1932

Abstract

Numerous bacteriophages—viruses of bacteria, also known as phages—have been described for hundreds of bacterial species. The Gram-negative species are close relatives of , yet relatively few previously described phages appear to exclusively infect this genus. Recent efforts to isolate phages have indicated these viruses are surprisingly abundant in the environment and have distinct genomic and structural properties. In addition, at least one model system used for experimental evolution studies has revealed a unique mechanism for developing faster infection cycles. Differences between these bacteriophages and other well-described model systems may mirror differences between their hosts’ ecology and defense mechanisms. In this review, we discuss the history of phages and recent developments in their isolation and characterization and the structural information available for three model systems, Sf6, Sf14, and HRP29; we also provide an overview of potential selective pressures guiding both phage and host evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-010320-052547
2020-09-29
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-010320-052547.html?itemId=/content/journals/10.1146/annurev-virology-010320-052547&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pupo GM, Lan R, Reeves PR 2000. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. PNAS 97:10567–72
    [Google Scholar]
  2. 2. 
    Zhang Y, Lin K. 2012. A phylogenomic analysis of Escherichia coli/Shigella group: implications of genomic features associated with pathogenicity and ecological adaptation. BMC Evol. Biol. 12:174
    [Google Scholar]
  3. 3. 
    Freed NE, Bumann D, Silander OK 2016. Combining Shigella Tn-seq data with gold-standard E. coli gene deletion data suggests rare transitions between essential and non-essential gene functionality. BMC Microbiol 16:203
    [Google Scholar]
  4. 4. 
    Rautureau GJP, Palama TL, Canard I, Mirande C, Chatellier S et al. 2019. Discrimination of Escherichia coli and Shigella spp. by nuclear magnetic resonance based metabolomic characterization of culture media. ACS Infect. Dis. 5:1879–86
    [Google Scholar]
  5. 5. 
    Goodridge LD. 2013. Bacteriophages for managing Shigella in various clinical and non-clinical settings. Bacteriophage 3:e25098
    [Google Scholar]
  6. 6. 
    Doore SM, Schrad JR, Dean WF, Dover JA, Parent KN 2018. Shigella phages isolated during a dysentery outbreak reveal uncommon structures and broad species diversity. J. Virol. 92:8e02117-17
    [Google Scholar]
  7. 7. 
    Doore SM, Schrad JR, Perrett HR, Schrad KP, Dean WF, Parent KN 2019. A cornucopia of Shigella phages from the Cornhusker State. Virology 538:45–52
    [Google Scholar]
  8. 8. 
    Diez-Villasenor C, Almendros C, Garcia-Martinez J, Mojica FJ 2010. Diversity of CRISPR loci in Escherichia coli. . Microbiology 156:1351–61
    [Google Scholar]
  9. 9. 
    Touchon M, Rocha EP. 2010. The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. . PLOS ONE 5:e11126
    [Google Scholar]
  10. 10. 
    Lee KF, Ling JM, Kam KM, Clark DR, Shaw PC 1997. Restriction endonucleases in clinical isolates of Shigella spp. J. Med. Microbiol. 46:949–52
    [Google Scholar]
  11. 11. 
    Yang F, Yang J, Zhang X, Chen L, Jiang Y et al. 2005. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33:6445–58
    [Google Scholar]
  12. 12. 
    Maurelli AT, Fernandez RE, Bloch CA, Rode CK, Fasano A 1998. “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. . PNAS 95:3943–48
    [Google Scholar]
  13. 13. 
    Nakata N, Tobe T, Fukuda I, Suzuki T, Komatsu K et al. 1993. The absence of a surface protease, OmpT, determines the intercellular spreading ability of Shigella: the relationship between the ompT and kcpA loci. Mol. Microbiol. 9:459–68
    [Google Scholar]
  14. 14. 
    Day WA Jr, Fernandez RE, Maurelli AT. 2001. Pathoadaptive mutations that enhance virulence: genetic organization of the cadA regions of Shigella spp. Infect. Immun. 69:7471–80
    [Google Scholar]
  15. 15. 
