1932

Abstract

Great progress has been made in addressing global undernutrition over the past several decades, in part because of large increases in food production from agricultural expansion and intensification. Food systems, however, face continued increases in demand and growing environmental pressures. Most prominently, human-caused climate change will influence the quality and quantity of food we produce and our ability to distribute it equitably. Our capacity to ensure food security and nutritional adequacy in the face of rapidly changing biophysical conditions will be a major determinant of the next century's global burden of disease. In this article, we review the main pathways by which climate change may affect our food production systems—agriculture, fisheries, and livestock—as well as the socioeconomic forces that may influence equitable distribution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-publhealth-031816-044356
2017-03-20
2024-09-08
Loading full text...

Full text loading...

/deliver/fulltext/publhealth/38/1/annurev-publhealth-031816-044356.html?itemId=/content/journals/10.1146/annurev-publhealth-031816-044356&mimeType=html&fmt=ahah

Literature Cited

  1. Abrol DP. 1.  2012. Climate change and pollinators. Pollination Biology DP Abrol 479–508 Dordrecht, Neth.: Springer [Google Scholar]
  2. Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD. 2.  2012. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant Biol. 63:637–61 [Google Scholar]
  3. Alexandratos N. 3.  2011. World food and agriculture to 2030/2050 revisited. Highlights and views four years later. Looking Ahead in World Food and Agriculture: Perspectives to 2050 P Conforti 11–56 Rome: FAO [Google Scholar]
  4. Ashmore MR. 4.  2005. Assessment of response of future vegetation to ozone. Plant Cell Environ 28:949–64 [Google Scholar]
  5. Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB. 5.  et al. 2014. Rising temperatures reduce global wheat production. Nat. Climat. Change 5:143–47 [Google Scholar]
  6. Avnery S, Mauzerall DL, Liu J, Horowitz LW. 6.  2011. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos. Environ. 45:2284–96 [Google Scholar]
  7. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK. 7.  2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8:1–16 [Google Scholar]
  8. Barange M, Perry RI. 8.  2009. Physical and ecological impacts of climate change relevant to marine and inland capture fisheries and aquaculture. Climate Change Implications for Fisheries and Aquaculture: Overview of Current Scientific Knowledge K Cochrane, C De Young, D Soto, T Bahri 7–106 Rome: FAO [Google Scholar]
  9. Barnett J, Adger WN. 9.  2007. Climate change, human security and violent conflict. Polit. Geogr. 26:639–55 [Google Scholar]
  10. Barrett CB. 10.  2010. Measuring food insecurity. Science 327:825–28 [Google Scholar]
  11. Battisti DS, Naylor RL. 11.  2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–44 [Google Scholar]
  12. Bebber DP. 12.  2015. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53:335–56 [Google Scholar]
  13. Bebber DP, Ramotowski MAT, Gurr SJ. 13.  2013. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3:985–88 [Google Scholar]
  14. Bell ML, Goldberg R, Hogrefe C, Kinney P, Knowlton K. 14.  et al. 2007. Climate change, ambient ozone, and health in 50 U.S. cities. Clim. Change 82:61–76 [Google Scholar]
  15. Béné C, Arthur R, Norbury H, Allison EH, Beveridge MC. 15.  et al. 2016. Contribution of fisheries and aquaculture to food security and poverty reduction: assessing the current evidence. World Dev 79:177–96 [Google Scholar]
  16. Bermudez R, Feng Y, Roleda MY, Tatters AO, Hutchins DA. 16.  et al. 2015. Long-term conditioning to elevated pCO2 and warming influences the fatty and amino acid composition of the diatom. Cylindrotheca fusiformis PLOS ONE 10:e0123945 [Google Scholar]
