- Home
- A-Z Publications
- Annual Review of Microbiology
- Previous Issues
- Volume 53, 1999
Annual Review of Microbiology - Volume 53, 1999
Volume 53, 1999
- Preface
-
- Review Articles
-
-
-
Transformation of Leukocytes by Theileria parva and T. annulata
Vol. 53 (1999), pp. 1–42More Less▪ AbstractTheileria parva and T. annulata provide intriguing models for the study of parasite-host interactions. Both parasites possess the unique property of being able to transform the cells they infect; T. parva transforms T and B cells, whereas T. annulata affects B cells and monocytes/macrophages. Parasitized cells do not require antigenic stimulation or exogenous growth factors and acquire the ability to proliferate continuously. In vivo, parasitized cells undergo clonal expansion and infiltrate both lymphoid and non-lymphoid tissues of the infected host. Theileria-induced transformation is entirely reversible and is accompanied by the expression of a wide range of different lymphokines and cytokines, some of which may contribute to proliferation or may enhance spread and survival of the parasitized cell in the host. The presence of the parasite in the host-cell cytoplasm modulates the state of activation of a number of signal transduction pathways. This, in turn, leads to the activation of transcription factors, including nuclear factor-κB, which appear to be essential for the survival of Theileria-transformed T cells.
-
-
-
-
Addiction Modules and Programmed Cell Death and Antideath in Bacterial Cultures
Vol. 53 (1999), pp. 43–70More Less▪ AbstractIn bacteria, programmed cell death is mediated through “addiction modules” consisting of two genes. The product of the second gene is a stable toxin, whereas the product of the first is a labile antitoxin. Here we extensively review what is known about those modules that are borne by one of a number of Escherichia coli extrachromosomal elements and are responsible for the postsegregational killing effect. We focus on a recently discovered chromosomally borne regulatable addiction module in E. coli that responds to nutritional stress and also on an antideath gene of the E. coli bacteriophage λ. We consider the relation of these two to programmed cell death and antideath in bacterial cultures. Finally, we discuss the similarities between basic features of programmed cell death and antideath in both prokaryotes and eukaryotes and the possibility that they share a common evolutionary origin.
-
-
-
Wolbachia Pipientis: Microbial Manipulator of Arthropod Reproduction
Vol. 53 (1999), pp. 71–102More Less▪ AbstractThe α-proteobacterium Wolbachia pipientis is a very common cytoplasmic symbiont of insects, crustaceans, mites, and filarial nematodes. To enhance its transmission, W. pipientis has evolved a large scale of host manipulations: parthenogenesis induction, feminization, and male killing. W. pipientis's most common effect is a crossing incompatibility between infected males and uninfected females. Little is known about the genetics and biochemistry of these symbionts because of their fastidious requirements. The affinity of W. pipientis for the microtubules associated with the early divisions in eggs may explain some of their effects. Such inherited microorganisms are thought to have been major factors in the evolution of sex determination, eusociality, and speciation. W. pipientis isolates are also of interest as vectors for the modification of wild insect populations, in the improvement of parasitoid wasps in biological pest control, and as a new method for interfering with diseases caused by filarial nematodes.
-
-
-
Aerotaxis and Other Energy-Sensing Behavior in Bacteria
Vol. 53 (1999), pp. 103–128More Less▪ AbstractEnergy taxis is widespread in motile bacteria and in some species is the only known behavioral response. The bacteria monitor their cellular energy levels and respond to a decrease in energy by swimming to a microenvironment that reenergizes the cells. This is in contrast to classical Escherichia coli chemotaxis in which sensing of stimuli is independent of cellular metabolism. Energy taxis encompasses aerotaxis (taxis to oxygen), phototaxis, redox taxis, taxis to alternative electron acceptors, and chemotaxis to a carbon source. All of these responses share a common signal transduction pathway. An environmental stimulus, such as oxygen concentration or light intensity, modulates the flow of reducing equivalents through the electron transport system. A transducer senses the change in electron transport, or possibly a related parameter such as proton motive force, and initiates a signal that alters the direction of swimming. The Aer and Tsr proteins in E. coli are newly recognized transducers for energy taxis. Aer is homologous to E. coli chemoreceptors but unique in having a PAS domain and a flavin-adenine dinucleotide cofactor that is postulated to interact with a component of the electron transport system. PAS domains are energy-sensing modules that are found in proteins from archaea to humans. Tsr, the serine chemoreceptor, is an independent transducer for energy taxis, but its sensory mechanism is unknown. Energy taxis has a significant ecological role in vertical stratification of microorganisms in microbial mats and water columns. It plays a central role in the behavior of magnetotactic bacteria and also appears to be important in plant-microbe interactions.