    D'Herelle F. 2007. On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D'Herelle, presented by Mr. Roux. 1917. Res. Microbiol. 158:553–54
    [Google Scholar]
  16. 16. 
    Hammarstrom E. 1947. Bacteriophage classification of Shigella sonnei. . Lancet 1:102
    [Google Scholar]
  17. 17. 
    Ketyi I. 1974. Role in virulence of Shigella flexneri antigens derived from lysogenic conversion. Infect. Immun. 9:931–33
    [Google Scholar]
  18. 18. 
    Financsek I, Ketyi I, Sasak W, Jankowski W, Janczura E, Chojnacki T 1976. Phage-dependent changes in Shigella flexneri type antigen synthesis. Infect. Immun. 14:1290–92
    [Google Scholar]
  19. 19. 
    Sun Q, Lan R, Wang Y, Wang J, Luo X et al. 2011. Genesis of a novel Shigella flexneri serotype by sequential infection of serotype-converting bacteriophages SfX and SfI. BMC Microbiol 11:269
    [Google Scholar]
  20. 20. 
    Mavris M, Manning PA, Morona R 1997. Mechanism of bacteriophage SfII-mediated serotype conversion in Shigella flexneri. Mol. Microbiol 26:939–50
    [Google Scholar]
  21. 21. 
    Jakhetia R, Talukder KA, Verma NK 2013. Isolation, characterization and comparative genomics of bacteriophage SfIV: a novel serotype converting phage from Shigella flexneri. . BMC Genom 14:677
    [Google Scholar]
  22. 22. 
    Huan PT, Whittle BL, Bastin DA, Lindberg AA, Verma NK 1997. Shigella flexneri type-specific antigen V: cloning, sequencing and characterization of the glucosyl transferase gene of temperate bacteriophage SfV. Gene 195:207–16
    [Google Scholar]
  23. 23. 
    Gemski P Jr, Koeltzow DE, Formal SB. 1975. Phage conversion of Shigella flexneri group antigens. Infect. Immun. 11:685–91
    [Google Scholar]
  24. 24. 
    Verma NK, Verma DJ, Huan PT, Lindberg AA 1993. Cloning and sequencing of the glucosyl transferase-encoding gene from converting bacteriophage X (SfX) of Shigella flexneri. . Gene 129:99–101
    [Google Scholar]
  25. 25. 
    Jakhetia R, Marri A, Stahle J, Widmalm G, Verma NK 2014. Serotype-conversion in Shigella flexneri: identification of a novel bacteriophage, Sf101, from a serotype 7a strain. BMC Genom 15:742
    [Google Scholar]
  26. 26. 
    Jakhetia R, Verma NK. 2015. Identification and molecular characterisation of a novel Mu-like bacteriophage, SfMu, of Shigella flexneri. . PLOS ONE 10:e0124053
    [Google Scholar]
  27. 27. 
    Connor TR, Barker CR, Baker KS, Weill FX, Talukder KA et al. 2015. Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. . eLife 4:e07335
    [Google Scholar]
  28. 28. 
    Wang WL, Dunlop SG, Munson PS 1966. Factors influencing the survival of Shigella in wastewater and irrigation water. J. Water Pollut. Control Fed. 38:1775–81
    [Google Scholar]
  29. 29. 
    Muniesa M, Blanch AR, Lucena F, Jofre J 2005. Bacteriophages may bias outcome of bacterial enrichment cultures. Appl. Environ. Microbiol. 71:4269–75
    [Google Scholar]
  30. 30. 
    Conner JG, Teschler JK, Jones CJ, Yildiz FH 2016. Staying alive: vibrio cholerae's cycle of environmental survival, transmission, and dissemination. Virulence Mechanisms of Bacterial Pathogens IT Kudva, NA Cornick, PJ Plummer, Q Zhang, TL Nicholson, JP Bannantine, BH Bellaire 593–633 Washington, DC: ASM
    [Google Scholar]
  31. 31. 
    Islam MS, Hasan MK, Miah MA, Sur GC, Felsenstein A et al. 1993. Use of the polymerase chain reaction and fluorescent-antibody methods for detecting viable but nonculturable Shigella dysenteriae type 1 in laboratory microcosms. Appl. Environ. Microbiol. 59:536–40
    [Google Scholar]
  32. 32. 
