Chikungunya virus, first isolated in the 1950s, has since reemerged to cause several epidemics and millions of infections throughout the world. What was once blurred and confused with dengue virus in both diagnosis and name has since become one of the best-characterized arboviral diseases. In this review, we cover the history of this virus, its evolution into distinct genotypes and lineages, and, most notably, the convergent evolution observed in recent years. We highlight research that reveals to what extent convergent evolution, and its inherent predictability, may occur and what genetic or environmental factors may hinder it.

Keyword(s): arboviruschikungunyaevolution

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Carey DE. 1.  1971. Chikungunya and dengue: a case of mistaken identity?. J. Hist. Med. Allied Sci. 26243–62 [Google Scholar]
  2. Halstead SB. 2.  2015. Reappearance of chikungunya, formerly called dengue, in the Americas. Emerg. Infect. Dis. 21:557–61 [Google Scholar]
  3. Kuno G. 3.  2015. A re-examination of the history of etiologic confusion between dengue and chikungunya. PLOS Negl. Trop. Dis. 9:e0004101 [Google Scholar]
  4. Lumsden WH. 4.  1955. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53. II. General description and epidemiology. Trans. R. Soc. Trop. Med. Hygiene 4933–57 [Google Scholar]
  5. Robinson MC. 5.  1955. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53. I. Clinical features. Trans. R. Soc. Trop. Med. Hygiene 4928–32 [Google Scholar]
  6. Ross RW. 6.  1956. A laboratory technique for studying the insect transmission of animal viruses, employing a bat-wing membrane, demonstrated with two African viruses. J. Hygiene 54:192–200 [Google Scholar]
  7. Mason PJ, Haddow AJ. 7.  1957. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53; an additional note on chikungunya virus isolations and serum antibodies. Trans. R. Soc. Trop. Med. Hygiene 51238–40 [Google Scholar]
  8. Ross RW. 8.  1956. The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. J. Hygiene 54:177–91 [Google Scholar]
  9. Powers AM, Brault AC, Tesh RB, Weaver SC. 9.  2000. Re-emergence of chikungunya and o'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J. Gen. Virol. 81:Pt. 2471–79 [Google Scholar]
  10. Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI. 10.  et al. 2010. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J. Virol. 84:6497–504 [Google Scholar]
  11. Diagne CT, Faye O, Guerbois M, Knight R, Diallo D. 11.  et al. 2014. Vector competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde archipelago for West African lineages of chikungunya virus. Am. J. Trop. Med.Hygiene 91:635–41 [Google Scholar]
  12. Higgs S, Vanlandingham D. 12.  2015. Chikungunya virus and its mosquito vectors. Vector-Borne Zoonotic Dis 15:231–40 [Google Scholar]
  13. Diallo M, Thonnon J, Traore-Lamizana M, Fontenille D. 13.  1999. Vectors of chikungunya virus in Senegal: current data and transmission cycles. Am. J. Trop. Med. Hygiene 60281–86 [Google Scholar]
  14. Diallo D, Sall AA, Buenemann M, Chen R, Faye O. 14.  et al. 2012. Landscape ecology of sylvatic chikungunya virus and mosquito vectors in southeastern Senegal. PLOS Negl. Trop. Dis. 6:e1649 [Google Scholar]
  15. Chevillon C, Briant L, Renaud F, Devaux C. 15.  2008. The chikungunya threat: an ecological and evolutionary perspective. Trends Microbiol 16:80–88 [Google Scholar]
  16. Vazeille M, Yébakima A, Lourenço-de-Oliveira R, Andriamahefazafy B, Correira A. 16.  et al. 2013. Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses. Vector-Borne Zoonotic Dis 13:37–40 [Google Scholar]
  17. Althouse BM, Hanley KA, Diallo M, Sall AA, Ba Y. 17.  et al. 2015. Impact of climate and mosquito vector abundance on sylvatic arbovirus circulation dynamics in Senegal. Am. J. Trop. Med. Hygiene 9288–97 [Google Scholar]
