Annual Review of Food Science and Technology - Volume 8, 2017
Volume 8, 2017
-
-
Edible Nanoemulsions as Carriers of Active Ingredients: A Review
Vol. 8 (2017), pp. 439–466More LessThere has been growing interest in the use of edible nanoemulsions as delivery systems for lipophilic active substances, such as oil-soluble vitamins, antimicrobials, flavors, and nutraceuticals, because of their unique physicochemical properties. Oil-in-water nanoemulsions consist of oil droplets with diameters typically between approximately 30 and 200 nm that are dispersed within an aqueous medium. The small droplet size usually leads to an improvement in stability, gravitational separation, and aggregation. Moreover, the high droplet surface area associated with the small droplet size often leads to a high reactivity with biological cells and macromolecules. As a result, lipid digestibility and bioactive bioavailability are usually higher in nanoemulsions than conventional emulsions, which is an advantage for the development of bioactive delivery systems. In this review, the most important factors affecting nanoemulsion formation and stability are highlighted, and a critical analysis of the potential benefits of using nanoemulsions in food systems is presented.
-
-
-
Advances in Nanotechnology as They Pertain to Food and Agriculture: Benefits and Risks
Vol. 8 (2017), pp. 467–492More LessNanotechnology is an emerging and rapidly developing toolbox that has novel and unique applications to food science and agriculture. Fast and impressive developments in nanotechnology for food and agriculture have led to new experimental prototype technologies and products. Developing various types of nanodelivery systems, detection tools, nanoscale modifications of bulk or surface properties, fabrication of wide-range bionanosensors, and biodegradable nanoplatforms can potentially improve consumer health and safety, product shelf life and stability, bioavailability, environmental sustainability, efficiency of processing and packaging, and real-time monitoring. Some recently developed nanotechnology techniques and potential product applications of nanotechnology are summarized in this review. Exposure to nanomaterials may be harmful to the consumer and the environment and might increase the potential of risk. For this reason, evaluation of the potential risks resulting from the interaction of nanomaterials with biological systems, humans, and the environment is also reviewed.
-
-
-
Application of Microrheology in Food Science
Vol. 8 (2017), pp. 493–521More LessMicrorheology provides a technique to probe the local viscoelastic properties and dynamics of soft materials at the microscopic level by observing the motion of tracer particles embedded within them. It is divided into passive and active microrheology according to the force exerted on the embedded particles. Particles are driven by thermal fluctuations in passive microrheology, and the linear viscoelasticity of samples can be obtained on the basis of the generalized Stokes-Einstein equation. In active microrheology, tracer particles are controlled by external forces, and measurements can be extended to the nonlinear regime. Microrheology techniques have many advantages such as the need for only small sample amounts and a wider measurable frequency range. In particular, microrheology is able to examine the spatial heterogeneity of samples at the microlevel, which is not possible using traditional rheology. Therefore, microrheology has considerable potential for studying the local mechanical properties and dynamics of soft matter, particularly complex fluids, including solutions, dispersions, and other colloidal systems. Food products such as emulsions, foams, or gels are complex fluids with multiple ingredients and phases. Their macroscopic properties, such as stability and texture, are closely related to the structure and mechanical properties at the microlevel. In this article, the basic principles and methods of microrheology are reviewed, and the latest developments and achievements of microrheology in the field of food science are presented.
-
-
-
Gastric Mixing During Food Digestion: Mechanisms and Applications
Vol. 8 (2017), pp. 523–542More LessGastric mixing is a complex process that is governed by meal properties, such as food buffering capacity, physical properties, and the rate of breakdown as well as physiological factors, such as the rate of gastric secretions, gastric emptying, and gastric motility. Gastric mixing processes have been studied through the use of experimental and computational methods. Gastric mixing impacts the intragastric pH distribution and residence time in the stomach for ingested materials. Development of a fundamental understanding of the advective and diffusion processes and their roles in gastric mixing will be important in furthering our understanding of food breakdown, microbial survival, and drug dissolution during gastric digestion.
-