur. Respir. J. 28:974–79 [Google Scholar]
  50. Martínez-García MA, Soler-Cataluña JJ, Perpiñá-Tordera M, Román-Sánchez P, Soriano J. 50.  2007. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest 132:1565–72 [Google Scholar]
  51. de Wit R, Bouvier T. 51.  2006. Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say?. Environ. Microbiol. 8:755–58 [Google Scholar]
  52. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A. 52.  et al. 2002. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Investig. 109:317–25 [Google Scholar]
  53. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU. 53.  et al. 2013. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342:447–53 [Google Scholar]
  54. King PT, Ngui J, Farmer MW, Hutchinson P, Holmes PW, Holdsworth SR. 54.  2008. Cytotoxic T lymphocyte and natural killer cell responses to non-typeable Haemophilus influenzae. Clin. Exp. Immunol. 152:542–51 [Google Scholar]
  55. Harrison A, Baker BD, Munson RS Jr. 55.  2015. Overlapping and complementary oxidative stress defense mechanisms in nontypeable Haemophilus influenzae. J. Bacteriol. 197:277–85 [Google Scholar]
  56. Naylor EJ, Bakstad D, Biffen M, Thong B, Calverley P. 56.  2007. Haemophilus influenzae induces neutrophil necrosis: a role in chronic obstructive pulmonary disease?. Am. J. Respir. Cell Mol. Biol. 37:135–43 [Google Scholar]
  57. King PT, Hutchinson PE, Johnson PD, Holmes PW, Freezer NJ, Holdsworth SR. 57.  2003. Adaptive immunity to nontypeable Haemophilus influenzae. Am. J. Respir. Crit. Care Med. 167:587–92 [Google Scholar]
  58. Pizzutto SJ, Yerkovich ST, Upham JW, Hales BJ, Thomas WR, Chang AB. 58.  2104. Children with chronic suppurative lung disease have a reduced capacity to synthesize interferon-γ in vitro in response to non-typeable Haemophilus influenzae. PLOS ONE 9:e104236 [Google Scholar]
  59. Murphy TF. 59.  2015. Vaccines for nontypeable Haemophilus influenzae: The future is now. Clin. Vaccine Immunol. 22:459–66 [Google Scholar]
  60. Pizzutto SJ, Yerkovich ST, Upham JW, Hales BJ, Thomas WR. 60.  et al. 2015. Improving immunity to Haemophilus influenzae in children with chronic suppurative lung disease. Vaccine 33:321–26 [Google Scholar]
  61. Quigley KJ, Reynolds CJ, Goudet A, Raynsford EJ, Sergeant R. 61.  et al. 2015. Chronic infection by mucoid Pseudomonas aeruginosa associated with dysregulation in T-cell immunity to outer membrane porin F. Am. J. Respir. Crit. Care Med. 191:1250–64 [Google Scholar]
  62. Jensen , Givskov M, Bjarnsholt T, Moser C. 62.  2010. The immune system versus Pseudomonas aeruginosa biofilms. FEMS Immunol. Med. Microbiol. 59:292–305 [Google Scholar]
  63. Gellatly SL, Hancock RE. 63.  2013. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog. Dis. 67:159–73 [Google Scholar]
  64. Döring G, Pier GB. 64.  2008. Vaccines and immunotherapy against Pseudomonas aeruginosa. Vaccine 26:1011–24 [Google Scholar]
  65. Döring G, Meisner C, Stern M. 65.  Flagella Vaccine Trial Study Group 2007. A double-blind randomized placebo-controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. PNAS. 104:11020–25 [Google Scholar]
  66. Cattoir V, Narasimhan G, Skurnik D, Aschard H, Roux D. 66.  et al. 2013. Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus. mBio 3:e00410–12 [Google Scholar]
  67. Balasubramanian D, Mathee K. 67.  2009. Comparative transcriptome analyses of Pseudomonas aeruginosa. Hum. Genom. 3:349–61 [Google Scholar]