  18. Roche S, Robin Y. 18.  1967. Human infections by chikungunya virus in Rufisque (Senegal), October–November, 1966. Bull. Soc. Med. Afr. Noire Lang. Fr 12:490–96 (in French) [Google Scholar]
  19. Saluzzo JF, Cornet M, Digoutte JP. 19.  1983. Outbreak of a chikungunya virus epidemic in western Senegal in 1982. Dakar Med 28:497–500 (in French) [Google Scholar]
  20. Thonnon J, Spiegel A, Diallo M, Diallo A, Fontenille D. 20.  1999. Chikungunya virus outbreak in Senegal in 1996 and 1997. Bull. Soc. Pathol. Exot. 92:79–82 (in French) [Google Scholar]
  21. Pistone T, Ezzedine K, Boisvert M, Receveur MC, Schuffenecker I. 21.  et al. 2009. Cluster of chikungunya virus infection in travelers returning from Senegal, 2006. J. Travel Med. 16:286–88 [Google Scholar]
  22. Aikat BK, Konar NR, Banerjee G. 22.  1964. Haemorrhagic fever in Calcutta area. Indian J. Med. Res 52660–75 [Google Scholar]
  23. Halstead SB. 23.  1965. Dengue and hemorrhagic fevers of Southeast Asia. Yale J. Biol. Med. 37:434–54 [Google Scholar]
  24. Hammon WM, Rudnick A, Sather GE. 24.  1960. Viruses associated with epidemic hemorrhagic fevers of the Philippines and Thailand. Science 131:1102–3 [Google Scholar]
  25. Chen R, Puri V, Fedorova N, Lin D, Hari KL. 25.  et al. 2016. Comprehensive genome-scale phylogenetic study provides new insights on the global expansion of chikungunya virus. J. Virol. 90:10600–11 [Google Scholar]
  26. Sam IC, Chan YF, Chan SY, Loong SK, Chin HK. 26.  et al. 2009. Chikungunya virus of Asian and Central/East African genotypes in Malaysia. J. Clin. Virol. 46:180–83 [Google Scholar]
  27. Chem YK, Zainah S, Berendam SJ, Tengku Rogayah TAR, Khairul AH, Chua KB. 27.  2010. Molecular epidemiology of chikungunya virus in Malaysia since its first emergence in 1998. Med. J. Malaysia 6531–35 [Google Scholar]
  28. Tsetsarkin KA, McGee CE, Volk SM, Vanlandingham DL, Weaver SC, Higgs S. 28.  2009. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PLOS ONE 4:e6835 [Google Scholar]
  29. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. 29.  2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLOS Pathog 3:e201 [Google Scholar]
  30. Vanlandingham DL, Hong C, Klingler K, Tsetsarkin K, McElroy KL. 30.  et al. 2005. Differential infectivities of o'nyong-nyong and chikungunya virus isolates in Anopheles gambiae and Aedes aegypti mosquitoes. Am. J. Trop. Med. Hygiene 72:616–21 [Google Scholar]
  31. Vanlandingham DL, Tsetsarkin K, Klingler KA, Hong C, McElroy KL. 31.  et al. 2006. Determinants of vector specificity of o'nyong nyong and chikungunya viruses in Anopheles and Aedes mosquitoes. Am. J. Trop. Med. Hygiene 74:663–69 [Google Scholar]
  32. Apandi Y, Lau SK, Izmawati N, Amal NM, Faudzi Y. 32.  et al. 2010. Identification of chikungunya virus strains circulating in Kelantan, Malaysia in 2009. Southeast Asian J. Trop. Med. Public Health 411374–80 [Google Scholar]
  33. Apandi Y, Nazni WA, Noor Azleen ZA, Vythilingam I, Azahari AH. 33.  et al. 2009. The first isolation of chikungunya virus from non-human primates in Malaysia. J. Gen. Mol. Virol. 1:35–39 [Google Scholar]
  34. Sam IC, Chua CL, Rovie-Ryan JJ, Fu JYL, Tong C. 34.  et al. 2015. Chikungunya virus in macaques, Malaysia.. Emerg. Infect. Dis. 21:1683–85 [Google Scholar]
  35. Dupont-Rouzeyrol M, Caro V, Guillaumot L, Vazeille M, D'Ortenzio E. 35.  et al. 2012. Chikungunya virus and the mosquito vector Aedes aegypti in New Caledonia (South Pacific Region). Vector-Borne Zoonotic Dis 12:1036–41 [Google Scholar]
  36. Nhan TX, Musso D. 36.  2015. The burden of chikungunya in the Pacific. Clin. Microbiol. Infect. 21:e47–48 [Google Scholar]
  37. Nhan TX, Claverie A, Roche C, Teissier A, Colleuil M. 37.  et al. 2014. Chikungunya virus imported into French Polynesia, 2014. Emerg. Infect. Dis. 20:1773–74 [Google Scholar]