  17. Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A. 17.  2010. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 4:1167–83 [Google Scholar]
  18. Beveridge MC, Thilsted SH, Phillips MJ, Metian M, Troell M, Hall SJ. 18.  2013. Meeting the food and nutrition needs of the poor: the role of fish and the opportunities and challenges emerging from the rise of aquaculture. J. Fish Biol. 83:1067–84 [Google Scholar]
  19. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P. 19.  et al. 2013. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382:427–51 [Google Scholar]
  20. Bonfils C, Lobell D. 20.  2007. Empirical evidence for a recent slowdown in irrigation-induced cooling. PNAS 104:13582–87 [Google Scholar]
  21. Boyce DG, Lewis MR, Worm B. 21.  2010. Global phytoplankton decline over the past century. Nature 466:591–96 [Google Scholar]
  22. Boyd PW, Lennartz ST, Glover DM, Doney SC. 22.  2015. Biological ramifications of climate-change-mediated oceanic multi-stressors. Nat. Clim. Change 5:71–79 [Google Scholar]
  23. Brauman KA, Richter BD, Postel S, Malsy M, Flörke M. 23.  2016. Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa: Sci. Anthropocene 4:000083 [Google Scholar]
  24. Buhaug H. 24.  2015. Climate–conflict research: some reflections on the way forward. WIREs Clim. Change 6:269–75 [Google Scholar]
  25. Burke M, Hsiang SM, Miguel E. 25.  2015. Global non-linear effect of temperature on economic production. Nature 527:235–39 [Google Scholar]
  26. Burke MB, Miguel E, Satyanath S, Dykema JA, Lobell DB. 26.  2009. Warming increases the risk of civil war in Africa. PNAS 106:20670–74 [Google Scholar]
  27. Butler EE, Huybers P. 27.  2012. Adaptation of US maize to temperature variations. Nat. Clim. Change 3:68–72 [Google Scholar]
  28. Butler EE, Huybers P. 28.  2015. Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase. Environ. Res. Lett. 10:034009 [Google Scholar]
  29. Carlson RE. 29.  1990. Heat stress, plant-available soil moisture, and corn yields in Iowa: a short- and long-term view. J. Prod. Agric. 3:293–97 [Google Scholar]
  30. Cassidy E, West PC, Gerber JS, Foley JA. 30.  2013. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8:034015 [Google Scholar]
  31. Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N. 31.  2014. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4:287–91 [Google Scholar]
  32. Chaplin-Kramer R, Dombeck E, Gerber J, Knuth KA, Mueller ND. 32.  et al. 2014. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. R. Soc. B 28120141799 [Google Scholar]
  33. Chauhan B, Ramesh K. 33.  2015. Weed regimes in agro-ecosystems in the changing climate scenario—a review. Indian J. Agron. 60:479–84 [Google Scholar]
  34. Chavez FP, Messié M, Pennington JT. 34.  2011. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3:227–60 [Google Scholar]
  35. Cheung WW, Jones MC, Reygondeau G, Stock CA, Lam VWY, Frolicher TL. 35.  2016. Structural uncertainty in projecting global fisheries catches under climate change. Ecol. Model. 325:57–66 [Google Scholar]
  36. Cheung WW, Watson R, Pauly D. 36.  2013. Signature of ocean warming in global fisheries catch. Nature 497:365–68 [Google Scholar]
  37. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T. 37.  et al. 2013. Long-term climate change: projections, commitments and irreversibility. See Ref. 73 1029–136
  38. Cooley SR, Lucey N, Kite-Powell H, Doney SC. 38.  2012. Nutrition and income from molluscs today imply vulnerability to ocean acidification tomorrow. Fish Fish. 13:182–215 [Google Scholar]
  39. Costello C, Ovando D, Clavelle T, Strauss CK, Hilborn R. 39.  et al. 2016. Global fishery prospects under contrasting management regimes. PNAS 113:5125–29 [Google Scholar]