  68. Kwak HJ, Moon JY, Choi YW, Kim TH, Sohn JW. 68.  et al. 2010. High prevalence of bronchiectasis in adults: analysis of CT findings in a health screening program. Tohoku J. Exp. Med. 222:237–42 [Google Scholar]
  69. Chu H, Zhao L, Xiao H, Zhang Z, Zhang J. 69.  et al. 2014. Prevalence of nontuberculous mycobacteria in patients with bronchiectasis: a meta-analysis. Arch. Med. Sci. 10:661–68 [Google Scholar]
  70. Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD, Daley CL. 70.  2011. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin. Infect. Dis. 52:565–71 [Google Scholar]
  71. Griffith DE, Aksamit TR. 71.  2012. Bronchiectasis and nontuberculous mycobacterial disease. Clin. Chest Med. 33:283–95 [Google Scholar]
  72. Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. 72.  2015. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol. Rev. 264:74–87 [Google Scholar]
  73. Young LS. 73.  1993. Mycobacterial diseases and the compromised host. Clin. Infect. Dis. 17:Suppl. 2S436–41 [Google Scholar]
  74. Murphy TF, Brauer AL, Grant BJ, Sethi S. 74.  2005. Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune response. Am. J. Respir. Crit. Care Med. 172:195–99 [Google Scholar]
  75. Yang M, Johnson A, Murphy TF. 75.  2011. Characterization and evaluation of the Moraxella catarrhalis oligopeptide permease A as a mucosal vaccine antigen. Infect. Immun. 79:846–57 [Google Scholar]
  76. Brook I. 76.  2011. Anaerobic infections in children. Adv. Exp. Med. Biol. 697:117–52 [Google Scholar]
  77. Tunney MM, Field TR, Moriarty TF, Patrick S, Doering G. 77.  et al. 2008. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 177:995–1001 [Google Scholar]
  78. Scher JU, Ubeda C, Equinda M, Khanin R, Buischi Y. 78.  et al. 2012. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum. 64:3083–94 [Google Scholar]
  79. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C. 79.  et al. 2013. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis.. eLife 2:e01202An example from a cohort of patients with rheumatoid arthritis demonstrated that the microbiota correlates with disease and mechanism. [Google Scholar]
  80. Potempa M, Potempa J, Kantyka T, Nguyen KA, Wawrzonek K. 80.  2009. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3. PLOS Pathog. 5:e1000316 [Google Scholar]
  81. Nguyen LD, Viscogliosi E, Delhaes L. 81.  2015. The lung mycobiome: an emerging field of the human respiratory microbiome. Frontiers Microbiol. 16:89 [Google Scholar]
  82. Kosmidis C, Denning DW. 82.  2015. The clinical spectrum of pulmonary aspergillosis. Thorax 70:270–77 [Google Scholar]
  83. Moss RB. 83.  2015. Fungi in cystic fibrosis and non-cystic fibrosis bronchiectasis. Semin. Respir. Crit. Care Med. 36:207–16 [Google Scholar]
  84. Engel S. 84.  1947. The Child's Lung London: Arnold
  85. Whitwell F. 85.  1952. A study of the pathology and pathogenesis of bronchiectasis. Thorax 7:213–39Provides a definitive piece of bronchiectasis history, documenting pathological findings in a large cohort. [Google Scholar]
  86. Gao Y, Guan W, Xu G, Lin Z, Tang Y. 86.  et al. 2015. The role of viral infection in pulmonary exacerbations of bronchiectasis in adults: a prospective study. Chest 147:1635–43 [Google Scholar]
  87. Kapur N, Mackay IM, Sloots TP, Masters IB, Chang AB. 87.  2014. Respiratory viruses in exacerbations of non-cystic fibrosis bronchiectasis in children. Arch. Dis. Child. 99:749–53 [Google Scholar]