  38. Aubry M, Teissier A, Roche C, Richard V, Yan AS. 38.  et al. 2015. Chikungunya outbreak, French Polynesia, 2014. Emerg. Infect. Dis. 21:724–26 [Google Scholar]
  39. Girod R, Gaborit P, Marrama L, Etienne M, Ramdini C. 39.  et al. 2011. High susceptibility to chikungunya virus of Aedes aegypti from the French West Indies and French Guiana. Trop. Med. Int. Health 16134–39 [Google Scholar]
  40. Vega-Rúa A, Zouache K, Girod R, Failloux AB, Lourenço-de-Oliveira R. 40.  2014. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of chikungunya virus. J. Virol. 88:6294–306 [Google Scholar]
  41. 41. Cent. Dis. Control Prev. 2007. Update: chikungunya fever diagnosed among international travelers—United States, 2006. Morb. Mortal. Wkly. Rep. 56:276–77 [Google Scholar]
  42. Krastinova E, Quatresous I, Tarantola A. 42.  2006. Imported cases of chikungunya in metropolitan France: update to June 2006. Eurosurveillance 11:3030 [Google Scholar]
  43. Van Bortel W, Dorleans F, Rosine J, Blateau A, Rousset D. 43.  et al. 2014. Chikungunya outbreak in the Caribbean region, December 2013 to March 2014, and the significance for Europe. Eurosurveillance 19:20759 [Google Scholar]
  44. Cassadou S, Boucau S, Petit-Sinturel M, Huc P, Leparc-Goffart I, Ledrans M. 44.  2014. Emergence of chikungunya fever on the French side of Saint Martin island, October to December 2013. Eurosurveillance 19:20752 [Google Scholar]
  45. Lanciotti RS, Valadere AM. 45.  2014. Transcontinental movement of Asian genotype chikungunya virus. Emerg. Infect. Dis. 20:1400–2 [Google Scholar]
  46. Lanciotti RS, Lambert AJ. 46.  2016. Phylogenetic analysis of chikungunya virus strains circulating in the Western Hemisphere. Am. J. Trop. Med. Hygiene 94:800–3 [Google Scholar]
  47. Stapleford KA, Moratorio G, Henningsson R, Chen R, Matheus S. 47.  et al. 2016. Whole-genome sequencing analysis from the chikungunya virus Caribbean outbreak reveals novel evolutionary genomic elements. PLOS Negl. Trop. Dis. 10:e0004402 [Google Scholar]
  48. Chen R, Wang E, Tsetsarkin KA, Weaver SC. 48.  2013. Chikungunya virus 3′ untranslated region: adaptation to mosquitoes and a population bottleneck as major evolutionary forces. PLOS Pathog 9:e1003591 [Google Scholar]
  49. Nunes MRT, Faria NR, de Vasconcelos JM, Golding N, Kraemer MUG. 49.  et al. 2015. Emergence and potential for spread of chikungunya virus in Brazil. BMC Med 13:102 [Google Scholar]
  50. Kariuki Njenga M, Nderitu L, Ledermann JP, Ndirangu A, Logue CH. 50.  et al. 2008. Tracking epidemic chikungunya virus into the Indian Ocean from East Africa. J. Gen. Virol. 89:Pt. 112754–60 [Google Scholar]
  51. Chretien JP, Anyamba A, Bedno SA, Breiman RF, Sang R. 51.  et al. 2007. Drought-associated chikungunya emergence along coastal East Africa. Am. J. Trop. Med. Hygiene 76:405–7 [Google Scholar]
  52. Trewin BJ, Kay BH, Darbro JM, Hurst TP. 52.  2013. Increased container-breeding mosquito risk owing to drought-induced changes in water harvesting and storage in Brisbane, Australia. Int. Health 5:251–58 [Google Scholar]
  53. Anyamba A, Chretien JP, Small J, Tucker CJ, Linthicum KJ. 53.  2006. Developing global climate anomalies suggest potential disease risks for 2006–2007. Int. J. Health Geogr. 5:60 [Google Scholar]
  54. Sergon K, Njuguna C, Kalani R, Ofula V, Onyango C. 54.  et al. 2008. Seroprevalence of chikungunya virus (CHIKV) infection on Lamu Island, Kenya, October 2004. Am. J. Trop. Med. Hygiene 78:333–37 [Google Scholar]
  55. Simon F, Tolou H, Jeandel P. 55.  2006. The unexpected chikungunya outbreak. Rev. Med. Interne 27:437–41 (in French) [Google Scholar]
  56. Pialoux G, Gaüzère BA, Strobel M. 56.  2006. Chikungunya virus infection: review through an epidemic. Med. Mal. Infect 36:253–63 (in French) [Google Scholar]
