- Home
- A-Z Publications
- Annual Review of Microbiology
- Previous Issues
- Volume 65, 2011
Annual Review of Microbiology - Volume 65, 2011
Volume 65, 2011
-
-
Motility and Chemotaxis in Campylobacter and Helicobacter
Vol. 65 (2011), pp. 389–410More LessFlagellar motility of Campylobacter jejuni and Helicobacter pylori influences host colonization by promoting migration through viscous milieus such as gastrointestinal mucus. This review explores mechanisms C. jejuni and H. pylori employ to control flagellar biosynthesis and chemotactic responses. These microbes tightly control the activities of σ54 and σ28 to mediate ordered flagellar gene expression. In addition to phase-variable and posttranslational mechanisms, flagellar biosynthesis is regulated spatially and numerically so that only a certain number of organelles are placed at polar sites. To mediate chemotaxis, C. jejuni and H. pylori combine basic chemotaxis signal transduction components with several accessory proteins. H. pylori is unusual in that it lacks a methylation-based adaptation system and produces multiple CheV coupling proteins. Chemoreceptors in these bacteria contain nonconserved ligand binding domains, with several chemoreceptors matched to environmental signals. Together, these mechanisms allow for swimming motility that is essential for colonization.
-
-
-
The Human Gut Microbiome: Ecology and Recent Evolutionary Changes
Jens Walter, and Ruth LeyVol. 65 (2011), pp. 411–429More LessThe human gastrointestinal tract is divided into sections, allowing digestion and nutrient absorption in the proximal region to be separate from the vast microbial populations in the large intestine, thereby reducing conflict between host and microbes. In the distinct habitats of the gut, environmental filtering and competitive exclusion between microbes are the driving factors shaping microbial diversity, and stochastic factors during colonization history and in situ evolution are likely to introduce intersubject variability. Adaptive strategies of microbes with different niches are genomically encoded: Specialists have smaller genomes than generalists, and microbes with environmental reservoirs have large accessory genomes. A shift toward a Neolithic diet increased loads of simple carbohydrates and selected for their increased breakdown and absorption in the small intestine. Humans who outcompeted microbes for the new substrates obtained more energy from their diets and prospered, an evolutionary process reflected in modern population genetics. The three-way interactions between human genetics, diet, and the microbiota fundamentally shaped modern populations and continue to affect health globally.
-
-
-
Approaches to Capturing and Designing Biologically Active Small Molecules Produced by Uncultured Microbes
Vol. 65 (2011), pp. 431–453More LessBacteria are one of the most important sources of bioactive natural products for drug discovery. Yet, in most habitats only a small percentage of all existing prokaryotes is amenable to cultivation and chemical study. There is strong evidence that the uncultivated diversity represents an enormous resource of novel biosynthetic enzymes and secondary metabolites. In addition, many animal-derived drug candidates that are structurally characterized but difficult to access seem to be produced by uncultivated, symbiotic bacteria. This review provides an overview about established and emerging techniques for the investigation and exploitation of the environmental metabolome. These include metagenomic library construction and screening, heterologous expression, community sequencing, and single-cell methods. Such tools, the advantages and shortcomings of which are discussed, have just begun to reveal the full metabolic potential of free-living and symbiotic bacteria, providing exciting new avenues for natural product research and environmental microbiology.
-
-
-
Epidemiological Expansion, Structural Studies, and Clinical Challenges of New β-Lactamases from Gram-Negative Bacteria
Karen Bush, and Jed F. FisherVol. 65 (2011), pp. 455–478More Lessβ-Lactamase evolution presents to the infectious disease community a major challenge in the treatment of infections caused by multidrug-resistant gram-negative bacteria. Because over 1,000 of these naturally occurring β-lactamases exist, attempts to correlate structure and function have become daunting. Although new enzymes in the extended-spectrum β-lactamase (ESBL) families are frequently identified, the older CTX-M-14 and CTX-M-15 enzymes have become the most prevalent ESBLs in global surveillance. Carbapenemases with either serine-based or zinc-facilitated hydrolysis mechanisms are posing some of the most critical problems. Most geographical regions now report KPC serine carbapenemases and the metallo-β-lactamases VIM, IMP, and NDM-1, even though NDM-1 was only recently identified. The rapid emergence of these newer enzymes, with multiple β-lactamases appearing in a single organism, makes the design of new β-lactamase inactivators or β-lactamase-stable β-lactams all the more difficult. Combination therapy will likely be required to counteract the continuing evolution of these insidious enzymes in multidrug-resistant pathogens.
