Myeloproliferative neoplasms (MPNs) are a set of chronic hematopoietic neoplasms with overlapping clinical and molecular features. Recent years have witnessed considerable advances in our understanding of their pathogenetic basis. Due to their protracted clinical course, the evolution to advanced hematological malignancies, and the accessibility of neoplastic tissue, the study of MPNs has provided a window into the earliest stages of tumorigenesis. With the discovery of mutations in , the majority of MPN patients now bear an identifiable marker of clonal disease; however, the mechanism by which mutated CALR perturbs megakaryopoiesis is currently unresolved. We are beginning to understand better the role of homozygosity, the function of comutations in epigenetic regulators and spliceosome components, and how these mutations cooperate with to modulate MPN phenotype.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Bennett J. 1.  1845. Case of hypertrophy of the spleen and liver in which death took place from suppuration of the blood. Edinb. Med. Surg. J. 64:413–23 [Google Scholar]
  2. Dameshek W. 2.  1951. Some speculations on the myeloproliferative syndromes. Blood 6:4372–75 [Google Scholar]
  3. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA. 3.  et al. 2008. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues Lyon, Fr.: IARC [Google Scholar]
  4. Rowley JD. 4.  1973. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature 243:5405290–93 [Google Scholar]
  5. Nowell PC, Hungerford DA. 5.  1961. Chromosome studies in human leukemia. II. Chronic granulocytic leukemia. J. Natl. Cancer Inst. 27:1013–35 [Google Scholar]
  6. Adamson JW, Fialkow PJ, Murphy S, Prchal JF, Steinmann L. 6.  1976. Polycythemia vera: stem-cell and probable clonal origin of the disease. N. Engl. J. Med. 295:17913–16 [Google Scholar]
  7. Jacobson RJ, Salo A, Fialkow PJ. 7.  1978. Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood 51:2189–94 [Google Scholar]
  8. Fialkow PJ, Faguet GB, Jacobson RJ, Vaidya K, Murphy S. 8.  1981. Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 58:5916–19 [Google Scholar]
  9. Tsukamoto N, Morita K, Maehara T, Okamoto K, Sakai H. 9.  et al. 1994. Clonality in chronic myeloproliferative disorders defined by X-chromosome linked probes: demonstration of heterogeneity in lineage involvement. Br. J. Haematol. 86:2253–58 [Google Scholar]
  10. El Kassar N, Hetet G, Li Y, Brière J, Grandchamp B. 10.  1995. Clonal analysis of haemopoietic cells in essential thrombocythaemia. Br. J. Haematol. 90:1131–37 [Google Scholar]
  11. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F. 11.  et al. 2005. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:70371144–48 [Google Scholar]
  12. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G. 12.  et al. 2005. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:4387–97 [Google Scholar]
  13. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N. 13.  et al. 2005. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:94641054–61 [Google Scholar]
  14. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R. 14.  et al. 2005. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352:171779–90 [Google Scholar]
  15. Scott LM, Tong W, Levine RL, Scott MA, Beer PA. 15.  et al. 2007. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med. 356:5459–68 [Google Scholar]
  16. Harrison CN, Butt N, Campbell P, Conneally E, Drummond M. 16.  et al. 2014. Modification of British Committee for Standards in Haematology diagnostic criteria for essential thrombocythaemia. Br. J. Haematol. 167:3421–23 [Google Scholar]
  17. McMullin MF, Reilly JT, Campbell P, Bareford D, Green AR. 17.  et al. 2007. Amendment to the guideline for diagnosis and investigation of polycythaemia/erythrocytosis. Br. J. Haematol. 138:6821–22 [Google Scholar]
  18. Harrison C, Kiladjian J-J, Al-Ali HK, Gisslinger H, Waltzman R. 18.  et al. 2012. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl. J. Med. 366:9787–98 [Google Scholar]
