1932

Abstract

This article reviews recent work on surgical robots that have been used or tested in vivo, focusing on aspects related to human–robot interaction. We present the general design requirements that should be considered when developing such robots, including the clinical requirements and the technologies needed to satisfy them. We also discuss the human aspects related to the design of these robots, considering the challenges facing surgeons when using robots in the operating room, and the safety issues of such systems. We then survey recent work in seven different surgical settings: urology and gynecology, orthopedic surgery, cardiac surgery, head and neck surgery, neurosurgery, radiotherapy, and bronchoscopy. We conclude with the open problems and recommendations on how to move forward in this research area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-091219-013437
2020-05-03
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/control/3/1/annurev-control-091219-013437.html?itemId=/content/journals/10.1146/annurev-control-091219-013437&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Day B, McEwen J, Auchinlek G, McGraw R 1987. Arthrobot - the world's first surgical robot Paper presented at the 5th Congress of the International Arthroscopy Association Sydney: Apr 1–2
  2. 2. 
    Kwoh YS, Hou J, Jonckheere EA, Hayati S 1988. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans. Biomed. Eng. 35:153–60
    [Google Scholar]
  3. 3. 
    Davies B, Hibberd R, Coptcoat M, Wickham J 1989. A surgeon robot prostatectomy—a laboratory evaluation. J. Med. Eng. Technol. 13:273–77
    [Google Scholar]
  4. 4. 
    Timoney A, Ng W, Davies B, Hibberd R, Wickham J 1991. Use of robots in surgery: development of a frame for prostatectomy. J. Endourol. 5:165–68
    [Google Scholar]
  5. 5. 
    Ng W, Davies B, Hibberd R, Timoney A 1993. A first hand experience in transurethral resection of the prostate. IEEE Eng. Med. Biol. Soc. Mag. 12:1120–25
    [Google Scholar]
  6. 6. 
    Davies B. 2000. A review of robotics in surgery. Proc. Inst. Mech. Eng. H 214:129–40
    [Google Scholar]
  7. 7. 
    Paul HA, Bargar WL, Mittlestadt B, Musits B, Taylor RH et al. 1992. Development of a surgical robot for cementless total hip arthroplasty. Clin. Orthop. Relat. Res. 285:57–66
    [Google Scholar]
  8. 8. 
    US Food Drug Adm. (FDA) 2008. Summary of safety and effectiveness: K072629 Summ. Doc., FDA, Silver Spring MD: https://www.accessdata.fda.gov/cdrh_docs/pdf7/K072629.pdf
  9. 9. 
    Sackier JM, Wang Y. 1994. Robotically assisted laparoscopic surgery. Surg. Endosc. 8:63–66
    [Google Scholar]
  10. 10. 
    Unger S, Unger H, Bass R 1994. AESOP robotic arm. Surg. Endosc. 8:1131
    [Google Scholar]
  11. 11. 
    Marino MV, Shabat G, Gulotta G, Komorowski AL 2018. From illusion to reality: a brief history of robotic surgery. Surg. Innov. 25:291–96
    [Google Scholar]
  12. 12. 
    Yip M, Das N. 2017. Robot autonomy for surgery. arXiv:1707.03080 [cs.RO]
  13. 13. 
    Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D 2018. Review of emerging surgical robotic technology. Surg. Endosc. 32:1636–55
    [Google Scholar]
  14. 14. 
    Taylor RH, Menciassi A, Fichtinger G, Fiorini P, Dario P 2016. Medical robotics and computer-integrated surgery. Springer Handbook of Robotics B Siciliano, O Khatib 1657–84 Cham, Switz: Springer
    [Google Scholar]
  15. 15. 
    Aaltonen IE, Wahlström M. 2018. Envisioning robotic surgery: surgeons' needs and views on interacting with future technologies and interfaces. Int. J. Med. Robot. Comput. Assist. Surg. 14:e1941
    [Google Scholar]
  16. 16. 
    Kumar S, Sathianarayanan M, Garimella S, Singhal P, Corso JJ, Krovi V 2013. Video-analytics for enhancing safety and decision-support in surgical workflows. Proceedings of the ASME/FDA 2013 1st Annual Frontiers in Medical Devices: Applications of Computer Modeling and Simulation pap. FMD2013-16093 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  17. 17. 
    Fagogenis G, Mencattelli M, Machaidze Z, Rosa B, Price K et al. 2019. Autonomous robotic intracardiac catheter navigation using haptic vision. Sci. Robot. 4:eaaw1977
    [Google Scholar]
  18. 18. 