-
-
-
Gene Regulation in Borrelia burgdorferi
Vol. 65 (2011), pp. 479–499More LessBorrelia burgdorferi, the spirochete that causes Lyme disease, is maintained in nature via an enzootic cycle that comprises a tick vector and a vertebrate host. Transmission from the tick to the mammal, acquisition from the mammal back to the tick, and adaptation to the two disparate environments require sensing signals and responding by regulating programs of gene expression. The molecular mechanisms utilized to effect these lifestyle changes have begun to be elucidated and feature an alternative sigma factor cascade in which RpoN (σ54) and RpoS (σS) globally control the genes required for the different phases of the enzootic cycle. The RpoN-RpoS pathway is surprisingly complex, entailing Rrp2, an unusual enhancer-binding protein and two-component regulatory system response regulator activated by acetyl phosphate; BosR, an unorthodox DNA-binding protein; DsrABb, a small noncoding RNA; and Hfq and CsrA, two RNA-binding proteins. B. burgdorferi also has a c-di-GMP signaling system that regulates the tick side of the enzootic cycle and whose function is only beginning to be appreciated.
-
-
-
Biology of Clostridium difficile: Implications for Epidemiology and Diagnosis
Vol. 65 (2011), pp. 501–521More LessClostridium difficile is an anaerobic, spore-forming, gram-positive rod that causes a spectrum of antibiotic-associated colitis through the elaboration of two large clostridial toxins and other virulence factors. Since its discovery in 1978 as the agent responsible for pseudomembranous colitis, the organism has continued to evolve into an adaptable, aggressive, hypervirulent strain. Advances in molecular methods and improved animal models have facilitated an understanding of how this organism survives in the environment, adapts to the gastrointestinal tract of animals and humans, and accomplishes its unique pathogenesis. The advances in microbiology have been accompanied by some important clinical observations including increased rates of C. difficile infection, increased virulence, and multiple outbreaks. The major new risk is fluoroquinolone use; there is also an association with proton pump inhibitors and increased recognition of cases in outpatients, pediatric patients, and patients without recent antibiotic use. The combination of more aggressive strains with mobile genomes in a setting of an expanded pool of individuals at risk has refocused attention on and challenged assumptions regarding diagnostic gold standards. Future research is likely to build upon the advancements in phylogenetics to create novel strategies for diagnosis, treatment, and prevention.
-
-
-
Interactions of the Human Pathogenic Brucella Species with Their Hosts
Vol. 65 (2011), pp. 523–541More LessBrucellosis is a zoonotic infection caused primarily by the bacterial pathogens Brucella melitensis and B. abortus. It is acquired by consumption of unpasteurized dairy products or by contact with infected animals. Globally, it is one of the most widespread zoonoses, with 500,000 new cases reported each year. In endemic areas, Brucella infections represent a serious public health problem that results in significant morbidity and economic losses. An important feature of the disease is persistent bacterial colonization of the reticuloendothelial system. In this review we discuss recent insights into mechanisms of intracellular survival and immune evasion that contribute to systemic persistence by the pathogenic Brucella species.
-
-
-
Metabolic Pathways Required for the Intracellular Survival of Leishmania
Vol. 65 (2011), pp. 543–561More LessLeishmania spp. are sandfly-transmitted parasitic protozoa that cause a spectrum of important diseases and lifelong chronic infections in humans. In the mammalian host, these parasites proliferate within acidified vacuoles in several phagocytic host cells, including macrophages, dendritic cells, and neutrophils. In this review, we discuss recent progress that has been made in defining the nutrient composition of the Leishmania parasitophorous vacuole, as well as metabolic pathways required by these parasites for virulence. Analysis of the virulence phenotype of Leishmania mutants has been particularly useful in defining carbon sources and nutrient salvage pathways that are essential for parasite persistence and/or induction of pathology. We also review data suggesting that intracellular parasite stages modulate metabolic processes in their host cells in order to generate a more permissive niche.
-
-
-
Capsules of Streptococcus pneumoniae and Other Bacteria: Paradigms for Polysaccharide Biosynthesis and Regulation
Vol. 65 (2011), pp. 563–581More LessCapsular polysaccharides and exopolysaccharides play critical roles in bacterial survival strategies, and they can have important medical and industrial applications. An immense variety of sugars and glycosidic linkages leads to an almost unlimited diversity of potential polysaccharide structures. This diversity is reflected in the large number of serologically and chemically distinct polysaccharides that have been identified among both gram-positive and gram-negative bacteria. Despite this diversity, however, the genetic loci and mechanisms responsible for polysaccharide biosynthesis exhibit conserved features and can be classified into a small number of groups. In Streptococcus pneumoniae, capsule synthesis occurs by one of two distinct mechanisms that involve the polymerization of either individual sugars in a processive reaction (synthase dependent) or discrete repeat units in a nonprocessive reaction (Wzy dependent). Characterization of these systems has provided novel insights that are applicable to polymers synthesized by many gram-positive and gram-negative bacteria, as well as eukaryotes.
-
-
-
Synthetic Poliovirus and Other Designer Viruses: What Have We Learned from Them?