-
-
-
In Vivo Genetic Analysis of Bacterial Virulence
Vol. 53 (1999), pp. 129–154More Less▪ AbstractIn vitro assays contribute greatly to our understanding of bacterial pathogenesis, but they frequently cannot replicate the complex environment encountered by pathogens during infection. The information gained from such studies is therefore limited. In vivo models, on the other hand, can be difficult to use, and this has to some extent diminished the incentive to perform studies in living animals. However, several recently developed techniques permit in vivo examination of many genes simultaneously. Most of these methods fall into two broad classes: in vivo expression technology and signature-tagged mutagenesis. In vivo expression technology is a promoter-trap strategy designed to identify genes whose expression is induced in a specific environment, typically that encountered in a host. Signature-tagged mutagenesis uses comparative hybridization to isolate mutants unable to survive specified environmental conditions and has been used to identify genes critical for survival in the host. Both approaches have so far been used exclusively for investigating pathogen-host interactions, but they should be easily adaptable to the study of other processes.
-
-
-
The Induction of Apoptosis by Bacterial Pathogens
Vol. 53 (1999), pp. 155–187More Less▪ AbstractApoptosis is a highly regulated process of cell death that is required for the development and homeostasis of multicellular organisms. In contrast to necrosis, apoptosis eliminates individual cells without inducing an inflammatory response. Activation or prevention of cell death could be a critical factor in the outcome of an infection. Programmed cell death has been observed as a response to infection by a wide range of animal and plant pathogens and is mediated by an array of pathogen-encoded virulence determinants. Pathogen-induced modulation of the host cell-death pathway may serve to eliminate key immune cells or evade host defenses that can act to limit the infection. Alternatively, suppression of the death pathway may facilitate the proliferation of intracellular pathogens.
-
-
-
Poles Apart: Biodiversity and Biogeography of Sea Ice Bacteria
Vol. 53 (1999), pp. 189–215More Less▪ AbstractThis review introduces the subjects of bacterial biodiversity and biogeography. Studies of biogeography are important for understanding biodiversity, the occurrence of threatened species, and the ecological role of free-living and symbiotic prokaryotes. A set of postulates is proposed for biogeography as a guide to determining whether prokaryotes are “cosmopolitan” (found in more than one geographic location on Earth) or candidate endemic species. The term “geovar” is coined to define a geographical variety of prokaryote that is restricted to one area on Earth or one host species. This review discusses sea ice bacteriology as a test case for examining bacterial diversity and biogeography. Approximately 7% of Earth's surface is covered by sea ice, which is colonized principally by psychrophilic microorganisms. This extensive community of microorganisms, referred to as the sea ice microbial community (SIMCO), contains algae (mostly diatoms), protozoa, and bacteria. Recent investigations indicate that the sea ice bacteria fall into four major phylogenetic groups: the proteobacteria, the Cytophaga-Flavobacterium-Bacteroides (CFB) group, and the high and low mol percent gram-positive bacteria. Archaea associated with sea ice communities have also been reported. Several novel bacterial genera and species have been discovered, including Polaromonas, Polaribacter, Psychroflexus, Gelidibacter, and Octadecabacter; many others await study. Some of the gram-negative sea ice bacteria have among the lowest maximum temperatures for growth known, <10°C for some strains. The polar sea ice environment is an ideal habitat for studying microbial biogeography because of the dispersal issues involved. Dispersal between poles is problematic because of the long distances and the difficulty of transporting psychrophilic bacteria across the equator. Studies to date indicate that members of some genera occur at both poles; however, cosmopolitan species have not yet been discovered. Additional research on polar sea ice bacteria is needed to resolve this issue and extend our understanding of its microbial diversity.