    Shamaei K, Che Y, Murali A, Sen S, Patil S et al. 2015. A paced shared-control teleoperated architecture for supervised automation of multilateral surgical tasks. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems1434–39 Piscataway, NJ: IEEE
    [Google Scholar]
  19. 19. 
    Zhao Y, Guo S, Wang Y, Cui J, Ma Y et al. 2019. A CNN-based prototype method of unstructured surgical state perception and navigation for an endovascular surgery robot. Med. Biol. Eng. Comput. 57:1875–87
    [Google Scholar]
  20. 20. 
    Jones JA, Swan JE II, Singh G, Kolstad E, Ellis SR 2008. The effects of virtual reality, augmented reality, and motion parallax on egocentric depth perception. Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization9–14 New York: ACM
    [Google Scholar]
  21. 21. 
    Hu D, Gong Y, Hannaford B, Seibel EJ 2015. Path planning for semi-automated simulated robotic neurosurgery. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems2639–45 Piscataway, NJ: IEEE
    [Google Scholar]
  22. 22. 
    Enayati N, De Momi E, Ferrigno G 2016. Haptics in robot-assisted surgery: challenges and benefits. IEEE Rev. Biomed. Eng. 9:49–65
    [Google Scholar]
  23. 23. 
    Okamura AM. 2009. Haptic feedback in robot-assisted minimally invasive surgery. Curr. Opin. Urol. 19:102–7
    [Google Scholar]
  24. 24. 
    Ryu J, Moon Y, Choi J, Kim HC 2018. A Kalman-filter-based common algorithm approach for object detection in surgery scene to assist surgeons situation awareness in robot-assisted laparoscopic surgery. J. Healthc. Eng. 2018:8079713
    [Google Scholar]
  25. 25. 
    Maeso S, Reza M, Mayol J, Blasco J, Guerra M et al. 2010. Efficacy of the Da Vinci Surgical System in abdominal surgery compared with that of laparoscopy: a systematic review and meta-analysis. Ann. Surg. 252:254–62
    [Google Scholar]
  26. 26. 
    Ruurda JP, Visser PL, Broeders IA 2003. Analysis of procedure time in robot-assisted surgery: comparative study in laparoscopic cholecystectomy. Comput. Aided Surg. 8:24–29
    [Google Scholar]
  27. 27. 
    Díaz CE, Fernández R, Armada M, García F 2017. A research review on clinical needs, technical requirements, and normativity in the design of surgical robots. Int. J. Med. Robot. Comput. Assist. Surg. 13:e1801
    [Google Scholar]
  28. 28. 
    Spinoglio G, Summa M, Priora F, Quarati R, Testa S 2008. Robotic colorectal surgery: first 50 cases experience. Dis. Colon Rectum 51:1627–32
    [Google Scholar]
  29. 29. 
    Simianu VV, Gaertner WB, Kuntz K, Kwaan MR, Lowry AC et al. 2019. Cost-effectiveness evaluation of laparoscopic versus robotic minimally invasive colectomy. Ann. Surg. In press. https://doi.org/10.1097/SLA.0000000000003196
    [Crossref] [Google Scholar]
  30. 30. 
    Higgins RM, Frelich MJ, Bosler ME, Gould JC 2017. Cost analysis of robotic versus laparoscopic general surgery procedures. Surg. Endosc. 31:185–92
    [Google Scholar]
  31. 31. 
    Li Z, Tong I, Metcalf L, Hennessey C, Salcudean SE 2018. Free head movement eye gaze contingent ultrasound interfaces for the da Vinci surgical system. IEEE Robot. Autom. Lett. 3:2137–43
    [Google Scholar]
  32. 32. 
    Hata N, Moreira P, Fischer G 2018. Robotics in MRI-guided interventions. Top. Magnet. Reson. Imaging 27:19–23
    [Google Scholar]
  33. 33. 
    Gras G, Yang GZ. 2019. Context-aware modeling for augmented reality display behaviour. IEEE Robot. Autom. Lett. 4:562–69
    [Google Scholar]
  34. 34. 
    Abdelaal AE, Sakr M, Avinash A, Mohammed SK, Bajwa AK et al. 2018. Play me back: a unified training platform for robotic and laparoscopic surgery. IEEE Robot. Autom. Lett. 4:554–61
    [Google Scholar]
  35. 35. 