  19. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V. 19.  et al. 2012. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl. J. Med. 366:9799–807 [Google Scholar]
  20. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine J-C. 20.  et al. 1998. JAK2 is essential for signaling through a variety of cytokine receptors. Cell 93:3385–95 [Google Scholar]
  21. Grebien F, Kerenyi MA, Kovacic B, Kolbe T, Becker V. 21.  et al. 2008. Stat5 activation enables erythropoiesis in the absence of EpoR and JAK2. Blood 111:94511–22 [Google Scholar]
  22. Wu H, Liu X, Jaenisch R, Lodish HF. 22.  1995. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83:159–67 [Google Scholar]
  23. Kerenyi MA, Grebien F, Gehart H, Schifrer M, Artaker M. 23.  et al. 2008. Stat5 regulates cellular iron uptake of erythroid cells via IRP-2 and TfR-1. Blood 112:93878–88 [Google Scholar]
  24. Rouyez MC, Boucheron C, Gisselbrecht S, Dusanter-Fourt I, Porteu F. 24.  1997. Control of thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein kinase pathway. Mol. Cell. Biol. 17:94991–5000 [Google Scholar]
  25. Miyakawa Y, Oda A, Druker BJ, Miyazaki H, Handa M. 25.  et al. 1996. Thrombopoietin induces tyrosine phosphorylation of stat3 and stat5 in human blood platelets. Blood 87:2439–46 [Google Scholar]
  26. Shimoda K, Feng J, Murakami H, Nagata S, Watling D. 26.  et al. 1997. JAK1 plays an essential role for receptor phosphorylation and stat activation in response to granulocyte colony-stimulating factor. Blood 90:2597–604 [Google Scholar]
  27. Chen M, Cheng A, Candotti F, Zhou YJ, Hymel A. 27.  et al. 2000. Complex effects of naturally occurring mutations in the JAK3 pseudokinase domain: evidence for interactions between the kinase and pseudokinase domains. Mol. Cell. Biol. 20:3947–56 [Google Scholar]
  28. Yeh TC, Dondi E, Uze G, Pellegrini S. 28.  2000. A dual role for the kinase-like domain of the tyrosine kinase Tyk2 in interferon-alpha signaling. PNAS 97:168991–96 [Google Scholar]
  29. Saharinen P, Silvennoinen O. 29.  2002. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J. Biol. Chem. 277:4947954–63 [Google Scholar]
  30. Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y. 30.  et al. 2014. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 344:61851249783 [Google Scholar]
  31. Lupardus PJ, Ultsch M, Wallweber H, Bir Kohli P, Johnson AR, Eigenbrot C. 31.  2014. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. PNAS 111:228025–30 [Google Scholar]
  32. Shan Y, Gnanasambandan K, Ungureanu D, Kim ET, Hammarén H. 32.  et al. 2014. Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase. Nat. Struct. Mol. Biol. 21:7579–84 [Google Scholar]
  33. Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C. 33.  et al. 2011. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat. Struct. Mol. Biol. 18:9971–76 [Google Scholar]
  34. Hammarén HM, Ungureanu D, Grisouard J, Skoda RC, Hubbard SR, Silvennoinen O. 34.  2015. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation. PNAS 112:154642–47 [Google Scholar]
  35. Funakoshi-Tago M, Tago K, Abe M, Sonoda Y, Kasahara T. 35.  2010. STAT5 activation is critical for the transformation mediated by myeloproliferative disorder-associated JAK2 V617F mutant. J. Biol. Chem. 285:85296–307 [Google Scholar]
  36. Yan D, Hutchison RE, Mohi G. 36.  2012. Critical requirement for Stat5 in a mouse model of polycythemia vera. Blood 119:153539–49 [Google Scholar]
  37. Wernig G, Gonneville JR, Crowley BJ, Rodrigues MS, Reddy MM. 37.  et al. 2008. The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Blood 111:73751–59 [Google Scholar]
  38. Da Costa Reis Monte-Mór B, Plo I, da Cunha AF, Costa GGL, de Albuquerque DM. 38.  et al. 2009. Constitutive JunB expression, associated with the JAK2 V617F mutation, stimulates proliferation of the erythroid lineage. Leukemia 23:1144–52 [Google Scholar]