-
-
-
DNA Uptake in Bacteria
Vol. 53 (1999), pp. 217–244More Less▪ AbstractNatural competence is widespread among bacterial species. The mechanism of DNA uptake in both gram-positive and gram-negative bacteria is reviewed. The transformation pathways are discussed, with attention to the fate of donor DNA as it is processed by the competent cell. The proteins involved in mediating various steps in these pathways are described, and models for the transformation mechanisms are presented. Uptake of DNA across the inner membrane is probably similar in gram-positive and gram-negative bacteria, and at least some of the required proteins are orthologs. The initial transformation steps differ, as expected, from the presence of an outer membrane only in the gram-negative organisms. The similarity of certain essential competence proteins to those required for the assembly of type-4 pili and for type-2 protein secretion is discussed. Finally several hypotheses for the biological role of transformation are presented and evaluated.
-
-
-
Integrating DNA: Transposases and Retroviral Integrases
L. Haren, B. Ton-Hoang, and M. ChandlerVol. 53 (1999), pp. 245–281More Less▪ AbstractTransposable elements appear quite disparate in their organization and in the types of genetic rearrangements they promote. In spite of this diversity, retroviruses and many transposons of both prokaryotes and eukaryotes show clear similarities in the chemical reactions involved in their transposition. This is reflected in the enzymes, integrases and transposases, that catalyze these reactions and that are essential for the mobility of the elements. In this chapter, we examine the structure-function relationships between these enzymes and the different ways in which the individual steps are assembled to produce a complete transposition cycle.
-
-
-
Transmissible Spongiform Encephalopathies in Humans
Vol. 53 (1999), pp. 283–314More Less▪ AbstractCreutzfeldt-Jakob disease (CJD), the first transmissible spongiform encephalopathy (TSE) to be described in humans, occurs in a sporadic, familial, or iatrogenic form. Other TSEs in humans, shown to be associated with specific prion protein gene mutations, have been reported in different parts of the world. These TSEs compose a heterogeneous group of familial diseases that traditionally have been classified as familial CJD, Gerstmann-Sträussler-Scheinker syndrome, or fatal familial insomnia. In 1996, a newly recognized variant form of CJD among young patients (median age, 28 years) with unusual clinical features and a unique neuropathologic profile was reported in the United Kingdom. In the absence of known CJD risk factors or prion protein gene abnormalities, the UK government concluded that the clustering of these cases may represent transmission to humans of the agent causing bovine spongiform encephalopathy. Additional epidemiologic and recent laboratory data strongly support the UK government's conclusion.
-
-
-
Bacterial Biocatalysts: Molecular Biology, Three-Dimensional Structures, and Biotechnological Applications of Lipases
Vol. 53 (1999), pp. 315–351More Less▪ AbstractBacteria produce and secrete lipases, which can catalyze both the hydrolysis and the synthesis of long-chain acylglycerols. These reactions usually proceed with high regioselectivity and enantioselectivity, and, therefore, lipases have become very important stereoselective biocatalysts used in organic chemistry. High-level production of these biocatalysts requires the understanding of the mechanisms underlying gene expression, folding, and secretion. Transcription of lipase genes may be regulated by quorum sensing and two-component systems; secretion can proceed either via the Sec-dependent general secretory pathway or via ABC transporters. In addition, some lipases need folding catalysts such as the lipase-specific foldases and disulfide-bond–forming proteins to achieve a secretion-competent conformation. Three-dimensional structures of bacterial lipases were solved to understand the catalytic mechanism of lipase reactions. Structural characteristics include an α/β hydrolase fold, a catalytic triad consisting of a nucleophilic serine located in a highly conserved Gly-X-Ser-X-Gly pentapeptide, and an aspartate or glutamate residue that is hydrogen bonded to a histidine. Four substrate binding pockets were identified for triglycerides: an oxyanion hole and three pockets accommodating the fatty acids bound at positions sn-1, sn-2, and sn-3. The differences in size and the hydrophilicity/hydrophobicity of these pockets determine the enantiopreference of a lipase. The understanding of structure-function relationships will enable researchers to tailor new lipases for biotechnological applications. At the same time, directed evolution in combination with appropriate screening systems will be used extensively as a novel approach to develop lipases with high stability and enantioselectivity.