  40. Davin EL, Seneviratne SI, Ciais P, Olioso A, Want T. 40.  2014. Preferential cooling of hot extremes from cropland albedo management. PNAS 111:9757–61 [Google Scholar]
  41. De Silva S, Soto D. 41.  2009. Climate change and aquaculture: potential impacts, adaptation, and mitigation. Climate Change and Aquaculture: Overview of Current Scientific Knowledge ed. K Cochrane, C De Young, D Soto, T Bahri 151–212 Rome: FAO [Google Scholar]
  42. Deryng D, Sacks WJ, Barford CC, Ramankutty N. 42.  2011. Simulating the effects of climate and agricultural management practices on global crop yield. Glob. Biogeochem. Cycles 25:GB2006 [Google Scholar]
  43. Dlugokencky E, Tans P. 43.  2016. Mauna Loa CO2 record Earth Syst. Res. Lab. (ESRL)/Natl. Ocean. Atmos. Adm. (NOAA) Boulder, Colo.: [Google Scholar]
  44. Dunne JP, Stouffer RJ, John JG. 44.  2013. Reductions in labour capacity from heat stress under climate warming. Nat. Clim. Change 3:563–66 [Google Scholar]
  45. Dutkiewicz S, Morris JJ, Follows MJ, Scott J, Levitan O. 45.  et al. 2015. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Change 5:1002–6 [Google Scholar]
  46. Ehleringer JR, Cerling TE, Dearing MD. 46.  2002. Atmospheric CO2 as a global change driver influencing plant-animal interactions. Integr. Comp. Physiol. 42:424–30 [Google Scholar]
  47. Eilers EJ, Kremen C, Greenleaf SS, Garber AK, Klein A-M. 47.  2011. Contribution of pollinator-mediated crops to nutrients in the human food supply. PLOS ONE 6:e21363 [Google Scholar]
  48. Ellis EC, Kaplan JO, Fuller DQ, Vavrus S, Goldewijk KK, Verburg PH. 48.  2013. Used planet: a global history. PNAS 110:7978–85 [Google Scholar]
  49. 49. FAO (Food Agric. Organ. of the U. N.) 2011. Global Food Losses and Food Waste—Extent, Causes, and Prevention. Rome: FAO [Google Scholar]
  50. 50. FAO (Food Agric. Organ. of the U. N.) 2016. Food supply (kcal/capita/day) FAO Rome: http://faostat3.fao.org/download/FB/CC/E [Google Scholar]
  51. Fink G, Gunther I, Hill K. 51.  2011. The effect of water and sanitation on child health: evidence from the demographic and health surveys 1986–2007. Int. J. Epidemiol. 40:1196–204 [Google Scholar]
  52. Fiscus EL, Booker FL, Burkey KO. 52.  2005. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011 [Google Scholar]
  53. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC. 53.  et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–94 [Google Scholar]
  54. Flood J. 54.  2010. The importance of plant health to food security. Food Secur 2:215–31 [Google Scholar]
  55. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS. 55.  et al. 2011. Solutions for a cultivated planet. Nature 478:337–42 [Google Scholar]
  56. Fuhrer J. 56.  2009. Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 96:173–94 [Google Scholar]
  57. Garcia Molinos J, Halpern BS, Shoeman DS, Brown CJ, Kiessling W. 57.  et al. 2015. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6:83–88 [Google Scholar]
  58. Gattuso JP, Magnan A, Bille R, Cheung WW, Howes EL. 58.  et al. 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349:aac4722 [Google Scholar]
  59. Golden CD, Allison EH, Cheung WWL, Dey MM, Halpern BS. 59.  et al. 2016. Fall in fish catch threatens human health. Nature 534:317–20 [Google Scholar]
  60. Gourdji SM, Sibley AM, Lobell DB. 60.  2013. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ. Res. Lett. 8:024041 [Google Scholar]
  61. Grassini P, Eskridge KM, Cassman KG. 61.  2013. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4:2918 [Google Scholar]
  62. Green R, Cornelsen L, Dangour AD, Turner R, Shankar B. 62.  et al. 2013. The effect of rising food prices on food consumption: systematic review with meta-regression. BMJ 346:f3703 [Google Scholar]
  63. Guerrant RL, DeBoer MD, Moore SR, Scharf RJ, Lima AAM. 63.  2013. The impoverished gut: a triple burden of diarrhoea, stunting and chronic disease. Nat. Rev. Gastroenterol. Hepatol. 10:220–29 [Google Scholar]