    Fu B, Jiang Q, Liu HB, Liu H 2015. Quantification of viable but nonculturable Salmonella spp. and Shigella spp. during sludge anaerobic digestion and their reactivation during cake storage. J. Appl. Microbiol. 119:1138–47
    [Google Scholar]
  33. 33. 
    Lindberg AA, Wollin R, Gemski P, Wohlhieter JA 1978. Interaction between bacteriophage Sf6 and Shigella flexneri. J. Virol. 27:38–44
    [Google Scholar]
  34. 34. 
    Casjens S, Winn-Stapley DA, Gilcrease EB, Morona R, Kuhlewein C et al. 2004. The chromosome of Shigella flexneri bacteriophage Sf6: complete nucleotide sequence, genetic mosaicism, and DNA packaging. J. Mol. Biol. 339:379–94
    [Google Scholar]
  35. 35. 
    Hendrix RW, Casjens SR. 2006. Bacteriophage lambda and its genetic neighborhood. The Bacteriophages R Calendar 409–47 New York: Plenum, 2nd ed..
    [Google Scholar]
  36. 36. 
    Casjens SR, Hendrix RW. 2015. Bacteriophage lambda: early pioneer and still relevant. Virology 479–80:310–30
    [Google Scholar]
  37. 37. 
    Teschke CM, Parent KN. 2010. ‘Let the phage do the work’: using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants. Virology 401:119–30
    [Google Scholar]
  38. 38. 
    Casjens SR, Thuman-Commike PA. 2011. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 411:393–415
    [Google Scholar]
  39. 39. 
    Zhao H, Li K, Lynn AY, Aron KE, Yu G et al. 2017. Structure of a headful DNA-packaging bacterial virus at 2.9 A resolution by electron cryo-microscopy. PNAS 114:3601–6
    [Google Scholar]
  40. 40. 
    Stummeyer K, Schwarzer D, Claus H, Vogel U, Gerardy-Schahn R, Muhlenhoff M 2006. Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages. Mol. Microbiol. 60:1123–35
    [Google Scholar]
  41. 41. 
    Parent KN, Gilcrease EB, Casjens SR, Baker TS 2012. Structural evolution of the P22-like phages: comparison of Sf6 and P22 procapsid and virion architectures. Virology 427:177–88
    [Google Scholar]
  42. 42. 
    Zhao H, Finch CJ, Sequeira RD, Johnson BA, Johnson JE et al. 2010. Crystal structure of the DNA-recognition component of the bacterial virus Sf6 genome-packaging machine. PNAS 107:1971–76
    [Google Scholar]
  43. 43. 
    Zhao H, Christensen TE, Kamau YN, Tang L 2013. Structures of the phage Sf6 large terminase provide new insights into DNA translocation and cleavage. PNAS 110:8075–80
    [Google Scholar]
  44. 44. 
    Liang L, Zhao H, An B, Tang L 2018. High-resolution structure of podovirus tail adaptor suggests repositioning of an octad motif that mediates the sequential tail assembly. PNAS 115:313–18
    [Google Scholar]
  45. 45. 
    Zhao H, Speir JA, Matsui T, Lin Z, Liang L et al. 2016. Structure of a bacterial virus DNA-injection protein complex reveals a decameric assembly with a constricted molecular channel. PLOS ONE 11:e0149337
    [Google Scholar]
  46. 46. 
    Bhardwaj A, Molineux IJ, Casjens SR, Cingolani G 2011. Atomic structure of bacteriophage Sf6 tail needle knob. J. Biol. Chem. 286:30867–77
    [Google Scholar]
  47. 47. 
    Muller JJ, Barbirz S, Heinle K, Freiberg A, Seckler R, Heinemann U 2008. An intersubunit active site between supercoiled parallel β helices in the trimeric tailspike endorhamnosidase of Shigella flexneri phage Sf6. Structure 16:766–75
    [Google Scholar]
  48. 48. 
    Leavitt JC, Gilcrease EB, Wilson K, Casjens SR 2013. Function and horizontal transfer of the small terminase subunit of the tailed bacteriophage Sf6 DNA packaging nanomotor. Virology 440:117–33
    [Google Scholar]
  49. 49. 