-
-
-
Contributions of Genome Sequencing to Understanding the Biology of Helicobacter pylori
Vol. 53 (1999), pp. 353–387More Less▪ AbstractAbout half of the world's population carries Helicobacter pylori, a gram-negative, spiral bacterium that colonizes the human stomach. The link between H. pylori and, ulceration as well as its association with the development of both gastric cancer and mucosa-associated lymphoid tissue lymphoma in humans is a serious public health concern. The publication of the genome sequences of two stains of H. pylori gives rise to direct evidence on the genetic diversity reported previously with respect to gene organization and nucleotide variability from strain to strain. The genome size of H. pylori strain 26695 is 1,6697,867 bp and is 1,643,831 bp for strain J99. Approximately 89% of the predicted open reading frames are common to both of the strains, confirming H. pylori as a single species. A region containing ∼45% of H. pylori strain-specific open reading frames, termed the plasticity zone, is present on the chromosomes, verifying that some strain variability exists. Frequent alteration of nucleotides in the third position of the triplet codons and various copies of insertion elements on the individual chromosomes appear to contribute to distinct polymorphic fingerprints among strains analyzed by restriction fragment length polymorphisms, random amplified polymorphic DNA method, and repetitive element–polymerase chain reaction. Disordered chromosomal locations of some genes seen by pulsed-field gel electrophoresis are likely caused by rearrangement or inversion of certain segments in the genomes. Cloning and functional characterization of the genes involved in acidic survival, vacuolating toxin, cag-pathogenicity island, motility, attachment to epithelial cells, natural transformation, and the biosynthesis of lipopolysaccharides have considerably increased our understanding of the molecular genetic basis for the pathogenesis of H. pylori. The homopolymeric nucleotide tracts and dinucleotide repeats, which potentially regulate the on- and off-status of the target genes by the strand-slipped mispairing mechanism, are often found in the genes encoding the outer-membrane proteins, in enzymes for lipopolysaccharide synthesis, and within DNA modification/restriction systems. Therefore, these genes may be involved in the H. pylori–host interaction.
-
-
-
Circadian Programs in Cyanobacteria: Adaptiveness and Mechanism
Vol. 53 (1999), pp. 389–409More Less▪ AbstractAt least one group of prokaryotes is known to have circadian regulation of cellular activities—the cyanobacteria. Their “biological clock” orchestrates cellular events to occur in an optimal temporal program, and it can keep track of circadian time even when the cells are dividing more rapidly than once per day. Growth competition experiments demonstrate that the fitness of cyanobacteria is enhanced when the circadian period matches the period of the environmental cycle. Three genes have been identified that specifically affect circadian phenotypes. These genes, kaiA, kaiB, and kaiC, are adjacent to each other on the chromosome, thus forming a clock gene cluster. The clock gene products appear to interact with each other and form an autoregulatory feedback loop.
-
-
-
Constructing Polyketides: From Collie to Combinatorial Biosynthesis
Vol. 53 (1999), pp. 411–446More Less▪ AbstractIn a new golden age, polyketides are investigated and manipulated with the tools of molecular biology and genetics; hybrid polyketides can be produced. Pharmaceutical companies hope to find new and useful polyketide products, including antibiotics, anthelminthics, and immunosuppressants. This review describes the past developments (largely chemical) on which the present investigations are based, attempts to make sense of the expanding scope of polyketides, looks at the shifting research focus around polyketides, presents a working definition in biosynthetic terms, and takes note of recent work in combinatorial biosynthesis. Also discussed is the failure of the classical enzymological approach to polyketide biosynthesis.