  88. Huttenhower C, Kostic AD, Xavier RJ. 88.  2014. Inflammatory bowel disease as a model for translating the microbiome. Immunity 40:843–54 [Google Scholar]
  89. Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ. 89.  et al. 2010. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLOS ONE 5:e11044 [Google Scholar]
  90. Mansour SC, Pena OM, Hancock RE. 90.  2014. Host defense peptides: front-line immunomodulators. Trends Immunol. 35:443–50 [Google Scholar]
  91. Pernet E, Guillemot L, Burgel PR, Martin C, Lambeau G. 91.  et al. 2014. Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity. Nat. Commun. 5:5105 [Google Scholar]
  92. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T. 92.  et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–98Presents the first demonstration that a defined microbiota species could shape Th17 differentiation. [Google Scholar]
  93. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y. 93.  et al. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–36 [Google Scholar]
  94. Larsen JM, Musavian HS, Butt TM, Ingvorsen C, Thysen AH. 94.  2015. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology. Immunology 144:333–42 [Google Scholar]
  95. Lozupone C, Cota-Gomez A, Palmer BE, Linderman DJ, Charlson ES. 95.  et al. 2013. Widespread colonization of the lung by Tropheryma whipplei in HIV infection. Am. J. Respir. Crit. Care Med. 187:1110–17 [Google Scholar]
  96. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N. 96.  2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20:159–66Provided evidence that diet can alter both the gut and the lung microbiota, with impacts on lung inflammation. [Google Scholar]
  97. Walker AW, Duncan SH, Louis P, Flint HJ. 97.  2104. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol. 22:267–74 [Google Scholar]
  98. 98. Integrative HMP (iHMP) Research Network Consortium 2014. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16:276–89 [Google Scholar]
  99. Abubucker S, Segata N, Goll J, Schubert AM, Izard J. 99.  et al. 2012. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLOS Comput. Biol. 8:e1002358 [Google Scholar]
  100. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R. 100.  et al. 2007. The Human Microbiome Project. Nature 449:804–10 [Google Scholar]
  101. 101. Human Microbiome Project Consortium 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14 [Google Scholar]
  102. Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM. 102.  et al. 2015. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio 6:e00037Provided a comprehensive analysis of the microbiota of the healthy human lung. [Google Scholar]
  103. Barfod KK, Roggenbuck M, Hansen LH, Schjørring S, Larsen ST. 103.  et al. 2013. The murine lung microbiome in relation to the intestinal and vaginal bacterial communities. BMC Microbiol. 13:303 [Google Scholar]
  104. Segal LN, Alekseyenko AV, Clemente JC, Kulkarni R, Wu B. 104.  et al. 2013. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1:19 [Google Scholar]
  105. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D. 105.  et al. 2012. Microbial co-occurrence relationships in the human microbiome. PLOS Comput. Biol. 8:e1002606 [Google Scholar]
  106. Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI. 106.  2014. Identifying gut microbe–host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 6:220ra11 [Google Scholar]
  107. Lawley TD, Clare S, Walker AW, Stares MD, Connor TR. 107.  et al. 2012. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLOS Pathog. 8:e1002995 [Google Scholar]
