- Home
- A-Z Publications
- Annual Review of Phytopathology
- Previous Issues
- Volume 41, 2003
Annual Review of Phytopathology - Volume 41, 2003
Volume 41, 2003
- Review Articles
-
-
-
SPIROPLASMA CITRI, A PLANT PATHOGENIC MOLLICUTE: Relationships with Its Two Hosts, the Plant and the Leafhopper Vector
Vol. 41 (2003), pp. 483–500More Less▪ AbstractSpiroplasma citri, the type species of the genus Spiroplasma (Spiroplasmataceae, Mollicutes), is restricted to the phloem sieve tubes and transmitted by phloem sap-feeding insects, as is characteristic of the phytopathogenic mollicutes. The spiroplasmas are the only mollicutes showing motility and helical morphology, apparently mediated by a contractile fibrillar cytoskeleton bound to the inner surface of the spiroplasmal membrane. MreB genes, which are involved in cell-shape determination, have been identified in S. citri. Identified genes of other functional groups are those involved in the transmission of S. citri by the leafhoppers and genes coding for lipoproteins, including spiralin, bound to the outer surface of the spiroplasma membrane. S. citri mutants that are unable to use fructose induce only mild and delayed symptoms. Fructose utilization by the sieve tube-restricted wild-type spiroplasmas is postulated to deprive the companion cells of fructose, thereby impairing sucrose loading into the sieve tubes.
-
-
-
-
PATHOGEN SELF-DEFENSE: Mechanisms to Counteract Microbial Antagonism
Vol. 41 (2003), pp. 501–538More Less▪ AbstractNatural and agricultural ecosystems harbor a wide variety of microorganisms that play an integral role in plant health, crop productivity, and preservation of multiple ecosystem functions. Interactions within and among microbial communities are numerous and range from synergistic and mutualistic to antagonistic and parasitic. Antagonistic and parasitic interactions have been exploited in the area of biological control of plant pathogenic microorganisms. To date, biocontrol is typically viewed from the perspective of how antagonists affect pathogens. This review examines the other face of this interaction: how plant pathogens respond to antagonists and how this can affect the efficacy of biocontrol. Just as microbial antagonists utilize a diverse arsenal of mechanisms to dominate interactions with pathogens, pathogens have surprisingly diverse responses to counteract antagonism. These responses include detoxification, repression of biosynthetic genes involved in biocontrol, active efflux of antibiotics, and antibiotic resistance. Understanding pathogen self-defense mechanisms for coping with antagonist assault provides a novel approach to improving the durability of biologically based disease control strategies and has implications for the deployment of transgenes (microorganisms or plants).
-
-
-
LUTEOVIRUS-APHID INTERACTIONS*
Vol. 41 (2003), pp. 539–566More Less▪ AbstractMembers of the Luteoviridae are transmitted by aphids in a circulative, nonpropagative manner that requires the virus to be acquired through gut tissue into the aphid hemocoel and then exit through salivary tissues. This process is aphid species-specific and involves specific recognition of the virus by unidentified components on the membranes of gut and salivary tissues. Transport through the tissues is an endocytosis/exocytosis process. Both structural proteins of the virus are involved in the transmission process, with multiple protein domains regulating the movement and survival of the virus in the aphid and plant. Here we review what is known about the genetic, cellular, and molecular mechanisms regulating these complex and specific virus-aphid interactions.
-
-
-
ECOLOGY AND EPIDEMIOLOGY OFBENYVIRUSESAND PLASMODIOPHORID VECTORS
Vol. 41 (2003), pp. 567–592More Less▪ AbstractBeet necrotic yellow vein virus (BNYVV) and Beet soilborne mosaic virus (BSBMV) are members of the genus Benyvirus, and Burdock mottle virus (BdMV) is a tentative member. BNYVV and BSBMV are vectored by the plasmodiophorid Polymyxa betae, which has a worldwide distribution. Polymyxa betae is morphologically indistinguishable from P. graminis, but recent molecular studies support separation of the two species. The geographic distribution of BNYVV is also worldwide, but BSBMV has been identified only in the United States. In Europe and Japan, several genotypic strains of BNYVV have been identified, and those with a fifth RNA appear to be more aggressive. No thorough survey of genotypic variability of BNYVV or BSBMV has been conducted in the United States. However, both viruses are widespread and frequently found in the same field, infecting the same beet plant. The implications of this close proximity, with regard to disease incidence and severity, and for recombination, are uncertain. Recent technological advances that permit improved detection and quantification of these viruses and their vector offer tremendous research opportunities.