    Casjens S, Sampson L, Randall S, Eppler K, Wu H et al. 1992. Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging. J. Mol. Biol. 227:1086–99
    [Google Scholar]
  50. 50. 
    Roy A, Bhardwaj A, Datta P, Lander GC, Cingolani G 2012. Small terminase couples viral DNA binding to genome-packaging ATPase activity. Structure 20:1403–13
    [Google Scholar]
  51. 51. 
    Tang J, Olson N, Jardine PJ, Grimes S, Anderson DL, Baker TS 2008. DNA poised for release in bacteriophage phi29. Structure 16:935–43
    [Google Scholar]
  52. 52. 
    Kang Y, Gohlke U, Engstrom O, Hamark C, Scheidt T et al. 2016. Bacteriophage tailspikes and bacterial O-antigens as a model system to study weak-affinity protein-polysaccharide interactions. J. Am. Chem. Soc. 138:9109–18
    [Google Scholar]
  53. 53. 
    Prevelige PE, Fane BA. 2012. Building the machines: scaffolding protein functions during bacteriophage morphogenesis. Adv. Exp. Med. Biol. 726:325–50
    [Google Scholar]
  54. 54. 
    Parent KN, Erb ML, Cardone G, Nguyen K, Gilcrease EB et al. 2014. OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol. Microbiol 92:47–60
    [Google Scholar]
  55. 55. 
    Porcek NB, Parent KN. 2015. Key residues of S. flexneri OmpA mediate infection by bacteriophage Sf6. J. Mol. Biol. 427:1964–76
    [Google Scholar]
  56. 56. 
    Leavitt JC, Gogokhia L, Gilcrease EB, Bhardwaj A, Cingolani G, Casjens SR 2013. The tip of the tail needle affects the rate of DNA delivery by bacteriophage P22. PLOS ONE 8:e70936
    [Google Scholar]
  57. 57. 
    Choi KH, McPartland J, Kaganman I, Bowman VD, Rothman-Denes LB, Rossmann MG 2008. Insight into DNA and protein transport in double-stranded DNA viruses: the structure of bacteriophage N4. J. Mol. Biol. 378:726–36
    [Google Scholar]
  58. 58. 
    Grose JH, Belnap DM, Jensen JD, Mathis AD, Prince JT et al. 2014. The genomes, proteomes, and structures of three novel phages that infect the Bacillus cereus group and carry putative virulence factors. J. Virol. 88:11846–60
    [Google Scholar]
  59. 59. 
    Dokland T, Isaksen ML, Fuller SD, Lindqvist BH 1993. Capsid localization of the bacteriophage P4 Psu protein. Virology 194:682–87
    [Google Scholar]
  60. 60. 
    Lambert S, Yang Q, De Angeles R, Chang JR, Ortega M et al. 2017. Molecular dissection of the forces responsible for viral capsid assembly and stabilization by decoration proteins. Biochemistry 56:767–78
    [Google Scholar]
  61. 61. 
    Vernhes E, Renouard M, Gilquin B, Cuniasse P, Durand D et al. 2017. High affinity anchoring of the decoration protein pb10 onto the bacteriophage T5 capsid. Sci. Rep. 7:41662
    [Google Scholar]
  62. 62. 
    Gilcrease EB, Winn-Stapley DA, Hewitt FC, Joss L, Casjens SR 2005. Nucleotide sequence of the head assembly gene cluster of bacteriophage L and decoration protein characterization. J. Bacteriol. 187:2050–57
    [Google Scholar]
  63. 63. 
    Tang L, Gilcrease EB, Casjens SR, Johnson JE 2006. Highly discriminatory binding of capsid-cementing proteins in bacteriophage L. Structure 14:837–45
    [Google Scholar]
  64. 64. 
    Newcomer RL, Schrad JR, Gilcrease EB, Casjens SR, Feig M et al. 2019. The phage L capsid decoration protein has a novel OB-fold and an unusual capsid binding strategy. eLife 8:e45345
    [Google Scholar]
  65. 65. 