  39. Garcon L, Rivat C, James C, Lacout C, Camara-Clayette V. 39.  et al. 2006. Constitutive activation of STAT5 and Bcl-xL overexpression can induce endogenous erythroid colony formation in human primary cells. Blood 108:51551–54 [Google Scholar]
  40. Wood AD, Chen E, Donaldson IJ, Hattangadi S, Burke KA. 40.  et al. 2009. ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling. Blood 114:91820–30 [Google Scholar]
  41. Gautier E-F, Picard M, Laurent C, Marty C, Villeval J-L. 41.  et al. 2012. The cell cycle regulator CDC25A is a target for JAK2V617F oncogene. Blood 119:51190–99 [Google Scholar]
  42. Liu F, Zhao X, Perna F, Wang L, Koppikar P. 42.  et al. 2011. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 19:2283–94 [Google Scholar]
  43. Dawson MA, Bannister AJ, Göttgens B, Foster SD, Bartke T. 43.  et al. 2009. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461:7265819–22 [Google Scholar]
  44. Jamieson CHM, Gotlib J, Durocher JA, Chao MP, Mariappan MR. 44.  et al. 2006. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. PNAS 103:166224–29 [Google Scholar]
  45. Delhommeau F, Dupont S, Tonetti C, Masse A, Godin I. 45.  et al. 2007. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 109:171–77 [Google Scholar]
  46. Ishii T, Bruno E, Hoffman R, Xu M. 46.  2006. Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood 108:93128–34 [Google Scholar]
  47. Li J, Kent DG, Chen E, Green AR. 47.  2011. Mouse models of myeloproliferative neoplasms: JAK of all grades. Dis. Model. Mech. 4:3311–17 [Google Scholar]
  48. Dupont S, Masse A, James C, Teyssandier I, Lecluse Y. 48.  et al. 2007. The JAK2 V617F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood 110:31013–21 [Google Scholar]
  49. Gale RE, Allen AJ, Nash MJ, Linch DC. 49.  2007. Long-term serial analysis of X-chromosome inactivation patterns and JAK2 V617F mutant levels in patients with essential thrombocythemia show that minor mutant-positive clones can remain stable for many years. Blood 109:31241–43 [Google Scholar]
  50. Anand S, Stedham F, Beer P, Gudgin E, Ortmann CA. 50.  et al. 2011. Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood 118:1177–81 [Google Scholar]
  51. James C, Mazurier F, Dupont S, Chaligne R, Lamrissi-Garcia I. 51.  et al. 2008. The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood 112:62429–38 [Google Scholar]
  52. Ishii T, Zhao Y, Sozer S, Shi J, Zhang W. 52.  et al. 2007. Behavior of CD34+ cells isolated from patients with polycythemia vera in NOD/SCID mice. Exp. Hematol. 35:111633–40 [Google Scholar]
  53. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA. 53.  et al. 2014. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371:262477–87 [Google Scholar]
  54. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV. 54.  et al. 2014. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371:2488–98 [Google Scholar]
  55. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ. 55.  et al. 2014. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20:121472–78 [Google Scholar]
  56. Li J, Kent DG, Godfrey AL, Manning H, Nangalia J. 56.  et al. 2014. JAK2V617F homozygosity drives a phenotypic switch between myeloproliferative neoplasms in a murine model, but is insufficient to sustain disease. Blood 123:203139–51 [Google Scholar]
  57. Li J, Spensberger D, Ahn JS, Anand S, Beer PA. 57.  et al. 2010. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood 116:91528–38 [Google Scholar]
  58. Kent DG, Li J, Tanna H, Fink J, Kirschner K. 58.  et al. 2013. Self-renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion. PLOS Biol. 11:6e1001576 [Google Scholar]
  59. Wang X, Prakash S, Lu M, Tripodi J, Ye F. 59.  et al. 2012. Spleens of myelofibrosis patients contain malignant hematopoietic stem cells. J. Clin. Investig. 122:113888–99 [Google Scholar]
  60. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S. 60.  et al. 2009. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360:222289–301 [Google Scholar]