  57. Paquet C, Quatresous I, Solet JL, Sissoko D, Renault P. 57.  2006. Epidémiologie de l'infection par le virus chikungunya à l'Ile de la Réunion: point de la situation au 8 janvier 2006. Bull. Epidemiol. Hebd. 2006:Spec. Issue2–3 [Google Scholar]
  58. Sang RC, Ahmed O, Faye O, Kelly CLH, Yahaya AA. 58.  et al. 2008. Entomologic investigations of a chikungunya virus epidemic in the Union of the Comoros, 2005. Am. J. Trop. Med. Hygiene 78:77–82 [Google Scholar]
  59. Salvan M, Mouchet J. 59.  1994. Aedesalbopictus and Aedes aegypti at Ile de la Réunion. Ann. Soc. Belg. Med. Trop.. 74323–26 (in French)
  60. Hamon J. 60.  1953. Etudes biologique et systématique des Culicidae de l'île de La Réunion. Mem. Inst. Sci. Madag. E 4:521–41 [Google Scholar]
  61. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L. 61.  et al. 2006. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLOS Med 3:e263 [Google Scholar]
  62. Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H. 62.  et al. 2007. Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLOS ONE 2:e1168 [Google Scholar]
  63. Bordería AV, Elena SF. 63.  2002. r- and K-selection in experimental populations of vesicular stomatitis virus. Infect. Genet. Evol. 2:137–43 [Google Scholar]
  64. Duffy S, Turner PE, Burch CL. 64.  2006. Pleiotropic costs of niche expansion in the RNA bacteriophage ϕ6. Genetics 172:751–57 [Google Scholar]
  65. Tsetsarkin KA, Weaver SC. 65.  2011. Sequential adaptive mutations enhance efficient vector switching by chikungunya virus and its epidemic emergence. PLOS Pathog 7:e1002412 [Google Scholar]
  66. Arias-Goeta C, Mousson L, Rougeon F, Failloux AB. 66.  2013. Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level. PLOS ONE 8:e57548 [Google Scholar]
  67. Stapleford KA, Coffey LL, Lay S, Bordería AV, Duong V. 67.  et al. 2014. Emergence and transmission of arbovirus evolutionary intermediates with epidemic potential. Cell Host Microbe 15:706–16 [Google Scholar]
  68. Ahn A, Schoepp RJ, Sternberg D, Kielian M. 68.  1999. Growth and stability of a cholesterol-independent Semliki Forest virus mutant in mosquitoes. Virology 262:452–56 [Google Scholar]
  69. Vashishtha M, Phalen T, Marquardt MT, Ryu JS, Ng AC, Kielian M. 69.  1998. A single point mutation controls the cholesterol dependence of Semliki Forest virus entry and exit. J. Cell Biol. 140:91–99 [Google Scholar]
  70. Chatterjee PK, Eng CH, Kielian M. 70.  2002. Novel mutations that control the sphingolipid and cholesterol dependence of the Semliki Forest virus fusion protein. J. Virol. 76:12712–22 [Google Scholar]
  71. Tsetsarkin KA, McGee CE, Higgs S. 71.  2011. Chikungunya virus adaptation to Aedes albopictus mosquitoes does not correlate with acquisition of cholesterol dependence or decreased pH threshold for fusion reaction. Virol. J. 8:376 [Google Scholar]
  72. Hafer A, Whittlesey R, Brown DT, Hernandez R. 72.  2009. Differential incorporation of cholesterol by Sindbis virus grown in mammalian or insect cells. J. Virol. 83:9113–21 [Google Scholar]
  73. Umashankar M, Sánchez–San Martín C, Liao M, Reilly B, Guo A. 73.  et al. 2008. Differential cholesterol binding by class II fusion proteins determines membrane fusion properties. J. Virol. 82:9245–53 [Google Scholar]
  74. Gay B, Bernard E, Solignat M, Chazal N, Devaux C, Briant L. 74.  2012. pH-dependent entry of chikungunya virus into Aedes albopictus cells. Infect. Genet. Evol. 12:1275–81 [Google Scholar]
  75. Bernard E, Solignat M, Gay B, Chazal N, Higgs S. 75.  et al. 2010. Endocytosis of chikungunya virus into mammalian cells: role of clathrin and early endosomal compartments. PLOS ONE 5:e11479 [Google Scholar]
  76. Kielian M, Chatterjee PK, Gibbons DL, Lu YE. 76.  2000. Specific roles for lipids in virus fusion and exit. Examples from the alphaviruses. Fusion of Biological Membranes and Related Problems. HJ Hilderson, S Fuller 409–55 New York: Kluwer Acad.