  64. Hegland SJ, Nielsen A, Lazaro A, Bjerknes AL, Totland O. 64.  2009. How does climate warming affect plant-pollinator interactions?. Ecol. Lett. 12:184–95 [Google Scholar]
  65. Hendrix CS, Salehyan I. 65.  2012. Climate change, rainfall, and social conflict in Africa. J. Peace Res. 49:35–50 [Google Scholar]
  66. Hixson SM, Arts MT. 66.  2016. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22:2744–55 [Google Scholar]
  67. Hodges RJ, Buzby JC, Bennett B. 67.  2010. Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. J. Agric. Sci. 149:37–45 [Google Scholar]
  68. Houser T, Hsiang SM, Kopp RE, Larsen K, Delgado M. 68.  et al. 2015. Labor. Economic Risks of Climate Change: An American Prospectus67–74 New York: Columbia Univ. Press [Google Scholar]
  69. Hsiang SM, Burke M, Miguel E. 69.  2013. Quantifying the influence of climate on human conflict. Science 341:1235367 [Google Scholar]
  70. Hsiang SM, Meng KC. 70.  2014. Reconciling disagreement over climate-conflict results in Africa. PNAS 111:2100–3 [Google Scholar]
  71. 71. IFPRI (Int. Food Policy Res. Inst.). 2015. Global Nutrition Report 2015: Actions and Accountability to Advance Nutrition and Sustainable Development. Washington, DC: IFPRI [Google Scholar]
  72. 72. IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosys. Serv.). 2016. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination, and Food Production SG Potts, VL Imperatriz-Fonseca, HT Ngo, JC Biesmeijer, TD Breeze 1–28 Bonn, Ger.: IPBES [Google Scholar]
  73. 73. IPCC (Intergov. Panel Clim. Change) Work. Group. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen, et al. Cambridge, UK/New York:: Cambridge Univ. Press [Google Scholar]
  74. 74. IPCC (Intergov. Panel Clim. Change) Work. Group. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea, et al. Cambridge, UK/New York: Cambridge Univ. Press [Google Scholar]
  75. 75. IPCC (Intergov. Panel Clim. Change) Work. Group. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change RK Pachauri, LA Meyer Geneva: IPCC [Google Scholar]
  76. Ivanic M. 76.  2008. Implications of higher global food prices for poverty in low-income countries World Bank Policy Res. Work. Pap. 4594 [Google Scholar]
  77. Izaurralde RC, Thomson AM, Morgan JA, Fay PA, Polley HW, Hatfield JL. 77.  2011. Climate impacts on agriculture: implications for forage and rangeland production. USDA Agric. Res. Serv./Univ. Neb. Lincoln Fac. Pap. 1351
  78. Jiménez Cisneros BE, Oki T, Arnell NW, Benito G, Cogley JG. 78.  et al. 2014. Freshwater resources. See Ref. 74 229–69
  79. Kawarazuka N, Béné C. 79.  2011. The potential role of small fish species in improving micronutrient deficiencies in developing countries: building evidence. Public Health Nutr 14:1927–38 [Google Scholar]
  80. Kelley CP, Mohtadi S, Cane MA, Seager R, Kushnir Y. 80.  2015. Climate change in the fertile crescent and implications of the recent Syrian drought. PNAS 112:3241–46 [Google Scholar]
  81. Kjellstrom T, Briggs D, Freyberg C, Lemke B, Otto M, Hyatt O. 81.  2016. Heat, human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annu. Rev. Public Health 37:97–112 [Google Scholar]
  82. Lara LJ, Rostagno MH. 82.  2013. Impact of heat stress on poultry production. Animals 3:356–69 [Google Scholar]
  83. Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR. 83.  2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60:2859–76 [Google Scholar]
  84. Lewandowska AM, Boyce DG, Hofmann M, Matthiessen B, Sommer U, Worm B. 84.  2014. Effects of sea surface warming on marine plankton. Ecol. Lett. 17:614–23 [Google Scholar]
  85. Lin M, Huybers P. 85.  2012. Reckoning wheat yield trends. Environ. Res. Lett. 7:024016 [Google Scholar]