  108. Cho I, Blaser MJ. 108.  2012. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13:260–70 [Google Scholar]
  109. Brown EM, Sadarangani M, Finlay BB. 109.  2013. The role of the immune system in governing host–microbe interactions in the intestine. Nat. Immunol. 14:660–67 [Google Scholar]
  110. Morgan XC, Tickle TL, Sokol H, Gevers D. 110.  et al. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13:R79 [Google Scholar]
  111. Eaton TE, Lambie N, Wells AU. 111.  1998. Bronchiectasis following colectomy for Crohn's disease. Thorax 53:529–31 [Google Scholar]
  112. Butland RJ, Cole P, Citron KM, Turner-Warwick M. 112.  1981. Chronic bronchial suppuration and inflammatory bowel disease. Q. J. Med. 50:63–75Presented the first detailed description of bronchiectasis in a cohort with inflammatory bowel disease (IBD). [Google Scholar]
  113. Black H, Mendoza M, Murin S. 113.  2007. Thoracic manifestations of inflammatory bowel disease. Chest 131:524–32 [Google Scholar]
  114. Mahadeva R, Flower C, Shneerson J. 114.  1998. Bronchiectasis in association with coeliac disease. Thorax 53:527–29 [Google Scholar]
  115. Sollid LM. 115.  2000. Molecular basis of celiac disease. Annu. Rev. Immunol. 18:53–81 [Google Scholar]
  116. Fallang LE, Bergseng E, Hotta K, Berg-Larsen A, Kim CY, Sollid LM. 116.  2009. Differences in the risk of celiac disease associated with HLA-DQ2.5 or HLA-DQ2.2 are related to sustained gluten antigen presentation. Nat. Immunol. 10:1096–101 [Google Scholar]
  117. Boyton RJ, Reynolds C, Wahid FN, Jones MG, Ozerovitch L. 117.  et al. 2006. IFN γ and CXCR-1 gene polymorphisms in idiopathic bronchiectasis. Tissue Antigens 68:325–30 [Google Scholar]
  118. Stockley RA. 118.  1998. Commentary: bronchiectasis and inflammatory bowel disease. Thorax 53:526–27 [Google Scholar]
  119. Wilczynska MM, Condliffe AM, McKeon DJ. 119.  2013. Coexistence of bronchiectasis and rheumatoid arthritis: revisited. Respir. Care 58:694–701 [Google Scholar]
  120. Demoruelle MK, Weisman MH, Simonian PL, Lynch DA, Sachs PB. 120.  et al. 2012. Brief report: airways abnormalities and rheumatoid arthritis-related autoantibodies in subjects without arthritis: early injury or initiating site of autoimmunity?. Arthritis Rheum. 64:1756–61 [Google Scholar]
  121. El Maghraoui A, Dehhaoui M. 121.  2012. Prevalence and characteristics of lung involvement on high resolution computed tomography in patients with ankylosing spondylitis: a systematic review. Pulm. Med. 2012:965956 [Google Scholar]
  122. Soto-Cardenas MJ, Perez-De-Lis M, Bove A, Navarro C, Brito-Zeron P. 122.  et al. 2010. Bronchiectasis in primary Sjögren's syndrome: prevalence and clinical significance. Clin. Exp. Rheumatol. 28:647–53 [Google Scholar]
  123. Fenlon HM, Doran M, Sant SM, Breatnach E. 123.  1996. High-resolution chest CT in systemic lupus erythematosus. Am. J. Roentgenol. 166:301–7 [Google Scholar]
  124. Andonopoulos AP, Yarmenitis S, Georgiou P, Bounas A, Vlahanastasi C. 124.  2001. Bronchiectasis in systemic sclerosis: a study using high resolution computed tomography. Clin. Exp. Rheumatol. 19:187–90 [Google Scholar]
  125. Homma S, Suzuki A, Sato K. 125.  2013. Pulmonary involvement in ANCA-associated vasculitis from the view of the pulmonologist. Clin. Exp. Nephrol. 17:667–71 [Google Scholar]