  77. Roussel A, Lescar J, Vaney MC, Wengler G, Wengler G, Rey FA. 77.  2006. Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Structure 14:75–86 [Google Scholar]
  78. Lescar J, Roussel A, Wien MW, Navaza J, Fuller SD. 78.  et al. 2001. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105:137–48 [Google Scholar]
  79. Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C. 79.  et al. 2010. Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography. Nature 468:709–12 [Google Scholar]
  80. Gibbons DL, Ahn A, Chatterjee PK, Kielian M. 80.  2000. Formation and characterization of the trimeric form of the fusion protein of Semliki Forest virus. J. Virol. 74:7772–80 [Google Scholar]
  81. Ng LC, Hapuarachchi HC. 81.  2010. Tracing the path of chikungunya virus—evolution and adaptation. Infect. Genet. Evol. 10:876–85 [Google Scholar]
  82. Yergolkar PN, Tandale BV, Arankalle VA, Sathe PS, Sudeep AB. 82.  et al. 2006. Chikungunya outbreaks caused by African genotype, India. Emerg. Infect. Dis. 12:1580–83 [Google Scholar]
  83. Mavalankar D, Shastri P, Raman P. 83.  2007. Chikungunya epidemic in India: a major public-health disaster. Lancet Infect. Dis. 7:306–7 [Google Scholar]
  84. Santhosh SR, Dash PK, Parida MM, Khan M, Tiwari M, Rao PVL. 84.  2008. Comparative full genome analysis revealed E1: A226V shift in 2007 Indian chikungunya virus isolates. Virus Res 135:36–41 [Google Scholar]
  85. Charrel RN, de Lamballerie X, Raoult D. 85.  2007. Chikungunya outbreaks—the globalization of vectorborne diseases. N. Engl. J. Med. 356:769–71 [Google Scholar]
  86. Brisse S, Iteman I, Schuffenecker I. 86.  2007. Chikungunya outbreaks. N. Engl. J. Med. 356:2650–52 [Google Scholar]
  87. de Lamballerie X, Leroy E, Charrel RN, Ttsetsarkin K, Higgs S, Gould EA. 87.  2008. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come?. Virol. J. 5:33 [Google Scholar]
  88. Arankalle VA, Shrivastava S, Cherian S, Gunjikar RS, Walimbe AM. 88.  et al. 2007. Genetic divergence of chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J. Gen. Virol. 88:1967–76 [Google Scholar]
  89. Cherian SS, Walimbe AM, Jadhav SM, Gandhe SS, Hundekar SL. 89.  et al. 2009. Evolutionary rates and timescale comparison of chikungunya viruses inferred from the whole genome/E1 gene with special reference to the 2005–07 outbreak in the Indian subcontinent. Infect. Genet. Evol. 9:16–23 [Google Scholar]
  90. Dash PK, Parida MM, Santhosh SR, Verma SK, Tripathi NK. 90.  et al. 2007. East Central South African genotype as the causative agent in reemergence of chikungunya outbreak in India. Vector-Borne Zoonotic Dis 7:519–27 [Google Scholar]
  91. Santhosh SR, Dash PK, Parida M, Khan M, Rao PVL. 91.  2009. Appearance of E1: A226V mutant chikungunya virus in Coastal Karnataka, India during 2008 outbreak. Virol. J. 6:172 [Google Scholar]
  92. Sreekumar E, Issac A, Nair S, Hariharan R, Janki MB. 92.  et al. 2010. Genetic characterization of 2006–2008 isolates of chikungunya virus from Kerala, South India, by whole genome sequence analysis. Virus Genes 40:14–27 [Google Scholar]
  93. Kumar NP, Joseph R, Kamaraj T, Jambulingam P. 93.  2008. A226V mutation in virus during the 2007 chikungunya outbreak in Kerala, India. J. Gen. Virol. 89:Pt. 81945–48 [Google Scholar]
  94. Angelini R, Finarelli AC, Angelini P, Po C, Petropulacos K. 94.  et al. 2007. An outbreak of chikungunya fever in the province of Ravenna, Italy. Eurosurveillance 12:3260 [Google Scholar]