-
-
-
Giant Viruses Infecting Algae
Vol. 53 (1999), pp. 447–494More Less▪ AbstractParamecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, double-stranded–DNA-containing viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. DNA sequence analysis of its 330, 742-bp genome leads to the prediction that this phycodnavirus has 376 protein-encoding genes and 10 transfer RNA genes. The predicted gene products of ∼40% of these genes resemble proteins of known function. The chlorella viruses have other features that distinguish them from most viruses, in addition to their large genome size. These features include the following: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases; (b) PBCV-1 encodes at least part, if not the entire machinery to glycosylate its proteins; (c) PBCV-1 has at least two types of introns—a self-splicing intron in a transcription factor–like gene and a splicesomal processed type of intron in its DNA polymerase gene. Unlike the chlorella viruses, large double-stranded–DNA-containing viruses that infect marine, filamentous brown algae have a circular genome and a lysogenic phase in their life cycle.
-
-
-
Mechanisms for Redox Control of Gene Expression
Vol. 53 (1999), pp. 495–523More Less▪ AbstractThis review discusses various mechanisms that regulatory proteins use to control gene expression in response to alterations in redox. The transcription factor SoxR contains stable [2Fe-2S] centers that promote transcription activation when oxidized. FNR contains [4Fe-4S] centers that disassemble under oxidizing conditions, which affects DNA-binding activity. FixL is a histidine sensor kinase that utilizes heme as a cofactor to bind oxygen, which affects its autophosphorylation activity. NifL is a flavoprotein that contains FAD as a redox responsive cofactor. Under oxidizing conditions, NifL binds and inactivates NifA, the transcriptional activator of the nitrogen fixation genes. OxyR is a transcription factor that responds to redox by breaking or forming disulfide bonds that affect its DNA-binding activity. The ability of the histidine sensor kinase ArcB to promote phosphorylation of the response regulator ArcA is affected by multiple factors such as anaerobic metabolites and the redox state of the membrane. The global regulator of anaerobic gene expression in α-purple proteobacteria, RegB, appears to directly monitor respiratory activity of cytochrome oxidase. The aerobic repressor of photopigment synthesis, CrtJ, seems to contain a redox responsive cysteine. Finally, oxygen-sensitive rhizobial NifA proteins presumably bind a metal cofactor that senses redox. The functional variability of these regulatory proteins demonstrates that prokaryotes apply many different mechanisms to sense and respond to alterations in redox.
-
-
-
Intercellular Signaling During Fruiting-Body Development of Myxococcus xanthus
Vol. 53 (1999), pp. 525–549More Less▪ AbstractThe myxobacterium Myxococcus xanthus has a life cycle that is dominated by social behavior. During vegetative growth, cells prey on other bacteria in large groups that have been likened to wolf packs. When faced with starvation, cells form a macroscopic fruiting body containing thousands of spores. The social systems that guide fruiting body development have been examined through the isolation of conditional developmental mutants that can be stimulated to develop in the presence of wild-type cells. Extracellular complementation is due to the transfer of soluble and cell contact-dependent intercellular signals. This review describes the current state of knowledge concerning cell-cell signaling during development.