  126. De Luca F, Valenzise M, Alaggio R, Arrigo T, Crisafulli G. 126.  et al. 2008. Sicilian family with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) and lethal lung disease in one of the affected brothers. Eur. J. Pediatr. 167:1283–88 [Google Scholar]
  127. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ. 127.  et al. 2015. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:337–43 [Google Scholar]
  128. Hilton AM, Doyle L. 128.  1978. Immunological abnormalities in bronchiectasis with chronic bronchial suppuration. Br. J. Dis. Chest 72:207–16 [Google Scholar]
  129. Demoruelle MK, Deane KD, Holers VM. 129.  2014. When and where does inflammation begin in rheumatoid arthritis?. Curr. Opin. Rheumatol. 26:64–71 [Google Scholar]
  130. Willis VC, Demoruelle MK, Derber LA, Chartier-Logan CJ, Parish MC. 130.  2013. Sputum autoantibodies in patients with established rheumatoid arthritis and subjects at risk of future clinically apparent disease. Arthritis Rheum. 65:2545–54 [Google Scholar]
  131. Puéchal X, Génin E, Bienvenu T, Le Jeunne C, Dusser DJ. 131.  2014. Poor survival in rheumatoid arthritis associated with bronchiectasis: a family-based cohort study. PLOS ONE 9:e110066 [Google Scholar]
  132. Aronoff A, Bywaters E, Fearnley G. 132.  1955. Lung lesions in rheumatoid arthritis. BMJ 2:228–32 [Google Scholar]
  133. Allain J, Saraux A, Guedes C, Valls I, Devauchelle V. 133.  1997. Prevalence of symptomatic bronchiectasis in patients with rheumatoid arthritis. Rev. Rhum. Engl. Ed. 64:531–37 [Google Scholar]
  134. Mori S, Koga Y, Sugimoto M. 134.  2012. Different risk factors between interstitial lung disease and airway disease in rheumatoid arthritis. Respir. Med. 106:1591–99 [Google Scholar]
  135. McShane PJ, Naureckas ET, Strek ME. 135.  2012. Bronchiectasis in a diverse US population: effects of ethnicity on etiology and sputum culture. Chest 142:159–67Provided a detailed analysis of the epidemiology of bronchiectasis in relation to ethnicity and microbiology in the United States. [Google Scholar]
  136. McShane PJ, Naureckas ET, Tino G, Strek ME. 136.  2013. Non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 188:647–56 [Google Scholar]
  137. Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R. 137.  et al. 2008. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I.. Arthritis Rheum. 58:15–25 [Google Scholar]
  138. Despaux J, Toussirot E, Wendling D. 138.  1997. Bronchectasies et polyarthrite rhumatoïde. Fréquence et aspects étiopathogéniques. Revue de la littérature [Bronchiectasis and rheumatoid arthritis. Incidence and etiopathogenic aspects. Review of the literature] Rev. Med. Intern. 18:144–52
  139. Perry E, Stenton C, Kelly C, Eggleton P, Hutchinson D, De Soyza A. 139.  2014. RA autoantibodies as predictors of rheumatoid arthritis in non-cystic fibrosis bronchiectasis patients. Eur. Respir. J. 44:1082–85 [Google Scholar]
  140. Chen AC, Martin ML, Lourie R, Rogers GB, Burr LD. 140.  et al. 2015. Adult non-cystic fibrosis bronchiectasis is characterised by airway luminal Th17 pathway activation. PLOS ONE 10:e0119325 [Google Scholar]
  141. Sherlock JP, Taylor PC, Buckley CD. 141.  2015. The biology of IL-23 and IL-17 and their therapeutic targeting in rheumatic diseases. Curr. Opin. Rheumatol. 27:71–75 [Google Scholar]
  142. Wegner N, Wait R, Sroka A, Eick S, Nguyen KA. 142.  2010. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62:2662–72 [Google Scholar]
  143. Rangel-Moreno J, Hartson L, Navarro C, Gaxiola M, Selman M. 143.  et al. 2006. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J. Clin. Investig. 116:3183–94 [Google Scholar]