  86. Lloret J, Rätz H-J, Lleonart J, Demestre M. 86.  2015. Challenging the links between seafood and human health in the context of global change. J. Mar. Biol. Assoc. 96:29–42 [Google Scholar]
  87. Lobell DB. 87.  2014. Climate change adaptation in crop production: Beware of illusions. Glob. Food Secur. 3:72–76 [Google Scholar]
  88. Lobell DB, Cassman KG, Field CB. 88.  2009. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34:179–204 [Google Scholar]
  89. Lobell DB, Gourdji SM. 89.  2012. The influence of climate change on global crop productivity. Plant Physiol 160:1686–97 [Google Scholar]
  90. Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W. 90.  2013. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3:497–501 [Google Scholar]
  91. Lobell DB, Schlenker W, Costa-Roberts J. 91.  2011. Climate trends and global crop production since 1980. Science 333:616–20 [Google Scholar]
  92. Loladze I. 92.  2014. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3:e02245 [Google Scholar]
  93. Long SP, Ainsworth EA, Leakey AD, Nösberger J, Ort DR. 93.  2006. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–21 [Google Scholar]
  94. Masclaux H, Bec A, Kainz MJ, Perrière F, Desvilettes C, Bourdier G. 94.  2012. Accumulation of polyunsaturated fatty acids by cladocerans: effects of taxonomy, temperature and food. Freshw. Biol. 57:696–703 [Google Scholar]
  95. Mearns R, Norton A. 95.  2010. Social Dimensions of Climate Change Washington, DC: World Bank [Google Scholar]
  96. Medek DE, Schwartz J, Myers SS. 96.  2017. Rising CO2 poses a threat to global protein intake. Environ. Health Perspect. In press [Google Scholar]
  97. Memmott J, Craze PG, Waser NM, Price MV. 97.  2007. Global warming and the disruption of plant-pollinator interactions. Ecol. Lett. 10:710–17 [Google Scholar]
  98. Mendelsohn R, Nordhaus WD, Shaw D. 98.  1994. The impact of global warming on agriculture: a Ricardian analysis. Am. Econ. Rev. 84:753–71 [Google Scholar]
  99. Milchunas DG, Mosier AR, Morgan JA, LeCain DR, King JY, Nelson JA. 99.  2005. Elevated CO2 and defoliation effects on a shortgrass steppe: forage quality versus quantity for ruminants. Agric. Ecosyst. Environ. 111:166–84 [Google Scholar]
  100. Moore FC, Lobell DB. 100.  2014. Adaptation potential of European agriculture in response to climate change. Nat. Clim. Change 4:610–14 [Google Scholar]
  101. Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP. 101.  2006. Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol. 170:333–43 [Google Scholar]
  102. Morton JF. 102.  2007. The impact of climate change on smallholder and subsistence agriculture. PNAS 104:19680–85 [Google Scholar]
  103. Muchow RC, Sinclair TR. 103.  1991. Water deficit effects on maize yields modeled under current and “greenhouse” climates. Agron. J. 83:1052–59 [Google Scholar]
  104. Mueller B, Seneviratne SI. 104.  2012. Hot days induced by precipitation deficits at the global scale. PNAS 109:12398–403 [Google Scholar]
  105. Mueller ND, Binder S. 105.  2015. Closing yield gaps: consequences for the global food supply, environmental quality & food security. Daedalus 144:45–56 [Google Scholar]
  106. Mueller ND, Butler EE, McKinnon KA, Rhines A, Tingley MP. 106.  et al. 2016. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6:317–22 [Google Scholar]
  107. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA. 107.  2012. Closing yield gaps through nutrient and water management. Nature 490:254–57 [Google Scholar]
  108. Myers SS, Wessells KR, Kloog I, Zanobetti A, Schwartz J. 108.  2015. Effect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling study. Lancet Glob. Health 3:e639–45 [Google Scholar]
  109. Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB. 109.  et al. 2014. Increasing CO2 threatens human nutrition. Nature 510:139–42 [Google Scholar]
  110. Nardone A, Ronchi B, Lacetera N, Ranieri MS. 110.  2010. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 130:57–69 [Google Scholar]