    O'Brien E, Munir M, Marsh T, Heran M, Lesage G et al. 2017. Diversity of DNA viruses in effluents of membrane bioreactors in Traverse City, MI (USA) and La Grande Motte (France). Water Res 111:338–45
    [Google Scholar]
  66. 66. 
    Bertozzi Silva J, Storms Z, Sauvageau D 2016. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 363:4fnw002
    [Google Scholar]
  67. 67. 
    Knirel YA, Kondakova AN, Vinogradov E, Lindner B, Perepelov AV, Shashkov AS 2011. Lipopolysaccharide core structures and their correlation with genetic groupings of Shigella strains. A novel core variant in Shigella boydii type 16. Glycobiology 21:1362–72
    [Google Scholar]
  68. 68. 
    Sun Q, Knirel YA, Lan R, Wang J, Senchenkova SN et al. 2014. Dissemination and serotype modification potential of pSFxv_2, an O-antigen PEtN modification plasmid in Shigella flexneri. . Glycobiology 24:305–13
    [Google Scholar]
  69. 69. 
    Frirdich E, Whitfield C. 2005. Lipopolysaccharide inner core oligosaccharide structure and outer membrane stability in human pathogens belonging to the Enterobacteriaceae. J. Endotoxin Res. 11:133–44
    [Google Scholar]
  70. 70. 
    Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z 2017. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl. Microbiol. Biotechnol. 101:3103–19
    [Google Scholar]
  71. 71. 
    Hu B, Margolin W, Molineux IJ, Liu J 2013. The bacteriophage T7 virion undergoes extensive structural remodeling during infection. Science 339:576–79
    [Google Scholar]
  72. 72. 
    Hu B, Margolin W, Molineux IJ, Liu J 2015. Structural remodeling of bacteriophage T4 and host membranes during infection initiation. PNAS 112:E4919–4919
    [Google Scholar]
  73. 73. 
    Wang C, Tu J, Liu J, Molineux IJ 2019. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nat. Microbiol. 4:1049–56
    [Google Scholar]
  74. 74. 
    Andres D, Baxa U, Hanke C, Seckler R, Barbirz S 2010. Carbohydrate binding of Salmonella phage P22 tailspike protein and its role during host cell infection. Biochem. Soc. Trans. 38:1386–89
    [Google Scholar]
  75. 75. 
    Andres D, Hanke C, Baxa U, Seul A, Barbirz S, Seckler R 2010. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J. Biol. Chem. 285:36768–75
    [Google Scholar]
  76. 76. 
    Andres D, Roske Y, Doering C, Heinemann U, Seckler R, Barbirz S 2012. Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system. Mol. Microbiol. 83:1244–53
    [Google Scholar]
  77. 77. 
    Broeker NK, Roske Y, Valleriani A, Stephan MS, Andres D et al. 2019. Time-resolved DNA release from an O-antigen–specific Salmonella bacteriophage with a contractile tail. J. Biol. Chem. 294:11751–61
    [Google Scholar]
  78. 78. 
    Jin Y, Sdao SM, Dover JA, Porcek NB, Knobler CM et al. 2015. Bacteriophage P22 ejects all of its internal proteins before its genome. Virology 485:128–34
    [Google Scholar]
  79. 79. 
    Allison GE, Verma NK. 2000. Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. . Trends Microbiol 8:17–23
    [Google Scholar]
  80. 80. 
    Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS et al. 2016. Prophages mediate defense against phage infection through diverse mechanisms. ISME J 10:2854–66
    [Google Scholar]
  81. 81. 
    Dedrick RM, Jacobs-Sera D, Bustamante CA, Garlena RA, Mavrich TN et al. 2017. Prophage-mediated defence against viral attack and viral counter-defence. Nature Microbiol 2:16251
    [Google Scholar]
  82. 82. 
    Ranallo RT, Barnoy S, Thakkar S, Urick T, Venkatesan MM 2006. Developing live Shigella vaccines using λ Red recombineering. FEMS Immunol. Med. Microbiol. 47:462–69
    [Google Scholar]
  83. 83. 