  61. Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC. 61.  et al. 2015. Effect of mutation order on myeloproliferative neoplasms. N. Engl. J. Med. 372:7601–12 [Google Scholar]
  62. Chen E, Schneider RK, Breyfogle LJ, Rosen EA, Poveromo L. 62.  et al. 2015. Distinct effects of concomitant Jak2v617f expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. Blood 125:2327–35 [Google Scholar]
  63. Kameda T, Shide K, Yamaji T, Kamiunten A, Sekine M. 63.  et al. 2015. Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator. Blood 125:2304–15 [Google Scholar]
  64. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G. 64.  et al. 2013. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med. 369:252391–405 [Google Scholar]
  65. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G. 65.  et al. 2013. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122:223616–27 [Google Scholar]
  66. Kralovics R, Guan Y, Prchal JT. 66.  2002. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp. Hematol. 30:3229–36 [Google Scholar]
  67. Scott LM, Scott MA, Campbell PJ, Green AR. 67.  2006. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 108:72435–37 [Google Scholar]
  68. Godfrey AL, Chen E, Pagano F, Ortmann CA, Silber Y. 68.  et al. 2012. JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood 120:132704–7 [Google Scholar]
  69. Tefferi A, Lasho TL, Schwager SM, Strand JS, Elliott M. 69.  et al. 2006. The clinical phenotype of wild-type, heterozygous, and homozygous JAK2V617F in polycythemia vera. Cancer 106:3631–35 [Google Scholar]
  70. Vannucchi AM, Antonioli E, Guglielmelli P, Rambaldi A, Barosi G. 70.  et al. 2007. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 110:3840–46 [Google Scholar]
  71. Godfrey AL, Chen E, Pagano F, Silber Y, Campbell PJ, Green AR. 71.  2013. Clonal analyses reveal associations of JAK2V617F homozygosity with hematologic features, age and gender in polycythemia vera and essential thrombocythemia. Haematologica 98:5718–21 [Google Scholar]
  72. Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S. 72.  et al. 2008. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111:83931–40 [Google Scholar]
  73. Saliba J, Hamidi S, Lenglet G, Langlois T, Yin J. 73.  et al. 2013. Heterozygous and homozygous JAK2V617F states modeled by induced pluripotent stem cells from myeloproliferative neoplasm patients. PLOS ONE 8:9e74257 [Google Scholar]
  74. Akada H, Akada S, Hutchison RE, Mohi G. 74.  2014. Loss of wild-type Jak2 allele enhances myeloid cell expansion and accelerates myelofibrosis in Jak2V617F knock-in mice. Leukemia 28:81627–35 [Google Scholar]
  75. Teofili L, Martini M, Cenci T, Petrucci G, Torti L. 75.  et al. 2007. Different STAT-3 and STAT-5 phosphorylation discriminates among Ph-negative chronic myeloproliferative diseases and is independent of the V617F JAK-2 mutation. Blood 110:1354–59 [Google Scholar]
  76. Chen E, Beer PA, Godfrey AL, Ortmann CA, Li J. 76.  et al. 2010. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell 18:5524–35 [Google Scholar]
  77. Duek A, Lundberg P, Shimizu T, Grisouard J, Karow A. 77.  et al. 2014. Loss of Stat1 decreases megakaryopoiesis and favors erythropoiesis in a JAK2-V617F-driven mouse model of MPNs. Blood 123:253943–50 [Google Scholar]
  78. Jensen MK, de Nully Brown P, Nielsen OJ, Hasselbalch HC. 78.  2000. Incidence, clinical features and outcome of essential thrombocythaemia in a well defined geographical area. Eur. J. Haematol. 65:2132–39 [Google Scholar]
  79. Stein BL, Williams DM, Wang NY, Rogers O, Isaacs MA. 79.  et al. 2010. Sex differences in the JAK2 V617F allele burden in chronic myeloproliferative disorders. Haematologica 95:71090–97 [Google Scholar]
  80. Pardanani A, Fridley BL, Lasho TL, Gilliland DG, Tefferi A. 80.  2008. Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood 111:52785–89 [Google Scholar]
  81. Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K. 81.  et al. 2015. Genetic variation at MECOM, TERT, JAK2 and HBS11-MYB predisposes to myeloproliferative neoplasms. Nat. Commun. 6:6691 [Google Scholar]