  111. Nelson GC, Rosegrant MW, Koo J, Robertson RD, Sulser T. 111.  et al. 2009. Climate Change Impact on Agriculture and Costs of Adaptation. Washington, DC: Int. Food Policy Res. Inst. [Google Scholar]
  112. Nelson GC, Rosegrant MW, Palazzo A, Gray I, Ingersoll C. 112.  et al. 2010. Food Security, Farming, and Climate Change to 2050 Washington, DC: Int. Food Policy Res. Inst. [Google Scholar]
  113. Ngure FM, Reid BM, Humphrey JH, Mbuya MN, Pelto G, Stoltzfus RJ. 113.  2014. Water, Sanitation, and Hygiene (WASH), environmental enteropathy, nutrition, and early child development: making the links. Ann. N. Y. Acad. Sci. 1308:118–28 [Google Scholar]
  114. Nikolowski VN, Shchepkina AM, Yuvena TV, Shulman GE. 114.  2011. Interannual variabilty of lipid content in sprat and anchovy as indicator of food supply in Black Sea small pelagic fishes. Industrial Bioresources of Black and Azov Seas GE Shulman, B Ozturk, AE Kideys, CA Finenko, L Bat 293–303 Sevastopol: ECOSI-Gidrofizika (In Russian) [Google Scholar]
  115. 115. NOAA (Natl. Cent. Environ. Inf.). 2016. Time series. NOAA Washington, DC: https://www.ncdc.noaa.gov/cag/time-series/ [Google Scholar]
  116. Parfitt J, Barthel M, Macnaughton S. 116.  2010. Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. B 365:3065–81 [Google Scholar]
  117. Parmesan C, Yohe G. 117.  2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42 [Google Scholar]
  118. Pauly D, Zeller D. 118.  2016. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7:10244 [Google Scholar]
  119. Pickering TD, Ponia B, Hair CA, Southgate PC, Poloczanska ES. 119.  et al. 2011. Vulnerability of aquaculture in the tropical Pacific to climate change. Aquaculture in the Third Millennium. Technical Proceedings of the Conference on Aquaculture in the Third Millennium, Bangkok, Thailand, 20–25 February 2000 RP Subasinghe, P Bueno, MJ Phillips, C Hough, SE McGladdery, JR Arthur 295–305 Bangkok/Rome: Netw. Aquacult. Cent. Asia-Pac./Food Agric. Organ. U. N. [Google Scholar]
  120. Pingali PL. 120.  2012. Green Revolution: impacts, limits, and the path ahead. PNAS 109:12302–8 [Google Scholar]
  121. Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM. 121.  et al. 2014. Food security and food production systems. See Ref. 74 485–533
  122. Pörtner HO, Karl DM, Boyd PM, Cheung WW, Lluch-Cota SE. 122.  et al. 2014. Ocean systems. See Ref. 74 411–84
  123. Prather M, Flato G, Friedlingstein P, Jones C, Lamarque JF. 123.  et al. 2013. Annex II: climate system scenario tables. See Ref. 73 1395–445
  124. 124. R. Soc 2008. Ground-Level Ozone in the 21st Century: Future Trends, Impacts and Policy Implication Sci. Policy Rep. 15/08 London: R. Soc. [Google Scholar]
  125. Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA. 125.  2012. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3:1293 [Google Scholar]
  126. Rose JB, Wu F. 126.  2015. Waterborne and foodborne diseases. Climate Change and Public Health BS Levy, JA Patz 157–72 Oxford, UK: Oxford Univ. Press [Google Scholar]
  127. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C. 127.  et al. 2013. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. PNAS 111:3268–73 [Google Scholar]
  128. Rosenzweig C, Iglesias A, Yang X, Epstein PR, Chivian E. 128.  2001. Climate change and extreme weather events: implications for food production, plant diseases, and pests. Glob. Change Hum. Health 2:90–104 [Google Scholar]
  129. Rossoll D, Bermudez R, Hauss H, Schulz KG, Riebesell U. 129.  et al. 2012. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLOS ONE 7:e34737 [Google Scholar]
  130. Sánchez B, Rasmussen A, Porter JR. 130.  2014. Temperatures and the growth and development of maize and rice: a review. Glob. Change Biol. 20:408–17 [Google Scholar]