    Fisher CR, Davies NM, Wyckoff EE, Feng Z, Oaks EV, Payne SM 2009. Genetics and virulence association of the Shigella flexneri sit iron transport system. Infect. Immun. 77:1992–99
    [Google Scholar]
  84. 84. 
    Gore AL, Payne SM. 2010. CsrA and Cra influence Shigella flexneri pathogenesis. Infect. Immun. 78:4674–82
    [Google Scholar]
  85. 85. 
    Dover JA, Burmeister AR, Molineux IJ, Parent KN 2016. Evolved populations of Shigella flexneri phage Sf6 acquire large deletions, altered genomic architecture, and faster life cycles. Genome Biol. Evol. 8:2827–40
    [Google Scholar]
  86. 86. 
    Lewis RJ, Brannigan JA, Offen WA, Smith I, Wilkinson AJ 1998. An evolutionary link between sporulation and prophage induction in the structure of a repressor:anti-repressor complex. J. Mol. Biol. 283:907–12
    [Google Scholar]
  87. 87. 
    Wang IN, Smith DL, Young R 2000. Holins: the protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 54:799–825
    [Google Scholar]
  88. 88. 
    Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE 2012. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335:428–32
    [Google Scholar]
  89. 89. 
    Kaczorowska J, Casey E, Neve H, Franz C, Noben JP et al. 2019. A quest of great importance—developing a broad spectrum Escherichia coli phage collection. Viruses 11:10899
    [Google Scholar]
  90. 90. 
    Mai V, Ukhanova M, Reinhard MK, Li M, Sulakvelidze A 2015. Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiota. Bacteriophage 5:e1088124
    [Google Scholar]
  91. 91. 
    Pasternack G, Sulakvelidze A. 2016. Novel Shigella bacteriophages and the uses thereof US Patent 15/002,708
    [Google Scholar]
  92. 92. 
    Kim KH, Chang HW, Nam YD, Roh SW, Bae JW 2010. Phenotypic characterization and genomic analysis of the Shigella sonnei bacteriophage SP18. J. Microbiol. 48:213–22
    [Google Scholar]
  93. 93. 
    Schofield DA, Wray DJ, Molineux IJ 2015. Isolation and development of bioluminescent reporter phages for bacterial dysentery. Eur. J. Clin. Microbiol. Infect. Dis. 34:395–403
    [Google Scholar]
  94. 94. 
    Kitajima M, Ishii S, Takagi T, Okabe S 2019. Complete genome sequence of a novel Myoviridae phage, SfΦ01, infecting Shigella spp. Microbiol. Resour. Announc. 8:23e00349-19
    [Google Scholar]
  95. 95. 
    Jun JW, Giri SS, Kim HJ, Yun SK, Chi C et al. 2016. Bacteriophage application to control the contaminated water with Shigella. Sci. Rep 6:22636
    [Google Scholar]
  96. 96. 
    Hamdi S, Rousseau GM, Labrie SJ, Tremblay DM, Kourda RS et al. 2017. Characterization of two polyvalent phages infecting Enterobacteriaceae. Sci. Rep 7:40349
    [Google Scholar]
  97. 97. 
    Akter M, Brown N, Clokie M, Yeasmin M, Tareq TM et al. 2019. Prevalence of Shigella boydii in Bangladesh: isolation and characterization of a rare phage MK-13 that can robustly identify shigellosis caused by Shigella boydii type 1. Front. Microbiol. 10:2461
    [Google Scholar]
  98. 98. 
    Anany H, Lingohr EJ, Villegas A, Ackermann HW, She YM et al. 2011. Shigella boydii bacteriophage which resembles Salmonella phage ViI. Virol. J. 8:242
    [Google Scholar]
  99. 99. 
    Jun JW, Yun SK, Kim HJ, Chai JY, Park SC 2014. Characterization and complete genome sequence of a novel N4-like bacteriophage, pSb-1 infecting Shigella boydii. Res. . Microbiol 165:671–78
    [Google Scholar]
  100. 100. 
    Carter CC, Fierer J, Chiu WW, Looney DJ, Strain M, Mehta SR 2016. A novel shiga toxin 1a-converting bacteriophage of Shigella sonnei with close relationship to shiga toxin 2-converting pages of Escherichia coli. . Open Forum Infect. Dis 3:ofw079
    [Google Scholar]
  101. 101. 