  144. Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, Hwang JY, Kusser K. 144.  et al. 2011. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol. 12:639–46 [Google Scholar]
  145. Eller J, Lapa e Silva JR, Poulter LW, Lode H, Cole PJ. 145.  1994. Cells and cytokines in chronic bronchial infection. Ann. N. Y. Acad. Sci. 725:331–45 [Google Scholar]
  146. Mathis D, Benoist C. 146.  2009. Aire. Annu. Rev. Immunol. 27:287–312 [Google Scholar]
  147. Chalmers JD, Hill AT. 147.  2013. Mechanisms of immune dysfunction and bacterial persistence in non-cystic fibrosis bronchiectasis. Mol. Immunol. 55:27–34 [Google Scholar]
  148. Gadola SD, Moins-Teisserenc HT, Trowsdale J, Gross WL, Cerundolo V. 148.  2000. TAP deficiency syndrome. Clin. Exp. Immunol. 121:173–78 [Google Scholar]
  149. Paulson ML, Freeman AF, Holland SM. 149.  2008. Hyper IgE syndrome: an update on clinical aspects and the role of signal transducer and activator of transcription 3. Curr. Opin. Allergy Clin. Immunol. 8:527–33 [Google Scholar]
  150. Holland SM. 150.  2010. Chronic granulomatous disease. Clin. Rev. Allergy Immunol. 38:3–10 [Google Scholar]
  151. Fuschillo S, De Felice A, Balzano G. 151.  2008. Mucosal inflammation in idiopathic bronchiectasis: cellular and molecular mechanisms. Eur. Respir. J. 31:396–406 [Google Scholar]
  152. Tiringer K, Treis A, Fucik P, Gona M, Gruber S. 152.  et al. 2013. A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection. Am. J. Respir. Crit. Care Med. 187:621–29 [Google Scholar]
  153. Way EE, Chen K, Kolls JK. 153.  2013. Dysregulation in lung immunity—the protective and pathologic Th17 response in infection. Eur. J. Immunol. 43:3116–24 [Google Scholar]
  154. Tan HL, Regamey N, Brown S, Bush A, Lloyd CM. 154.  et al. 2011. The Th17 pathway in cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 184:252–58 [Google Scholar]
  155. Fogli LK, Sundrud MS, Goel S, Bajwa S, Jensen K. 155.  et al. 2013. T cell-derived IL-17 mediates epithelial changes in the airway and drives pulmonary neutrophilia. J. Immunol. 191:3100–11 [Google Scholar]
  156. King PT, Hutchinson P, Holmes PW, Freezer NJ, Bennett-Wood V. 156.  et al. 2006. Assessing immune function in adult bronchiectasis. Clin. Exp. Immunol. 144:440–46 [Google Scholar]
  157. De Gracia J, Rodrigo MJ, Morell F, Vendrell M, Miravitlles M. 157.  et al. 1996. IgG subclass deficiencies associated with bronchiectasis. Am. J. Respir. Crit. Care Med. 153:650–55 [Google Scholar]
  158. Hill SL, Mitchell JL, Burnett D, Stockley RA. 158.  1998. IgG subclasses in the serum and sputum from patients with bronchiectasis. Thorax 53:463–68 [Google Scholar]
  159. Silva JR, Jones JA, Cole PJ, Poulter LW. 159.  1989. The immunological component of the cellular inflammatory infiltrate in bronchiectasis. Thorax 44:668–73 [Google Scholar]
  160. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. 160.  2004. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199:971–79 [Google Scholar]
  161. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R. 161.  et al. 2007. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:Pt. 41089–104 [Google Scholar]
  162. Peters A, Pitcher LA, Sullivan JM, Mitsdoerffer M, Acton SE. 162.  et al. 2011. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35:986–96 [Google Scholar]
  163. Pitzalis C, Jones GW, Bombardieri M, Jones SA. 163.  2014. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14:447–62 [Google Scholar]
