Annual Review of Earth and Planetary Sciences - Volume 41, 2013
Volume 41, 2013
-
-
Differentiated Planetesimals and the Parent Bodies of Chondrites
Vol. 41 (2013), pp. 529–560More LessMeteorites are samples of dozens of small planetary bodies that formed in the early Solar System. They exhibit great petrologic diversity, ranging from primordial accretional aggregates (chondrites), to partially melted residues (primitive achondrites), to once fully molten magmas (achondrites). It has long been thought that no single parent body could be the source of more than one of these three meteorite lithologies. This view is now being challenged by a variety of new measurements and theoretical models, including the discovery of primitive achondrites, paleomagnetic analyses of chondrites, thermal modeling of planetesimals, the discoveries of new metamorphosed chondrites and achondrites with affinities to some chondrite groups, and the possible identification of extant partially differentiated asteroids. These developments collectively suggest that some chondrites could in fact be samples of the outer, unmelted crusts of otherwise differentiated planetesimals with silicate mantles and metallic cores. This may have major implications for the origin of meteorite groups, the meaning of meteorite paleomagnetism, the rates and onset times of accretion, and the interior structures and histories of asteroids.
-
-
-
Splendid and Seldom Isolated: The Paleobiogeography of Patagonia
Vol. 41 (2013), pp. 561–603More LessThe idea that South America was an island continent over most of the Cenozoic, during which its unusual mammalian faunas evolved in isolation, is outstandingly influential in biogeography. Although large numbers of recent fossil discoveries and related advances require that the original isolation concept be significantly modified, it is still repeated in much current literature. The persistence of the idea inspired us to present here an integrated paleobiogeographic account of mammals, reptiles, and plants from the Jurassic to the Paleogene of Patagonia, which has by far the richest fossil record on the continent. All three groups show distribution patterns that are broadly consistent with South America's long separation history, first from Laurasia by the Late Jurassic, then from Africa and India-Madagascar during the late Early Cretaceous, and finally from Antarctica and Australia during the early-middle Eocene, after which “isolation” finally commenced. We highlight areas of promising future research and provide an updated view of South American isolation.
-
-
-
Electrical Conductivity of Mantle Minerals: Role of Water in Conductivity Anomalies
Vol. 41 (2013), pp. 605–628More LessThe electrical conductivity of Earth's mantle has recently become an interesting topic across diverse Earth science communities. Many electrical conductivity data of mantle phases have been accumulated through the development of high-pressure experiments. These data will provide information on valence states, water concentration, Fe concentration, oxygen fugacity, and the connectivity of the conductive phase in geological materials such as minerals, melts, and rocks. Although several groups have measured the electrical conductivity of mantle materials at high pressure, they have provided inconsistent results, especially with regard to the effect of water. Thus, it is timely to review the problems underlying experimental techniques. We discuss the current understanding of the effect of water on the electrical conductivity of nominally anhydrous mantle minerals, with some speculation on the form of volatile components in Earth's interior. Finally, we consider the role of water in major conductivity anomalies observed in the upper mantle and transition zone.
-
-
-
The Late Paleozoic Ice Age: An Evolving Paradigm
Vol. 41 (2013), pp. 629–656More LessThe late Paleozoic icehouse was the longest-lived ice age of the Phanerozoic, and its demise constitutes the only recorded turnover to a greenhouse state. This review summarizes evidence for the timing, extent, and behavior of continental ice on Pangea in addition to the climate and ecosystem response to repeated transitions between glacial and interglacial conditions. Combined empirical and climate modeling studies argue for a dynamic ice age characterized by discrete periods of glaciation separated by periods of ice contraction during intermittent warmings, moderate-size ice sheets emanating from multiple ice centers throughout southern Gondwana, possible glaciation of the Northern Hemisphere, and atmospheric CO2 as a primary driver of both ice sheet and climate variability. The glacioeustatic response to fluctuations of these smaller ice sheets was likely less extreme than previously suggested. Modeling studies, stratigraphic relationships, and changes in both the geographic patterns and community compositions of marine fauna and terrestrial flora indicate the potential for strong responses to high-latitude glacial conditions in both ocean circulation and low-latitude climate. The forcings and feedbacks of these linkages, as well as existing climate paradoxes, define research targets for future studies of the late Paleozoic.
-
-
-
Composition and State of the Core
Vol. 41 (2013), pp. 657–691More LessThe composition and state of Earth's core, located deeper than 2,900 km from the surface, remain largely uncertain. Recent static experiments on iron and alloys performed up to inner core pressure and temperature conditions have revealed phase relations and properties of core materials. These mineral physics constraints, combined with theoretical calculations, continue to improve our understanding of the core, in particular the crystal structure of the inner core and the chemical composition, thermal structure and evolution, and possible stratification of the outer core.