  95. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC. 95.  et al. 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–46 [Google Scholar]
  96. Hapuarachchi HAC, Bandara KBAT, Hapugoda MD, Williams S, Abeyewickreme W. 96.  2008. Laboratory confirmation of dengue and chikungunya co-infection. Ceylon Med. J 53104–5 [Google Scholar]
  97. Hapuarachchi HC, Bandara KBAT, Sumanadasa SDM, Hapugoda MD, Lai YL. 97.  et al. 2010. Re-emergence of chikungunya virus in South-east Asia: virological evidence from Sri Lanka and Singapore. J. Gen. Virol. 91:Pt. 41067–76 [Google Scholar]
  98. Reller ME, Akoroda U, Nagahawatte A, Devasiri V, Kodikaarachchi W. 98.  et al. 2013. Chikungunya as a cause of acute febrile illness in southern Sri Lanka. PLOS ONE 8:e82259 [Google Scholar]
  99. Peyrefitte CN, Bessaud M, Pastorino BAM, Gravier P, Plumet S. 99.  et al. 2008. Circulation of chikungunya virus in Gabon, 2006–2007. J. Med. Virol 80430–33 [Google Scholar]
  100. Diallo M, Laganier R, Nangouma A. 100.  2010. First record of Ae. albopictus (Skuse 1894), in Central African Republic. Trop. Med. Int. Health 151185–89 [Google Scholar]
  101. Paupy C, Kassa Kassa F, Caron M, Nkoghe D, Leroy EM. 101.  2012. A chikungunya outbreak associated with the vector Aedes albopictus in remote villages of Gabon. Vector-Borne Zoonotic Dis 12:167–69 [Google Scholar]
  102. Pagès F, Peyrefitte CN, Mve MT, Jarjaval F, Brisse S. 102.  et al. 2009. Aedesalbopictus mosquito: the main vector of the 2007 chikungunya outbreak in Gabon. PLOS ONE 4:e4691 [Google Scholar]
  103. Kamgang B, Brengues C, Fontenille D, Njiokou F, Simard F, Paupy C. 103.  2011. Genetic structure of the tiger mosquito, Aedes albopictus, in Cameroon (Central Africa). PLOS ONE 6:e20257 [Google Scholar]
  104. Kamgang B, Happi JY, Boisier P, Njiokou F, Hervé JP. 104.  et al. 2010. Geographic and ecological distribution of the dengue and chikungunya virus vectors Aedes aegypti and Aedes albopictus in three major Cameroonian towns. Med. Vet. Entomol. 24:132–41 [Google Scholar]
  105. Vazeille M, Moutailler S, Pagès F, Jarjaval F, Failloux AB. 105.  2008. Introduction of Aedes albopictus in Gabon: what consequences for dengue and chikungunya transmission?. Trop. Med. Int. Health 131176–79 [Google Scholar]
  106. Kamgang B, Nchoutpouen E, Simard F, Paupy C. 106.  2012. Notes on the blood-feeding behavior of Aedes albopictus (Diptera: Culicidae) in Cameroon. Parasites Vectors 5:57 [Google Scholar]
  107. Pastorino B, Muyembe-Tamfum JJ, Bessaud M, Tock F, Tolou H. 107.  et al. 2004. Epidemic resurgence of chikungunya virus in Democratic Republic of the Congo: identification of a new central African strain. J. Med. Virol 74277–82 [Google Scholar]
  108. Peyrefitte CN, Rousset D, Pastorino BAM, Pouillot R, Bessaud M. 108.  et al. 2007. Chikungunya virus, Cameroon, 2006. Emerg. Infect. Dis. 13768–71
  109. Acevedo A, Brodsky L, Andino R. 109.  2014. Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature 505:686–90 [Google Scholar]
  110. Coffey LL, Vasilakis N, Brault AC, Powers AM, Tripet F, Weaver SC. 110.  2008. Arbovirus evolution in vivo is constrained by host alternation. PNAS 105:6970–75 [Google Scholar]
  111. Coffey LL, Vignuzzi M. 111.  2011. Host alternation of chikungunya virus increases fitness while restricting population diversity and adaptability to novel selective pressures. J. Virol. 85:1025–35 [Google Scholar]