  82. Jones AV, Cross NCP. 82.  2013. Inherited predisposition to myeloproliferative neoplasms. Ther. Adv. Hematol. 4:4237–53 [Google Scholar]
  83. Oddsson A, Kristinsson SY, Helgason H, Gudbjartsson DF, Masson G. 83.  et al. 2014. The germline sequence variant rs2736100_C in TERT associates with myeloproliferative neoplasms. Leukemia 28:61371–74 [Google Scholar]
  84. Brecqueville M, Rey J, Bertucci F, Coppin E, Finetti P. 84.  et al. 2012. Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromosomes Cancer 51:8743–55 [Google Scholar]
  85. Green A, Beer P. 85.  2010. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N. Engl. J. Med. 362:4369–70 [Google Scholar]
  86. Harutyunyan A, Klampfl T, Cazzola M, Kralovics R. 86.  2011. P53 lesions in leukemic transformation. N. Engl. J. Med. 364:5488–90 [Google Scholar]
  87. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A. 87.  et al. 2013. Mutations and prognosis in primary myelofibrosis. Leukemia 27:91861–69 [Google Scholar]
  88. Jutzi JS, Bogeska R, Nikoloski G, Schmid CA, Seeger TS. 88.  et al. 2013. MPN patients harbor recurrent truncating mutations in transcription factor NF-E2. J. Exp. Med. 210:51003–19 [Google Scholar]
  89. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL. 89.  et al. 2006. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLOS Med. 3:7e270 [Google Scholar]
  90. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA. 90.  et al. 2006. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108:103472–76 [Google Scholar]
  91. Beer PA, Campbell PJ, Scott LM, Bench AJ, Erber WN. 91.  et al. 2008. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 112:1141–49 [Google Scholar]
  92. Chaligné R, Tonetti C, Besancenot R, Roy L, Marty C. 92.  et al. 2008. New mutations of MPL in primitive myelofibrosis: Only the MPL W515 mutations promote a G1/S-phase transition. Leukemia 22:81557–66 [Google Scholar]
  93. Staerk J, Lacout C, Sato T, Smith SO, Vainchenker W, Constantinescu SN. 93.  2006. An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood 107:51864–71 [Google Scholar]
  94. Pecquet C, Staerk J, Chaligné R, Goss V, Lee KA. 94.  et al. 2010. Induction of myeloproliferative disorder and myelofibrosis by thrombopoietin receptor W515 mutants is mediated by cytosolic tyrosine 112 of the receptor. Blood 115:51037–48 [Google Scholar]
  95. Oh ST, Simonds EF, Jones C, Hale MB, Goltsev Y. 95.  et al. 2010. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 116:6988–92 [Google Scholar]
  96. Lasho TL, Pardanani A, Tefferi A. 96.  2010. LNK mutations in JAK2 mutation–negative erythrocytosis. N. Engl. J. Med. 363:121189–90 [Google Scholar]
  97. Sanada M, Suzuki T, Shih L-Y, Otsu M, Kato M. 97.  et al. 2009. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460:7257904–8 [Google Scholar]
  98. Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C. 98.  et al. 2009. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113:246182–92 [Google Scholar]
  99. Schwaab J, Ernst T, Erben P, Rinke J, Schnittger S. 99.  et al. 2012. Activating CBL mutations are associated with a distinct MDS/MPN phenotype. Ann. Hematol. 91:111713–20 [Google Scholar]
  100. Hou Y, Song L, Zhu P, Zhang B, Tao Y. 100.  et al. 2012. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:5873–85 [Google Scholar]
  101. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E. 101.  et al. 2013. Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl. J. Med. 369:252379–90 [Google Scholar]
  102. Broséus J, Park J-H, Carillo S, Hermouet S, Girodon F. 102.  2014. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood 124:263964–66 [Google Scholar]
  103. Guglielmelli P, Nangalia J, Green AR, Vannucchi AM. 103.  2014. CALR mutations in myeloproliferative neoplasms: hidden behind the reticulum. Am. J. Hematol. 89:5453–56 [Google Scholar]