    Gray MD, Lampel KA, Strockbine NA, Fernandez RE, Melton-Celsa AR, Maurelli AT 2014. Clinical isolates of Shiga toxin 1a-producing Shigella flexneri with an epidemiological link to recent travel to Hispaniola. Emerg. Infect. Dis. 20:1669–77
    [Google Scholar]
  102. 102. 
    Toth I, Svab D, Balint B, Brown-Jaque M, Maroti G 2016. Comparative analysis of the Shiga toxin converting bacteriophage first detected in Shigella sonnei. Infect. Genet. . Evol 37:150–57
    [Google Scholar]
  103. 103. 
    Jun JW, Kim JH, Shin SP, Han JE, Chai JY, Park SC 2013. Characterization and complete genome sequence of the Shigella bacteriophage pSf-1. Res. Microbiol. 164:979–86
    [Google Scholar]
  104. 104. 
    Shahin K, Bouzari M, Wang R 2018. Isolation, characterization and genomic analysis of a novel lytic bacteriophage vB_SsoS-ISF002 infecting Shigella sonnei and Shigella flexneri. J. Med. . Microbiol 67:376–86
    [Google Scholar]
  105. 105. 
    Shahin K, Bouzari M. 2018. Bacteriophage application for biocontrolling Shigella flexneri in contaminated foods. J. Food Sci. Technol. 55:550–59
    [Google Scholar]
  106. 106. 
    Ahamed ST, Roy B, Basu U, Dutta S, Ghosh AN et al. 2019. Genomic and proteomic characterizations of Sfin-1, a novel lytic phage infecting multidrug-resistant Shigella spp. and Escherichia coli C. Front. Microbiol. 10:1876
    [Google Scholar]
  107. 107. 
    Llanos-Chea A, Citorik RJ, Nickerson KP, Ingano L, Serena G et al. 2019. Bacteriophage therapy testing against Shigella flexneri in a novel human intestinal organoid-derived infection model. J. Pediatr. Gastroenterol. Nutr. 68:509–16
    [Google Scholar]
  108. 108. 
    Jun JW, Kim HJ, Yun SK, Chai JY, Lee BC, Park SC 2016. Isolation and comparative genomic analysis of T1-like Shigella bacteriophage pSf-2. Curr. Microbiol. 72:235–41
    [Google Scholar]
  109. 109. 
    Chang HW, Kim KH. 2011. Comparative genomic analysis of bacteriophage EP23 infecting Shigella sonnei and Escherichia coli. J. Microbiol 49:927–34
    [Google Scholar]
  110. 110. 
    George DT, Stephenson DP, Tran E, Morona R, Verma NK 2013. Complete genome sequence of SfII, a serotype-converting bacteriophage of the highly prevalent Shigella flexneri serotype 2a. Genome Announc. 1:5e00626-13
    [Google Scholar]
  111. 111. 
    Guan S, Bastin DA, Verma NK 1999. Functional analysis of the O antigen glucosylation gene cluster of Shigella flexneri bacteriophage SfX. Microbiology 145:part 51263–73
    [Google Scholar]
  112. 112. 
    Yang C, Wang H, Ma H, Bao R, Liu H et al. 2018. Characterization and genomic analysis of SFPH2, a novel T7 virus infecting Shigella. Front. . Microbiol 9:3027
    [Google Scholar]
  113. 113. 
    Svab D, Horvath B, Rohde M, Maroti G, Toth I 2019. R18C is a new viable P2-like bacteriophage of rabbit origin infecting Citrobacter rodentium and Shigella sonnei strains. Arch. Virol. 164:3157–60
    [Google Scholar]
  114. 114. 
    ICTV (Int. Comm. Taxon. Viruses) 2018. Virus taxonomy: 2018b release Washington, DC: updated July 2018. https://talk.ictvonline.org/taxonomy/
    [Google Scholar]
/content/journals/10.1146/annurev-virology-010320-052547
Loading
/content/journals/10.1146/annurev-virology-010320-052547
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error