Vol. 65 (2011), pp. 583–609More LessOwing to known genome sequences, modern strategies of DNA synthesis have made it possible to recreate in principle all known viruses independent of natural templates. We describe the first synthesis of a virus (poliovirus) in 2002 that was accomplished outside living cells. We comment on the reaction of laypeople and scientists to the work, which shaped the response to de novo syntheses of other viruses. We discuss those viruses that have been synthesized since 2002, among them viruses whose precise genome sequence had to be established by painstakingly stitching together pieces of sequence information, and viruses involved in zoonosis. Synthesizing viral genomes provides a powerful tool for studying gene function and the pathogenic potential of these organisms. It also allows modification of viral genomes to an extent hitherto unthinkable. Recoding of poliovirus and influenza virus to develop new vaccine candidates and refactoring the phage T7 DNA genome are discussed as examples.
-
-
-
Regulation of Antigenic Variation in Giardia lamblia
Vol. 65 (2011), pp. 611–630More LessAntigenic variation, a clonal phenotypic variation developed by microorganisms, involves the permanent switching of homologous, antigenically different cell surface molecules. In pathogenic microorganisms, antigenic variation is often described as a mechanism to evade the host immune system and therefore is responsible for the generation of chronic and/or recurrent infections. However, antigenic variation has also been involved in expanding host diversity and differential courses of the diseases. The intestinal protozoan parasite Giardia lamblia undergoes antigenic variation through the continuous exchange of approximately 200 variant-specific surface proteins. Here we review the principal issues regarding the significance of antigenic variation during Giardia infections, the particular features of the variant-specific surface proteins, and the current knowledge on the mechanisms that regulate this process, as well as the relevance of disrupting antigenic variation as a novel approach to design effective antiparasitic vaccines.
-
-
-
Alternative Pathways of Carbon Dioxide Fixation: Insights into the Early Evolution of Life?
Vol. 65 (2011), pp. 631–658More LessThe fixation of inorganic carbon into organic material (autotrophy) is a prerequisite for life and sets the starting point of biological evolution. In the extant biosphere the reductive pentose phosphate (Calvin-Benson) cycle is the predominant mechanism by which many prokaryotes and all plants fix CO2 into biomass. However, the fact that five alternative autotrophic pathways exist in prokaryotes is often neglected. This bias may lead to serious misjudgments in models of the global carbon cycle, in hypotheses on the evolution of metabolism, and in interpretations of geological records. Here, I review these alternative pathways that differ fundamentally from the Calvin-Benson cycle. Revealingly, these five alternative pathways pivot on acetyl-coenzyme A, the turntable of metabolism, demanding a gluconeogenic pathway starting from acetyl-coenzyme A and CO2. It appears that the formation of an activated acetic acid from inorganic carbon represents the initial step toward metabolism. Consequently, biosyntheses likely started from activated acetic acid and gluconeogenesis preceded glycolysis.
-
Previous Volumes
-
Volume 78 (2024)
-
Volume 77 (2023)
-
Volume 76 (2022)
-
Volume 75 (2021)
-
Volume 74 (2020)
-
Volume 73 (2019)
-
Volume 72 (2018)
-
Volume 71 (2017)
-
Volume 70 (2016)
-
Volume 69 (2015)
-
Volume 68 (2014)
-
Volume 67 (2013)
-
Volume 66 (2012)
-
Volume 65 (2011)
-
Volume 64 (2010)
-
Volume 63 (2009)
-
Volume 62 (2008)
-
Volume 61 (2007)
-
Volume 60 (2006)
-
Volume 59 (2005)
-
Volume 58 (2004)
-
Volume 57 (2003)
-
Volume 56 (2002)
-
Volume 55 (2001)
-
Volume 54 (2000)
-
Volume 53 (1999)
-
Volume 52 (1998)
-
Volume 51 (1997)
-
Volume 50 (1996)
-
Volume 49 (1995)
-
Volume 48 (1994)
-
Volume 47 (1993)
-
Volume 46 (1992)
-
Volume 45 (1991)
-
Volume 44 (1990)
-
Volume 43 (1989)
-
Volume 42 (1988)
-
Volume 41 (1987)
-
Volume 40 (1986)
-
Volume 39 (1985)
-
Volume 38 (1984)
-
Volume 37 (1983)
-
Volume 36 (1982)
-
Volume 35 (1981)
-
Volume 34 (1980)
-
Volume 33 (1979)
-
Volume 32 (1978)
-
Volume 31 (1977)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1974)
-
Volume 27 (1973)
-
Volume 26 (1972)
-
Volume 25 (1971)
-
Volume 24 (1970)
-
Volume 23 (1969)
-
Volume 22 (1968)
-
Volume 21 (1967)
-
Volume 20 (1966)
-
Volume 19 (1965)
-
Volume 18 (1964)
-
Volume 17 (1963)
-
Volume 16 (1962)
-
Volume 15 (1961)
-
Volume 14 (1960)
-
Volume 13 (1959)
-
Volume 12 (1958)
-
Volume 11 (1957)
-
Volume 10 (1956)
-
Volume 9 (1955)
-
Volume 8 (1954)
-
Volume 7 (1953)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
-
Volume 0 (1932)