  104. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M. 104.  2009. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 417:3651–66 [Google Scholar]
  105. Chao MP, Majeti R, Weissman IL. 105.  2012. Programmed cell removal: a new obstacle in the road to developing cancer. Nat. Rev. Cancer 12:158–67 [Google Scholar]
  106. Shivarov V, Ivanova M, Tiu RV. 106.  2014. Mutated calreticulin retains structurally disordered C terminus that cannot bind Ca2+: some mechanistic and therapeutic implications. Blood Cancer J. 4:e185 [Google Scholar]
  107. Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel J-P. 107.  et al. 2014. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood 123:22e123–33 [Google Scholar]
  108. Kollmann K, Nangalia J, Warsch W, Quentmeier H, Bench A. 108.  et al. 2014. MARIMO cells harbor a CALR mutation but are not dependent on JAK2/STAT5 signaling. Leukemia 29:2494–97 [Google Scholar]
  109. Vannucchi AM, Rotunno G, Bartalucci N, Raugei G, Carrai V. 109.  et al. 2014. Calreticulin mutation-specific immunostaining in myeloproliferative neoplasms: pathogenetic insight and diagnostic value. Leukemia 28:91811–18 [Google Scholar]
  110. Milosevic JD, Kralovics R. 110.  2013. Genetic and epigenetic alterations of myeloproliferative disorders. Int. J. Hematol. 97:2183–97 [Google Scholar]
  111. Campbell PJ, Baxter EJ, Beer PA, Scott LM, Bench AJ. 111.  et al. 2006. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 108:103548–55 [Google Scholar]
  112. Kralovics R, Teo SS, Li S, Theocharides A, Buser AS. 112.  et al. 2006. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 108:41377–80 [Google Scholar]
  113. Pardanani A, Lasho TL, Finke CM, Mai M, McClure RF, Tefferi A. 113.  2010. IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia 24:61146–51 [Google Scholar]
  114. Abdel-Wahab O, Pardanani A, Rampal R, Lasho TL, Levine RL, Tefferi A. 114.  2011. DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia 25:71219–20 [Google Scholar]
  115. Stegelmann F, Bullinger L, Schlenk RF, Paschka P, Griesshammer M. 115.  et al. 2011. DNMT3A mutations in myeloproliferative neoplasms. Leukemia 25:71217–19 [Google Scholar]
  116. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C. 116.  et al. 2010. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42:8722–26 [Google Scholar]
  117. Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adélaïde J. 117.  et al. 2009. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 23:112183–86 [Google Scholar]
  118. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T. 118.  et al. 2010. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363:252424–33 [Google Scholar]
  119. Challen GA, Sun D, Jeong M, Luo M, Jelinek J. 119.  et al. 2012. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44:123–31 [Google Scholar]
  120. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM. 120.  et al. 2014. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506:7488328–33 [Google Scholar]
  121. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H. 121.  et al. 2014. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 123:142220–28 [Google Scholar]
  122. Xu J, Wang Y-Y, Dai Y-J, Zhang W, Zhang W-N. 122.  et al. 2014. DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia through disturbing gene expression/DNA methylation in hematopoietic cells. PNAS 111:72620–25 [Google Scholar]
  123. Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA. 123.  et al. 2014. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25:4442–54 [Google Scholar]
  124. Langemeijer SMC, Kuiper RP, Berends M, Knops R, Aslanyan MG. 124.  et al. 2009. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat. Genet. 41:7838–42 [Google Scholar]
  125. Abdel-Wahab O, Tefferi A, Levine RL. 125.  2012. Role of TET2 and ASXL1 mutations in the pathogenesis of myeloproliferative neoplasms. Hematol. Oncol. Clin. N. Am. 26:51053–64 [Google Scholar]