-
-
-
Clostridial Toxins as Therapeutic Agents: Benefits of Nature's Most Toxic Proteins
Vol. 53 (1999), pp. 551–575More Less▪ AbstractToxins are increasingly being used as valuable tools for analysis of cellular physiology, and some are used medicinally for treatment of human diseases. In particular, botulinum toxin, the most poisonous biological substance known, is used for treatment of a myriad of human neuromuscular disorders characterized by involuntary muscle contractions. Since approval of type-A botulinum toxin by the US Food and Drug Administration in December 1989 for three disorders (strabismus, blepharospasm, and hemifacial spasm), the number of indications being treated has increased greatly to include numerous focal dystonias, spasticity, tremors, cosmetic applications, migraine and tension headaches, and other maladies. Many of these diseases were previously refractory to pharmacological and surgical treatments. The remarkable therapeutic utility of botulinum toxin lies in its ability to specifically and potently inhibit involuntary muscle activity for an extended duration. The clostridia produce more protein toxins than any other bacterial genus and are a rich reservoir of toxins for research and medicinal uses. Research is underway to use clostridial toxins or toxin domains for drug delivery, prevention of food poisoning, and the treatment of cancer and other diseases. The remarkable success of botulinum toxin as a therapeutic agent has created a new field of investigation in microbiology.
-
-
-
Viruses and Apoptosis
Vol. 53 (1999), pp. 577–628More Less▪ AbstractSuccessful viral replication requires not only the efficient production and spread of progeny, but also evasion of host defense mechanisms that limit replication by killing infected cells. In addition to inducing immune and inflammatory responses, infection by most viruses triggers apoptosis or programmed cell death of the infected cell. This cell response often results as a compulsory or unavoidable by-product of the action of critical viral replicative functions. In addition, some viruses seem to use apoptosis as a mechanism of cell killing and virus spread. In both cases, successful replication relies on the ability of certain viral products to block or delay apoptosis until sufficient progeny have been produced. Such proteins target a variety of strategic points in the apoptotic pathway. In this review we summarize the great amount of recent information on viruses and apoptosis and offer insights into how this knowledge may be used for future research and novel therapies.
-
Previous Volumes
-
Volume 77 (2023)
-
Volume 76 (2022)
-
Volume 75 (2021)
-
Volume 74 (2020)
-
Volume 73 (2019)
-
Volume 72 (2018)
-
Volume 71 (2017)
-
Volume 70 (2016)
-
Volume 69 (2015)
-
Volume 68 (2014)
-
Volume 67 (2013)
-
Volume 66 (2012)
-
Volume 65 (2011)
-
Volume 64 (2010)
-
Volume 63 (2009)
-
Volume 62 (2008)
-
Volume 61 (2007)
-
Volume 60 (2006)
-
Volume 59 (2005)
-
Volume 58 (2004)
-
Volume 57 (2003)
-
Volume 56 (2002)
-
Volume 55 (2001)
-
Volume 54 (2000)
-
Volume 53 (1999)
-
Volume 52 (1998)
-
Volume 51 (1997)
-
Volume 50 (1996)
-
Volume 49 (1995)
-
Volume 48 (1994)
-
Volume 47 (1993)
-
Volume 46 (1992)
-
Volume 45 (1991)
-
Volume 44 (1990)
-
Volume 43 (1989)
-
Volume 42 (1988)
-
Volume 41 (1987)
-
Volume 40 (1986)
-
Volume 39 (1985)
-
Volume 38 (1984)
-
Volume 37 (1983)
-
Volume 36 (1982)
-
Volume 35 (1981)
-
Volume 34 (1980)
-
Volume 33 (1979)
-
Volume 32 (1978)
-
Volume 31 (1977)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1974)
-
Volume 27 (1973)
-
Volume 26 (1972)
-
Volume 25 (1971)
-
Volume 24 (1970)
-
Volume 23 (1969)
-
Volume 22 (1968)
-
Volume 21 (1967)
-
Volume 20 (1966)
-
Volume 19 (1965)
-
Volume 18 (1964)
-
Volume 17 (1963)
-
Volume 16 (1962)
-
Volume 15 (1961)
-
Volume 14 (1960)
-
Volume 13 (1959)
-
Volume 12 (1958)
-
Volume 11 (1957)
-
Volume 10 (1956)
-
Volume 9 (1955)
-
Volume 8 (1954)
-
Volume 7 (1953)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
-
Volume 0 (1932)