- Home
- A-Z Publications
- Annual Review of Microbiology
- Previous Issues
- Volume 50, 1996
Annual Review of Microbiology - Volume 50, 1996
Volume 50, 1996
- Review Articles
-
-
-
SPONTANEOUS MUTATORS IN BACTERIA: Insights into Pathways of Mutagenesis and Repair
Vol. 50 (1996), pp. 625–643More LessMutators are cells that have a higher mutation rate than the wild type. Such mutators have been extensively studied in bacteria, and this has led to the elucidation of a number of important DNA repair pathways, as well as revealing new pathways of mutagenesis. Repair defects in humans that lead to mutator phenotypes are responsible for a number of cancer susceptibilities. In some cases, these repair systems are the close counterparts of the equivalent bacterial repair system. Therefore, characterizing bacterial mutators and the repair systems that are deficient can aid in discovering the human homolog of these systems.
-
-
-
-
rRNA TRANSCRIPTION AND GROWTH RATE–DEPENDENT REGULATION OF RIBOSOME SYNTHESIS IN ESCHERICHIA COLI
Vol. 50 (1996), pp. 645–677More LessThe synthesis of ribosomal RNA is the rate-limiting step in ribosome synthesis in bacteria. There are multiple mechanisms that determine the rate of rRNA synthesis.Ribosomal RNA promoter sequences have evolved for exceptional strength and for regulation in response to nutritional conditions and amino acid availibility. Strength derives in part from an extended RNA polymerase (RNAP) recognition region involving at least two RNAP subunits, in part from activation by a transcription factor and in part from modification of the transcript by a system that prevents premature termination. Regulation derives from at least two mechanistically distinct systems, growth rate–dependent control and stringent control. The mechanisms contributing to rRNA transcription work together and compensate for one another when individual systems are rendered inoperative.
-
-
-
CELL BIOLOGY OF THE PRIMITIVE EUKARYOTE GIARDIA LAMBLIA
Vol. 50 (1996), pp. 679–705More LessGiardia lamblia is an extremely primitive or early-diverging eukaryote that has been considered to have no typical ER or Golgi apparatus, although it is a complex and highly developed cell. Both the trophozoite and cyst have unusual surface proteins that enable these stages to survive in very different and hostile environments. We found that G. lamblia forms novel encystation-specific secretory vesicles and can sort cyst wall proteins to a regulated secretory pathway distinct from the constitutive pathway used to transport the variable cysteine-rich protein to the trophozoite surface. Our studies, utilizing novel ultrastructural methods that preserve the endomembranes, as well as IEM, support the idea that G. lamblia has many of the endomembrane protein transport elements and sorting functions of higher cells and that these appeared very early in the evolution of eukaryotic cells.
-
-
-
WILL THE REAL AGENT OF CAT-SCRATCH DISEASE PLEASE STAND UP?1
Vol. 50 (1996), pp. 707–725More LessCat-scratch disease has been recognized since 1889 in association with the oculoglandular syndrome of Parinaud. The epidemiologic association with cats was first made in 1931 and further substantiated throughout the years, refining the interaction predominantly to kittens. Putative infectious agents have included numerous species of bacteria, chlamydiae, and viruses. The cultivation of Afipia spp. in the late 1980s appeared to answer the mystery of the identity of the agent. However, even more recent analysis, which has combined traditional microbiology, molecular methods, and additional epidemiology, has demonstrated that Bartonella (Rochalimaea) henselae is the definitive agent of cat-scratch disease. Our understanding of the pathogenesis of cat-scratch disease and other diseases caused by Bartonella species is incomplete and the spectrum of diseases continues to emerge. We review historic and modern efforts to understand the etiology of cat-scratch disease and related syndromes.