  126. Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M. 126.  et al. 2009. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 113:256403–10 [Google Scholar]
  127. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M. 127.  et al. 2010. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:7325839–43 [Google Scholar]
  128. Tefferi A, Pardanani A, Lim K-H, Abdel-Wahab O, Lasho TL. 128.  et al. 2009. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 23:5905–11 [Google Scholar]
  129. Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S. 129.  et al. 2012. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44:111179–81 [Google Scholar]
  130. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA. 130.  et al. 2014. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371:2477–87 [Google Scholar]
  131. Kameda T, Shide K, Yamaji T, Kamiunten A, Sekine M. 131.  et al. 2015. Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator. Blood 125:2304–15 [Google Scholar]
  132. Guglielmelli P, Biamonte F, Score J, Hidalgo-Curtis C, Cervantes F. 132.  et al. 2011. EZH2 mutational status predicts poor survival in myelofibrosis. Blood 118:195227–34 [Google Scholar]
  133. Muto T, Sashida G, Oshima M, Wendt GR, Mochizuki-Kashio M. 133.  et al. 2013. Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders. J. Exp. Med. 210:122627–39 [Google Scholar]
  134. Score J, Hidalgo-Curtis C, Jones AV, Winkelmann N, Skinner A. 134.  et al. 2012. Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood 119:51208–13 [Google Scholar]
  135. Dey A, Seshasayee D, Noubade R, French DM, Liu J. 135.  et al. 2012. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337:61011541–46 [Google Scholar]
  136. Tefferi A, Guglielmelli P, Lasho TL, Rotunno G, Finke C. 136.  et al. 2014. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia 28:71494–500 [Google Scholar]
  137. Abdel-Wahab O, Gao J, Adli M, Dey A, Trimarchi T. 137.  et al. 2013. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J. Exp. Med. 210:122641–59 [Google Scholar]
  138. Yap DB, Chu J, Berg T, Schapira M, Cheng S-WG. 138.  et al. 2011. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117:82451–59 [Google Scholar]
  139. Dang L, White DW, Gross S, Bennett BD, Bittinger MA. 139.  et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:7274739–44 [Google Scholar]
  140. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S. 140.  et al. 2012. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:7390474–78 [Google Scholar]
  141. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J. 141.  et al. 2010. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:6553–67 [Google Scholar]
  142. Tefferi A, Lasho TL, Abdel-Wahab O, Guglielmelli P, Patel J. 142.  et al. 2010. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia 24:71302–9 [Google Scholar]
  143. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P. 143.  et al. 2011. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365:151384–95 [Google Scholar]
  144. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y. 144.  et al. 2011. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478:736764–69 [Google Scholar]
  145. Madan V, Kanojia D, Li J, Okamoto R, Sato-Otsubo A. 145.  et al. 2015. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat. Commun. 6:6042 [Google Scholar]
  146. Shirai CL, Ley JN, White BS, Kim S, Tibbitts J. 146.  et al. 2015. Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell 27:5631–43 [Google Scholar]
  147. Visconte V, Avishai N, Mahfouz R, Tabarroki A, Cowen J. 147.  et al. 2015. Distinct iron architecture in SF3B1-mutant myelodysplastic syndrome patients is linked to an SLC25A37 splice variant with a retained intron. Leukemia 29:1188–95 [Google Scholar]
  148. Rumi E, Passamonti F, Della Porta MG, Elena C, Arcaini L. 148.  et al. 2007. Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. J. Clin. Oncol. 25:355630–35 [Google Scholar]