  112. Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S. 112.  et al. 2011. Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. PNAS 108:7872–77 [Google Scholar]
  113. Ng LC, Tan LK, Tan CH, Tan SSY, Hapuarachchi HC. 113.  et al. 2009. Entomologic and virologic investigation of chikungunya, Singapore. Emerg. Infect. Dis. 15:1243–49 [Google Scholar]
  114. Niyas KP, Abraham R, Unnikrishnan RN, Mathew T, Nair S. 114.  et al. 2010. Molecular characterization of chikungunya virus isolates from clinical samples and adult Aedes albopictus mosquitoes emerged from larvae from Kerala, South India. Virol. J. 7:189 [Google Scholar]
  115. Tsetsarkin KA, Chen R, Yun R, Rossi SL, Plante KS. 115.  et al. 2014. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat. Commun. 5:4084 [Google Scholar]
  116. Jain J, Mathur K, Shrinet J, Bhatnagar RK, Sunil S. 116.  2016. Analysis of coevolution in nonstructural proteins of chikungunya virus. Virol. J. 13:86 [Google Scholar]
  117. Tan KK, Sy AKD, Tandoc AO, Khoo JJ, Sulaiman S. 117.  et al. 2015. Independent emergence of the cosmopolitan Asian chikungunya virus, Philippines 2012. Sci. Rep. 5:12279 [Google Scholar]
  118. Tsetsarkin KA, Chen R, Sherman MB, Weaver SC. 118.  2011. Chikungunya virus: evolution and genetic determinants of emergence. Curr. Opin. Virol. 1:310–17 [Google Scholar]
  119. Stern DL. 119.  2013. The genetic causes of convergent evolution. Nat. Rev. Genet. 14:751–64 [Google Scholar]
  120. Isakov O, Bordería AV, Golan D, Hamenahem A, Celniker G. 120.  et al. 2015. Deep sequencing analysis of viral infection and evolution allows rapid and detailed characterization of viral mutant spectrum. Bioinformatics 31:2141–50 [Google Scholar]
  121. Geller R, Estada Ú, Peris JB, Andreu I, Bou JV. 121.  et al. 2016. Highly heterogeneous mutation rates in the hepatitis C virus genome. Nat. Microbiol. 1:16045 [Google Scholar]
  122. Bordería AV, Isakov O, Moratorio G, Henningsson R, Aguera-Gonzalez S. 122.  et al. 2015. Group selection and contribution of minority variants during virus adaptation determines virus fitness and phenotype. PLOS Pathog 11:e1004838 [Google Scholar]
  123. Chen H, Deng Q, Ng SH, Lee RTC, Maurer-Stroh S, Zhai W. 123.  2016. Dynamic convergent evolution drives the passage adaptation across 48 years’ history of H3N2 influenza evolution. Mol. Biol. Evol. 33:3133–43 [Google Scholar]
  124. Lamers SL, Nolan DJ, Rife BD, Fogel GB, McGrath MS. 124.  et al. 2015. Tracking the emergence of host-specific simian immunodeficiency virus env and. nef populations reveals nef early adaptation and convergent evolution in brain of naturally progressing rhesus macaques. J. Virol. 89:8484–96 [Google Scholar]
  125. Perry EB, Barrick JE, Bohannan BJM. 125.  2015. The molecular and genetic basis of repeatable coevolution between Escherichia coli and bacteriophage T3 in a laboratory microcosm. PLOS ONE 10:e0130639 [Google Scholar]
  126. Lorenzo-Redondo R, Bordería AV, Lopez-Galindez C. 126.  2011. Dynamics of in vitro fitness recovery of HIV-1. J. Virol. 85:1861–70 [Google Scholar]
  127. Vasilakis N, Deardorff ER, Kenney JL, Rossi SL, Hanley KA, Weaver SC. 127.  2009. Mosquitoes put the brake on arbovirus evolution: Experimental evolution reveals slower mutation accumulation in mosquito than vertebrate cells. PLOS Pathog 5:e1000467 [Google Scholar]