  164. Boyton RJ, Smith J, Jones M, Reynolds C, Ozerovitch L. 164.  et al. 2008. Human leucocyte antigen class II association in idiopathic bronchiectasis, a disease of chronic lung infection, implicates a role for adaptive immunity. Clin. Exp. Immunol. 152:95–101 [Google Scholar]
  165. Suarez-Almazor ME, Tao S, Moustarah F, Russell AS, Maksymowych W. 165.  1995. HLA-DR1, DR4, and DRB1 disease related subtypes in rheumatoid arthritis: association with susceptibility but not severity in a city wide community based study. J. Rheumatol. 22:2027–33 [Google Scholar]
  166. Khakoo SI, Carrington M. 166.  2006. KIR and disease: a model system or system of models?. Immunol. Rev. 214:186–201 [Google Scholar]
  167. Boyton RJ, Altmann DM. 167.  2007. Natural killer cells, killer immunoglobulin-like receptors and human leucocyte antigen class I in disease. Clin. Exp. Immunol. 149:1–8 [Google Scholar]
  168. McDonnell MJ, Anwar GA, Rutherford RM, De Soyza A, Worthy S. 168.  et al. 2014. Lack of association between KIR and HLA-C type and susceptibility to idiopathic bronchiectasis. Respir. Med. 108:1127–33 [Google Scholar]
  169. Wesselkamper SC, Eppert BL, Motz GT, Lau GW, Hassett DJ. 169.  et al. 2008. NKG2D is critical for NK cell activation in host defense against Pseudomonas aeruginosa respiratory infection. J. Immunol. 181:5481–89 [Google Scholar]
  170. Giamarellos-Bourboulis EJ. 170.  2014. Natural killer cells in sepsis: detrimental role for final outcome. Crit. Care Med. 42:1579–80 [Google Scholar]
  171. Miyazaki S, Ishikawa F, Shimizu K, Ubagai T, Edelstein PH, Yamaguchi K. 171.  2007. Gr-1high polymorphonuclear leukocytes and NK cells act via IL-15 to clear intracellular Haemophilus influenzae in experimental murine peritonitis and pneumonia. J. Immunol. 179:5407–14 [Google Scholar]
  172. Lu CC, Wu TS, Hsu YJ, Chang CJ, Lin CS. 172.  et al. 2014. NK cells kill mycobacteria directly by releasing perforin and granulysin. J. Leukoc. Biol. 96:1119–29 [Google Scholar]
  173. Currie DC, Saverymuttu SH, Peters AM, Needham SG, George P. 173.  et al. 1987. Indium-111-labelled granulocyte accumulation in respiratory tract of patients with bronchiectasis. Lancet 329:1335–39 [Google Scholar]
  174. Chalmers JD, Aliberti S, Blasi F. 174.  2015. Management of bronchiectasis in adults. Eur. Respir. J. 45:1446–62 [Google Scholar]
  175. Chang AB, Marsh RL, Smith-Vaughan HC, Hoffman LR. 175.  2015. Emerging drugs for bronchiectasis: an update. Expert Opin. Emerg. Drugs 20:277–97 [Google Scholar]
  176. Main E, Grillo L, Rand S. 176.  2015. Airway clearance strategies in cystic fibrosis and non-cystic fibrosis bronchiectasis. Semin. Respir. Crit. Care Med. 36:251–66 [Google Scholar]
  177. Tay GT, Reid DW, Bell SC. 177.  2015. Inhaled antibiotics in cystic fibrosis (CF) and non-CF bronchiectasis. Semin. Respir. Crit. Care Med. 36:267–86 [Google Scholar]
  178. Chalmers JD, Loebinger M, Aliberti S. 178.  2015. Challenges in the development of new therapies for bronchiectasis. Expert Opin. Pharm. 16:833–50 [Google Scholar]
  179. Sidhu MK, Mandal P, Hill AT. 179.  2015. Developing drug therapies in bronchiectasis. Expert Opin. Investig. Drugs 24:169–81 [Google Scholar]
  180. De Soyza A, Brown JS, Loebinger MR. 180.  Bronchiectasis Research & Academic Network 2013. Research priorities in bronchiectasis. Thorax 68:695–96 [Google Scholar]