  149. Lundberg P, Nienhold R, Ambrosetti A, Cervantes F, Pérez-Encinas MM, Skoda RC. 149.  2014. Somatic mutations in calreticulin can be found in pedigrees with familial predisposition to myeloproliferative neoplasms. Blood 123:172744–45 [Google Scholar]
  150. Rumi E, Harutyunyan AS, Pietra D, Milosevic JD, Casetti IC. 150.  et al. 2014. CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis. Blood 123:152416–19 [Google Scholar]
  151. Harutyunyan AS, Giambruno R, Krendl C, Stukalov A, Klampfl T. 151.  et al. 2013. Germline RBBP6 mutations in myeloproliferative neoplasms. Blood 122:21267 [Google Scholar]
  152. Pianta A, Liu K, Lundberg P, Shimizu T, Hao-Shen H. 152.  et al. 2013. Hereditary thrombocytosis caused by a novel germ-line mutation in the gelsolin gene. Blood 122:21265 [Google Scholar]
  153. Campbell PJ, Scott LM, Buck G, Wheatley K, East CL. 153.  et al. 2005. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 366:95011945–53 [Google Scholar]
  154. Antonioli E, Guglielmelli P, Pancrazzi A, Bogani C, Verrucci M. 154.  et al. 2005. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia 19:101847–49 [Google Scholar]
  155. Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS. 155.  et al. 2014. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 123:101544–51 [Google Scholar]
  156. Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA. 156.  et al. 2014. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 124:162507–13 [Google Scholar]
  157. Vannucchi AM, Antonioli E, Guglielmelli P, Pancrazzi A, Guerini V. 157.  et al. 2008. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood 112:3844–47 [Google Scholar]
  158. Guglielmelli P, Pancrazzi A, Bergamaschi G, Rosti V, Villani L. 158.  et al. 2007. Anaemia characterises patients with myelofibrosis harbouring MplW515L/K mutation. Br. J. Haematol. 137:3244–47 [Google Scholar]
  159. Pardanani A, Guglielmelli P, Lasho TL, Pancrazzi A, Finke CM. 159.  et al. 2011. Primary myelofibrosis with or without mutant MPL: comparison of survival and clinical features involving 603 patients. Leukemia 25:121834–39 [Google Scholar]
  160. Rumi E, Pietra D, Guglielmelli P, Bordoni R, Casetti I. 160.  et al. 2013. Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms. Blood 121:214388–95 [Google Scholar]
  161. Rotunno G, Mannarelli C, Guglielmelli P, Pacilli A, Pancrazzi A. 161.  et al. 2014. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood 123:101552–55 [Google Scholar]
  162. Trifa AP, Popp RA, Cucuianu A, Bănescu C, Tevet M. 162.  et al. 2015. CALR versus JAK2 mutated essential thrombocythaemia – a report on 141 patients. Br. J. Haematol. 168:1151–53 [Google Scholar]
  163. Gangat N, Wassie E, Lasho T, Finke C, Ketterling R. 163.  et al. 2015. Mutations and thrombosis in essential thrombocythemia: prognostic interaction with age and thrombosis history. Eur. J. Haematol. 94:131–36 [Google Scholar]
  164. Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R. 164.  et al. 2014. CALR versus JAK2 versus MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 28:71472–77 [Google Scholar]
  165. Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martínez-Trillos A. 165.  et al. 2014. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 124:71062–69 [Google Scholar]
  166. Spivak JL, Silver RT. 166.  2008. The revised world health organization diagnostic criteria for polycythemia vera, essential thrombocytosis, and primary myelofibrosis: an alternative proposal. Blood 112:2231–39 [Google Scholar]
  167. Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C. 167.  et al. 2014. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia 28:91804–10 [Google Scholar]
  168. Guglielmelli P, Biamonte F, Rotunno G, Artusi V, Artuso L. 168.  et al. 2014. Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study. Blood 123:142157–60 [Google Scholar]
  169. Rampal R, Ahn J, Abdel-Wahab O, Nahas M, Wang K. 169.  et al. 2014. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. PNAS 111:50e5401–10 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error