-
-
-
Enceladus: An Active Ice World in the Saturn System
Vol. 41 (2013), pp. 693–717More LessEnceladus, one of the mid-sized icy moons of Saturn, has an importance to planetary science far greater than its modest 504-km diameter would suggest. Intensive exploration of Enceladus by the Cassini Saturn orbiter has revealed that it is the only known icy world in the solar system with ongoing deep-seated geological activity. Active tectonic fractures at Enceladus's south pole, dubbed “tiger stripes,” warmed by internal tidally generated heat, spew supersonic jets of water vapor, other gases, and ice particles into circum-Saturnian space. A subsurface saltwater sea probably exists under the south pole, between the ice shell and the silicate core. Because of evidence that liquid water is probably present at the jet sources, Enceladus is also of great astrobiological interest as a potential habitat for life.
-
-
-
Earth's Background Free Oscillations
Vol. 41 (2013), pp. 719–740More LessEarth's background free oscillations, known as Earth's hum, were discovered in 1998. Excited modes of the oscillations are almost exclusively fundamental spheroidal and toroidal modes from 2 to 20 mHz. Seasonal variations in the source distribution suggest that the dominant sources are ocean infragravity waves in the shallow and deep oceans. A probable excitation mechanism is random shear traction acting on the sea bottom owing to linear topographic coupling of the infragravity waves. Excitation by pressure sources on Earth's surface is also significant for a frequency below 5 mHz. A possible pressure source is atmospheric turbulence, which can cause observed resonant oscillations between the solid modes and atmospheric acoustic modes.
-
-
-
Global Warming and Neotropical Rainforests: A Historical Perspective
Vol. 41 (2013), pp. 741–766More LessThere is concern over the future of the tropical rainforest (TRF) in the face of global warming. Will TRFs collapse? The fossil record can inform us about that. Our compilation of 5,998 empirical estimates of temperature over the past 120 Ma indicates that tropics have warmed as much as 7°C during both the mid-Cretaceous and the Paleogene. We analyzed the paleobotanical record of South America during the Paleogene and found that the TRF did not expand toward temperate latitudes during global warm events, even though temperatures were appropriate for doing so, suggesting that solar insolation can be a constraint on the distribution of the tropical biome. Rather, a novel biome, adapted to temperate latitudes with warm winters, developed south of the tropical zone. The TRF did not collapse during past warmings; on the contrary, its diversity increased. The increase in temperature seems to be a major driver in promoting diversity.
-
-
-
The Scotia Arc: Genesis, Evolution, Global Significance
Vol. 41 (2013), pp. 767–793More LessThe Scotia arc is the eastward-closing loop of mountains and locally emergent submarine ridges extending from the southernmost Andes through the active South Sandwich volcanic arc to the Antarctic Peninsula. Its origins lie in the Jurassic initial fragmentation of Gondwana. This fragmentation involved extreme intercratonic extension, Pacificward translation of rotating crustal blocks, and an ignimbrite flare-up. Relative motion between South America, Africa, and East Antarctica during the opening of the southern ocean basins resulted in mid-Cretaceous uplift of the Pacific margin cordillera and translation of elevated crustal blocks eastward to form the North and South Scotia Ridges. The South Sandwich volcanic arc system originated in Neogene westward-directed subduction beneath oceanic crust formed between South America and Antarctica and serves as an excellent tectonic laboratory. The physiography of the entire Scotia arc region has profoundly influenced the onset and development of the Antarctic Circumpolar Current and migration of marine and terrestrial biota.
-
Previous Volumes
-
Volume 52 (2024)
-
Volume 51 (2023)
-
Volume 50 (2022)
-
Volume 49 (2021)
-
Volume 48 (2020)
-
Volume 47 (2019)
-
Volume 46 (2018)
-
Volume 45 (2017)
-
Volume 44 (2016)
-
Volume 43 (2015)
-
Volume 42 (2014)
-
Volume 41 (2013)
-
Volume 40 (2012)
-
Volume 39 (2011)
-
Volume 38 (2010)
-
Volume 37 (2009)
-
Volume 36 (2008)
-
Volume 35 (2007)
-
Volume 34 (2006)
-
Volume 33 (2005)
-
Volume 32 (2004)
-
Volume 31 (2003)
-
Volume 30 (2002)
-
Volume 29 (2001)
-
Volume 28 (2000)
-
Volume 27 (1999)
-
Volume 26 (1998)
-
Volume 25 (1997)
-
Volume 24 (1996)
-
Volume 23 (1995)
-
Volume 22 (1994)
-
Volume 21 (1993)
-
Volume 20 (1992)
-
Volume 19 (1991)
-
Volume 18 (1990)
-
Volume 17 (1989)
-
Volume 16 (1988)
-
Volume 15 (1987)
-
Volume 14 (1986)
-
Volume 13 (1985)
-
Volume 12 (1984)
-
Volume 11 (1983)
-
Volume 10 (1982)
-
Volume 9 (1981)
-
Volume 8 (1980)
-
Volume 7 (1979)
-
Volume 6 (1978)
-
Volume 5 (1977)
-
Volume 4 (1976)
-
Volume 3 (1975)
-
Volume 2 (1974)
-
Volume 1 (1973)
-
Volume 0 (1932)