-
-
-
CENSUS AND CONSENSUS IN BACTERIAL ECOSYSTEMS: The LuxR-LuxI Family of Quorum-Sensing Transcriptional Regulators
Vol. 50 (1996), pp. 727–751More LessThe importance of accurate demographic information is reflected in the United States Constitution, Article 1, which provides for a decennial census of this country's human population. Bacteria also conduct a census of their population and do so more frequently, more efficiently, and as far we know, with little if any of the political contentiousness caused by human demographers. Many examples have been found of particular bacterial genes, operons, or regulons that are expressed preferentially at high cell densities. Many of these are regulated by proteins related to the LuxR and LuxI proteins of Vibrio fischeri, and by a diffusible pheromone called an autoinducer. LuxR and LuxI and their cognate autoinducer (3-oxohexanoyl homoserine lactone, designated VAI-1) provide an important model to describe the functions of this family of proteins. LuxR is a VAI-1 receptor and a VAI-1–dependent transcriptional activator, and LuxI directs the synthesis of VAI-1. VAI-1 diffuses across the bacterial envelope, and intracellular concentrations of it are therefore strongly increased by nearby VAI-1–producing bacteria. Similar systems regulate pathogenesis factors in Pseudomonas aeruginosa and Erwinia spp., as well as Ti plasmid conjugal transfer in Agrobacterium tumefaciens, and many other genes in numerous genera of gram-negative bacteria. Genetic analyses of these systems have revealed a high degree of functional conservation, while also uncovering features that are unique to each.
-
-
-
BACTERIAL HEAVY METAL RESISTANCE: New Surprises
Simon Silver, and Le T. PhungVol. 50 (1996), pp. 753–789More LessBacterial plasmids encode resistance systems for toxic metal ions including Ag+, AsO2−, AsO43−, Cd2+, Co2+, CrO42−, Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, TeO32−, Tl+, and Zn2+. In addition to understanding of the molecular genetics and environmental roles of these resistances, studies during the last few years have provided surprises and new biochemical mechanisms. Chromosomal determinants of toxic metal resistances are known, and the distinction between plasmid resistances and those from chromosomal genes has blurred, because for some metals (notably mercury and arsenic), the plasmid and chromosomal determinants are basically the same. Other systems, such as copper transport ATPases and metallothionein cation-binding proteins, are only known from chromosomal genes. The largest group of metal resistance systems function by energy-dependent efflux of toxic ions. Some of the efflux systems are ATPases and others are chemiosmotic cation/proton antiporters. The CadA cadmium resistance ATPase of gram-positive bacteria and the CopB copper efflux system of Enterococcus hirae are homologous to P-type ATPases of animals and plants. The CadA ATPase protein has been labeled with 32P from γ-32P-ATP and drives ATP-dependent Cd2+ uptake by inside-out membrane vesicles. Recently isolated genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are more similar to the bacterial CadA and CopB ATPases than to eukaryote ATPases that pump different cations. The arsenic resistance efflux system transports arsenite, using alternatively either a two-component (ArsA and ArsB) ATPase or a single polypeptide (ArsB) functioning as a chemiosmotic transporter. The third gene in the arsenic resistance system, arsC, encodes an enzyme that converts intracellular arsenate [As (V)] to arsenite [As (III)], the substrate of the efflux system. The three-component Czc (Cd2+, Zn2+, and Co2+) chemiosmotic efflux pump of soil microbes consists of inner membrane (CzcA), outer membrane (CzcC), and membrane-spanning (CzcB) proteins that together transport cations from the cytoplasm across the periplasmic space to the outside of the cell. Finally, the first bacterial metallothionein (which by definition is a small protein that binds metal cations by means of numerous cysteine thiolates) has been characterized in cyanobacteria.
-
-
-
THE F0F1-TYPE ATP SYNTHASES OF BACTERIA: Structure and Function of the F0 Complex
Vol. 50 (1996), pp. 791–824More LessMembrane-bound ATP synthases (F0F1-ATPases) of bacteria serve two important physiological functions. The enzyme catalyzes the synthesis of ATP from ADP and inorganic phosphate utilizing the energy of an electrochemical ion gradient. On the other hand, under conditions of low driving force, ATP synthases function as ATPases, thereby generating a transmembrane ion gradient at the expense of ATP hydrolysis. The enzyme complex consists of two structurally and functionally distinct parts: the membrane-integrated ion-translocating F0 complex and the peripheral F1 complex, which carries the catalytic sites for ATP synthesis and hydrolysis. The ATP synthase of Escherichia coli, which has been the most intensively studied one, is composed of eight different subunits, five of which belong to F1, subunits α, β, γ, δ, and ϵ (3:3:1:1:1), and three to F0, subunits a, b, and c (1:2:10 ± 1). The similar overall structure and the high amino acid sequence homology indicate that the mechanism of ion translocation and catalysis and their mode of coupling is the same in all organisms.