-
-
-
THE POTENTIAL OF OPTICAL CANOPY MEASUREMENT FOR TARGETED CONTROL OF FIELD CROP DISEASES
Vol. 41 (2003), pp. 593–614More Less▪ AbstractThere is increasing pressure to reduce the use of pesticides in modern crop production to decrease the environmental impact of current practice and to lower production costs. It is therefore imperative that sprays are only applied when and where needed. Since diseases in fields are frequently patchy, sprays may be applied unnecessarily to disease-free areas. Disease control could be more efficient if disease patches within fields could be identified and spray applied only to the infected areas. Recent developments in optical sensor technology have the potential to enable direct detection of foliar disease under field conditions. This review assesses recent developments in the use of optical methods for detecting foliar disease, evaluates the likely benefits of spatially selective disease control in field crops, and discusses practicalities and limitations of using optical disease detection systems for crop protection in precision pest management.
-
-
-
ENGINEERING PLANTS FOR NEMATODE RESISTANCE
Vol. 41 (2003), pp. 615–639More Less▪ AbstractBiotechnology offers sustainable solutions to the problem of plant parasitic nematode control. There are several possible approaches for developing transgenic plants with improved nematode resistance; these include anti-invasion and migration strategies, feeding-cell attenuation, and antinematode feeding and development strategies. The essential elements of an effective control strategy are (a) genes that encode an antinematode effector protein, peptide or interfering RNA and (b) promoters that direct a specific pattern of expression for that effector. This review summarizes information on effectors that act directly against the nematode as well as those aimed at disrupting the nematode feeding site. We discuss patterns of promoter activity that could deliver expression of these effectors in a restricted and directed manner. Societal opposition to the technology of GM-nematode control is also discussed.
-
-
-
ESTABLISHMENT OF BIOTROPHY BY PARASITIC FUNGI AND REPROGRAMMING OF HOST CELLS FOR DISEASE RESISTANCE
Vol. 41 (2003), pp. 641–667More Less▪ AbstractParasitic biotrophs such as mildews and rusts evolved specific mechanisms that keep host cells alive during infection. These fungi appear to absorb nutrients mainly by proton-symport–driven transporter proteins that reside in specialized feeding structures. Accumulating evidence suggests that biotrophic fungi both suppress induction of plant defense responses in physical proximity to infection sites and induce specific host genes for the establishment of biotrophy. The peculiarities of biotrophic pathogenesis likely reflect diverse types of plant disease-resistance responses. The cloning of race-specific resistance genes to powdery mildew infection and of genes required for their function provides first insights into molecular mechanisms enabling the host to recognize mildew effector components and suggests candidate mechanisms of resistance signaling. Resistance to powdery mildew fungi that result from mutations in host genes promises to shed light on mechanisms that are required for the establishment of disease susceptibility.
-
Previous Volumes
-
Volume 62 (2024)
-
Volume 61 (2023)
-
Volume 60 (2022)
-
Volume 59 (2021)
-
Volume 58 (2020)
-
Volume 57 (2019)
-
Volume 56 (2018)
-
Volume 55 (2017)
-
Volume 54 (2016)
-
Volume 53 (2015)
-
Volume 52 (2014)
-
Volume 51 (2013)
-
Volume 50 (2012)
-
Volume 49 (2011)
-
Volume 48 (2010)
-
Volume 47 (2009)
-
Volume 46 (2008)
-
Volume 45 (2007)
-
Volume 44 (2006)
-
Volume 43 (2005)
-
Volume 42 (2004)
-
Volume 41 (2003)
-
Volume 40 (2002)
-
Volume 39 (2001)
-
Volume 38 (2000)
-
Volume 37 (1999)
-
Volume 36 (1998)
-
Volume 35 (1997)
-
Volume 34 (1996)
-
Volume 33 (1995)
-
Volume 32 (1994)
-
Volume 31 (1993)
-
Volume 30 (1992)
-
Volume 29 (1991)
-
Volume 28 (1990)
-
Volume 27 (1989)
-
Volume 26 (1988)
-
Volume 25 (1987)
-
Volume 24 (1986)
-
Volume 23 (1985)
-
Volume 22 (1984)
-
Volume 21 (1983)
-
Volume 20 (1982)
-
Volume 19 (1981)
-
Volume 18 (1980)
-
Volume 17 (1979)
-
Volume 16 (1978)
-
Volume 15 (1977)
-
Volume 14 (1976)
-
Volume 13 (1975)
-
Volume 12 (1974)
-
Volume 11 (1973)
-
Volume 10 (1972)
-
Volume 9 (1971)
-
Volume 8 (1970)
-
Volume 7 (1969)
-
Volume 6 (1968)
-
Volume 5 (1967)
-
Volume 4 (1966)
-
Volume 3 (1965)
-
Volume 2 (1964)
-
Volume 1 (1963)
-
Volume 0 (1932)