  131. Sanchez PA. 131.  2010. Tripling crop yields in tropical Africa. Nat. Geosci. 3:299–300 [Google Scholar]
  132. Schlenker W, Roberts MJ. 132.  2009. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. PNAS 106:15594–98 [Google Scholar]
  133. Schmidhuber J, Tubiello FN. 133.  2007. Global food security under climate change. PNAS 104:19703–8 [Google Scholar]
  134. Selvaraj S, Ganeshamoorthi P, Pandiaraj T. 134.  2013. Potential impacts of recent climate change on biological control agents in agro-ecosystem: a review. Int. J. Biodivers. Conserv. 5:845–52 [Google Scholar]
  135. Sen A. 135.  1981. Poverty and Famines Oxford, UK: Oxford Univ. Press [Google Scholar]
  136. Shi G, Yang L, Wang Y, Kobayashi K, Zhu J. 136.  et al. 2009. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agric. Ecosyst. Environ. 131:178–84 [Google Scholar]
  137. Sinclair TR, Rufty TW. 137.  2012. Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Glob. Food Secur. 1:94–98 [Google Scholar]
  138. Singh I, Squire L, Strauss J. 138.  1986. Agricultural Household Models Baltimore, MD: Johns Hopkins Univ. Press [Google Scholar]
  139. Smith MR, Singh GM, Mozaffarian D, Myers SS. 139.  2015. Effects of decreases of animal pollinators on human nutrition and global health: a modelling analysis. Lancet 386:1964–72 [Google Scholar]
  140. Speers AE, Besedin EY, Palardy JE, Moore C. 140.  2016. Impacts of climate change and ocean acidification on coral reef fisheries: an integrated ecological-economic model. Ecol. Econ. 128:33–43 [Google Scholar]
  141. Springmann M, Mason-D'Croz D, Robinson S, Garnett T, Godfray HCJ. 141.  et al. 2016. Global and regional health effects of future food production under climate change: a modelling study. Lancet 387:1937–46 [Google Scholar]
  142. Thornton PK, van de Steeg J, Notenbaert A, Herrero M. 142.  2009. The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric. Syst. 101:113–27 [Google Scholar]
  143. Tilman GD, Cassman KG, Matson PA, Naylor RL, Polasky S. 143.  2002. Agricultural sustainability and intensive production practices. Nature 418:671–77 [Google Scholar]
  144. 144. U.N. Dep. Econ. Soc. Aff., Pop. Div. 2015. Probabilistic population projections based on the world population prospects: the 2015 revision, key findings and advance tables. Work. Pap. ESA/P/WP.241, U.N., New York
  145. Waddington SR, Li X, Dixon J, Hyman G, de Vicente MC. 145.  2010. Getting the focus right: Production constraints for six major food crops in Asian and African farming systems. Food Secur 2:27–48 [Google Scholar]
  146. Whitmee S, Haines A, Beyrer C, Boltz F, Capon AG. 146.  et al. 2015. Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 386:1973–2028 [Google Scholar]
  147. Young S. 147.  2015. When an invasive plant fails to invade. Front. Ecol. Environ. 13:450–51 [Google Scholar]
  148. Zhu X, Feng Z, Sun T, Liu X, Tang H. 148.  et al. 2011. Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Glob. Change Biol. 17:2697–706 [Google Scholar]
  149. Ziska L, George K. 149.  2004. Rising carbon dioxide and invasive, noxious plants: potential threats and consequences. World Resour. Rev. 16:427–47 [Google Scholar]
  150. Ziska L, Goins E. 150.  2006. Elevated atmospheric carbon dioxide and weed populations in glyphosate treated soybean. Clim. Chem. Weed Manag. 46:1354–59 [Google Scholar]
  151. Ziska LH, Pettis JS, Edwards J, Hancock JE, Tomecek MB. 151.  et al. 2016. Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proc. R. Soc. B 283:20160414 [Google Scholar]
  152. Zvereva EL, Kozlov MV. 152.  2006. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Glob. Change Biol. 12:27–41 [Google Scholar]
/content/journals/10.1146/annurev-publhealth-031816-044356
Loading
/content/journals/10.1146/annurev-publhealth-031816-044356
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error