  181. Bilton D, Loebinger MR, Wilson R. 181.  2014. Non-cystic fibrosis bronchiectasis: an evidence-base for new therapies. Lancet Respir. Med. 2:958–60 [Google Scholar]
  182. Hill AT, Welham S, Reid K, Bucknall CE. 182.  British Thoracic Society 2012. British Thoracic Society national bronchiectasis audit 2010 and 2011. Thorax 67:928–30 [Google Scholar]
  183. Blasi F, Chalmers JD, Aliberti S. 183.  2014. COPD and bronchiectasis: phenotype, endotype or co-morbidity?. COPD 11:603–4 [Google Scholar]
  184. Hurst JR, Elborn JS, De Soyza A. 184.  BRONCH-UK Consortium 2015. COPD–bronchiectasis overlap syndrome. Eur. Respir. J. 45:310–13 [Google Scholar]
  185. Chalmers JD, Smith MP, McHugh BJ, Dohery C, Govan JR. 185.  et al. 2012. Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 186:657–65 [Google Scholar]
  186. Wong C, Jayaram L, Karalus N, Eaton T, Tong C. 186.  et al. 2012. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet 380:660–67 [Google Scholar]
  187. Serisier DJ, Martin ML, McGuckin MA, Lourie R, Chen AC. 187.  et al. 2013. Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. JAMA 309:1260–7 [Google Scholar]
  188. Altenburg J, de Graaff CS, Stienstra Y, Sloos JH, van Haren EH. 188.  et al. 2013. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 309:1251–59 [Google Scholar]
  189. Albert RK, Connett J, Bailey WC, Casaburi R, Cooper JA Jr. 189.  2011. Azithromycin for prevention of exacerbations of COPD. N. Engl. J. Med. 365:689–98 [Google Scholar]
  190. Rogers GB, Bruce KD, Martin ML, Burr LD, Serisier DJ. 190.  2014. The effect of long-term macrolide treatment on respiratory microbiota composition in non-cystic fibrosis bronchiectasis: an analysis from the randomised, double-blind, placebo-controlled BLESS trial. Lancet Respir. Med. 2:988–96 [Google Scholar]
  191. Chalmers JD, McHugh BJ, Docherty C, Govan JR, Hill AT. 191.  2013. Vitamin-D deficiency is associated with chronic bacterial colonisation and disease severity in bronchiectasis. Thorax 68:39–47 [Google Scholar]
  192. Hewison M. 192.  2012. An update on vitamin D and human immunity. Clin. Endocrinol. 76:315–25 [Google Scholar]
  193. Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM. 193.  et al. 2014. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 371:1198–207 [Google Scholar]
  194. Mahler DA, Huang S, Tabrizi M, Bell GM. 194.  2004. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest 126:926–34 [Google Scholar]
  195. van den Berg WB, McInnes IB. 195.  2013. Th17 cells and IL-17—a focus on immunopathogenesis and immunotherapeutics. Semin. Arthritis Rheum. 43:158–70 [Google Scholar]
  196. Clarke TB. 196.  2014. Early innate immunity to bacterial infection in the lung is regulated systemically by the commensal microbiota via Nod-like receptor ligands. Infect. Immun. 82:4596–606 [Google Scholar]
  197. Angulo I, Vadas O, Garçon F, Banham-Hall E, Plagnol V. 196a.  et al. 2013. Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342:866–71 [Google Scholar]
  198. Wilson CB, Jones PW, O'Leary CJ, Hansell DM, Cole PJ. 197.  et al. 1997. Effect of sputum bacteriology on the quality of life of patients with bronchiectasis. Eur. Respir. J. 10:1754–60 [Google Scholar]
  199. Hare KM, Grimwood K, Leach AJ, Smith-Vaughan H, Torzillo PJ. 198.  et al. 2010. Respiratory bacterial pathogens in the nasopharynx and lower airways of Australian indigenous children with bronchiectasis. J. Pediatr. 157:1001–5 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error