-
-
-
IMMUNOPATHOGENESIS OF HIV INFECTION1
G. Pantaleo, and A. S. FauciVol. 50 (1996), pp. 825–854More LessThe rate of progression of HIV disease may be substantially different among HIV-infected individuals. Following infection of the host with any virus, the delicate balance between virus replication and the immune response to the virus determines both the outcome of the infection, i.e. the persistence versus elimination of the virus, and the different rates of progression.
During primary HIV infection, a burst of viremia occurs that disseminates virus to the lymphoid organs. A potent immune response ensues that substantially, but usually not completely, curtails virus replication. This inability of the immune system to completely eliminate the virus leads to establishment of chronic, persistent infection that over time leads to profound immunosuppression. The potential mechanisms of virus escape from an otherwise effective immune response have been investigated. Clonal deletion of HIV-specific cytotoxic T-cell clones and sequestration of virus-specific cytotoxic cells away from the major site of virus replication represent important mechanisms of virus escape from the immune response that favor persistence of HIV. Qualitative differences in the primary immune response to HIV (i.e. mobilization of a restricted versus broader T-cell receptor repertoire) are associated with different rates of disease progression. Therefore, the initial interaction between the virus and immune system of the host is critical for the subsequent clinical outcome.
-
Previous Volumes
-
Volume 77 (2023)
-
Volume 76 (2022)
-
Volume 75 (2021)
-
Volume 74 (2020)
-
Volume 73 (2019)
-
Volume 72 (2018)
-
Volume 71 (2017)
-
Volume 70 (2016)
-
Volume 69 (2015)
-
Volume 68 (2014)
-
Volume 67 (2013)
-
Volume 66 (2012)
-
Volume 65 (2011)
-
Volume 64 (2010)
-
Volume 63 (2009)
-
Volume 62 (2008)
-
Volume 61 (2007)
-
Volume 60 (2006)
-
Volume 59 (2005)
-
Volume 58 (2004)
-
Volume 57 (2003)
-
Volume 56 (2002)
-
Volume 55 (2001)
-
Volume 54 (2000)
-
Volume 53 (1999)
-
Volume 52 (1998)
-
Volume 51 (1997)
-
Volume 50 (1996)
-
Volume 49 (1995)
-
Volume 48 (1994)
-
Volume 47 (1993)
-
Volume 46 (1992)
-
Volume 45 (1991)
-
Volume 44 (1990)
-
Volume 43 (1989)
-
Volume 42 (1988)
-
Volume 41 (1987)
-
Volume 40 (1986)
-
Volume 39 (1985)
-
Volume 38 (1984)
-
Volume 37 (1983)
-
Volume 36 (1982)
-
Volume 35 (1981)
-
Volume 34 (1980)
-
Volume 33 (1979)
-
Volume 32 (1978)
-
Volume 31 (1977)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1974)
-
Volume 27 (1973)
-
Volume 26 (1972)
-
Volume 25 (1971)
-
Volume 24 (1970)
-
Volume 23 (1969)
-
Volume 22 (1968)
-
Volume 21 (1967)
-
Volume 20 (1966)
-
Volume 19 (1965)
-
Volume 18 (1964)
-
Volume 17 (1963)
-
Volume 16 (1962)
-
Volume 15 (1961)
-
Volume 14 (1960)
-
Volume 13 (1959)
-
Volume 12 (1958)
-
Volume 11 (1957)
-
Volume 10 (1956)
-
Volume 9 (1955)
-
Volume 8 (1954)
-
Volume 7 (1953)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
-
Volume 0 (1932)