  128. Gardner CL, Hritz J, Sun C, Vanlandingham DL, Song TY. 128.  et al. 2014. Deliberate attenuation of chikungunya virus by adaptation to heparan sulfate-dependent infectivity: a model for rational arboviral vaccine design. PLOS Negl. Trop. Dis. 8:e2719 [Google Scholar]
  129. Elena SF. 129.  2016. Local adaptation of plant viruses: lessons from experimental evolution. Mol. Ecol. 26:1711–19 [Google Scholar]
  130. Reeve AB, Pearce NC, Patel K, Augustus KV, Novembre FJ. 130.  2010. Neuropathogenic SIVsmmFGb genetic diversity and selection-induced tissue-specific compartmentalization during chronic infection and temporal evolution of viral genes in lymphoid tissues and regions of the central nervous system. AIDS Res. Hum. Retrovir. 26:663–79 [Google Scholar]
  131. Kawaguchi-Ito Y, Li SF, Tagawa M, Araki H, Goshono M. 131.  et al. 2009. Cultivated grapevines represent a symptomless reservoir for the transmission of hop stunt viroid to hop crops: 15 years of evolutionary analysis. PLOS ONE 4:e8386 [Google Scholar]
  132. Bollback JP, Huelsenbeck JP. 132.  2009. Parallel genetic evolution within and between bacteriophage species of varying degrees of divergence. Genetics 181:225–34 [Google Scholar]
  133. Keleta L, Ibricevic A, Bovin NV, Brody SL, Brown EG. 133.  2008. Experimental evolution of human influenza virus H3 hemagglutinin in the mouse lung identifies adaptive regions in HA1 and HA2. J. Virol. 82:11599–608 [Google Scholar]
  134. Powers AM, Oberste MS, Brault AC, Rico-Hesse R, Schmura SM. 134.  et al. 1997. Repeated emergence of epidemic/epizootic Venezuelan equine encephalitis from a single genotype of enzootic subtype ID virus. J. Virol. 71:6697–705 [Google Scholar]
  135. Schobel SA, Stucker KM, Moore ML, Anderson LJ, Larkin EK. 135.  et al. 2016. Respiratory syncytial virus whole-genome sequencing identifies convergent evolution of sequence duplication in the C-terminus of the G gene. Sci. Rep. 6:26311 [Google Scholar]
  136. Wagner A. 136.  2014. A genotype network reveals homoplastic cycles of convergent evolution in influenza A (H3N2) haemagglutinin. Proc. Biol. Sci. 281:20132763 [Google Scholar]
  137. Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J. 137.  2005. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. PNAS 102:18590–95 [Google Scholar]
  138. Patel MR, Loo YM, Horner SM, Gale M, Malik HS. 138.  2012. Convergent evolution of escape from hepaciviral antagonism in primates. PLOS Biol 10:e1001282 [Google Scholar]
  139. Wu K, Chen L, Peng G, Zhou W, Pennell CA. 139.  et al. 2011. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses. J. Virol. 85:5331–37 [Google Scholar]
  140. López C, Aramburu J, Galipienso L, Soler S, Nuez F, Rubio L. 140.  2011. Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J. Gen. Virol. 92:Pt. 1210–15 [Google Scholar]
  141. Ebel GD. 141.  2014. Toward an activist agenda for monitoring virus emergence. Cell Host Microbe 15:706–16 [Google Scholar]
  142. Salje H, Cauchemez S, Alera MT, Rodriguez-Barraquer I, Thaisomboonsuk B. 142.  et al. 2016. Reconstruction of 60 years of chikungunya epidemiology in the Philippines demonstrates episodic and focal transmission. J. Infect. Dis. 213:604–10 [Google Scholar]
  143. Ferguson NM, Cucunubá ZM, Dorigatti I, Nedjati-Gilani GL, Donnelly CA. 143.  et al. 2016. Countering the Zika epidemic in Latin America. Science 353:353–54 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error