    Pandya A, Eslamian S, Ying H, Nokleby M, Reisner LA 2019. A robotic recording and playback platform for training surgeons and learning autonomous behaviors using the da Vinci surgical system. Robotics 8:9
    [Google Scholar]
  36. 36. 
    Gao Y, Vedula SS, Reiley CE, Ahmidi N, Varadarajan B et al. 2014. JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS): a surgical activity dataset for human motion modeling Paper presented at the Fifth Workshop on Modeling and Monitoring of Computer Assisted Interventions Boston: Sept 14
  37. 37. 
    Webster RJ III, Jones BA 2010. Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 29:1661–83
    [Google Scholar]
  38. 38. 
    Kuo CH, Dai JS, Dasgupta P 2012. Kinematic design considerations for minimally invasive surgical robots: an overview. Int. J. Med. Robot. Comput. Assist. Surg. 8:127–45
    [Google Scholar]
  39. 39. 
    Stotz L, Joukhadar R, Hamza A, Thangarajah F, Bardens D et al. 2018. Instrument usage in laparoscopic gynecologic surgery: a prospective clinical trial. Arch. Gynecol. Obstet. 298:773–79
    [Google Scholar]
  40. 40. 
    Prasad SM, Prasad SM, Maniar HS, Chu C, Schuessler RB, Damiano RJ Jr 2004. Surgical robotics: impact of motion scaling on task performance. J. Am. Coll. Surg. 199:863–68
    [Google Scholar]
  41. 41. 
    Orekhov AL, Abah C, Simaan N 2019. Snake-like robots for minimally invasive, single port, and intraluminal surgeries. arXiv:1906.04852 [cs.RO]
  42. 42. 
    Simaan N, Yasin RM, Wang L 2018. Medical technologies and challenges of robot-assisted minimally invasive intervention and diagnostics. Annu. Rev. Control Robot. Auton. Syst. 1:465–90
    [Google Scholar]
  43. 43. 
    Patel N, Seneci C, Yang GZ, Darzi A, Teare J 2014. Flexible platforms for natural orifice transluminal and endoluminal surgery. Endosc. Int. Open 2:E117–23
    [Google Scholar]
  44. 44. 
    Manning TG, Perera M, Christidis D, Kinnear N, McGrath S et al. 2017. Visual occlusion during minimally invasive surgery: a contemporary review of methods to reduce laparoscopic and robotic lens fogging and other sources of optical loss. J. Endourol. 31:327–33
    [Google Scholar]
  45. 45. 
    Bogdanova R, Boulanger P, Zheng B 2016. Depth perception of surgeons in minimally invasive surgery. Surg. Innov. 23:515–24
    [Google Scholar]
  46. 46. 
    Velasquez CA, Navkar NV, Alsaied A, Balakrishnan S, Abinahed J et al. 2016. Preliminary design of an actuated imaging probe for generation of additional visual cues in a robotic surgery. Surg. Endosc. 30:2641–48
    [Google Scholar]
  47. 47. 
    Avinash A, Abdelaal AE, Mathur P, Salcudean SE 2019. A ‘pickup’ stereoscopic camera with visual-motor aligned control for the da Vinci surgical system: a preliminary study. Int. J. Comput. Assist. Radiol. Surg. 14:1197–206
    [Google Scholar]
  48. 48. 
    Conway L, Volz RA, Walker MW 1990. Teleautonomous systems: projecting and coordinating intelligent action at a distance. IEEE Trans. Robot. Autom. 6:146–58
    [Google Scholar]
  49. 49. 
    Jackson NR, Yao L, Tufano RP, Kandil EH 2014. Safety of robotic thyroidectomy approaches: meta-analysis and systematic review. Head Neck 36:137–43
    [Google Scholar]
  50. 50. 
    Taylor R, Jensen P, Whitcomb L, Barnes A, Kumar R et al. 1999. A steady-hand robotic system for microsurgical augmentation. Int. J. Robot. Res. 18:1201–10
    [Google Scholar]
  51. 51. 
    Moustris GP, Mantelos AI, Tzafestas CS 2013. Shared control for motion compensation in robotic beating heart surgery. 2013 IEEE International Conference on Robotics and Automation5819–24 Piscataway, NJ: IEEE
    [Google Scholar]
  52. 52. 
    Xiong L, Chng CB, Chui CK, Yu P, Li Y 2017. Shared control of a medical robot with haptic guidance. Int. J. Comput. Assist. Radiol. Surg. 12:137–47
    [Google Scholar]
  53. 53. 
    Power M, Rafii-Tari H, Bergeles C, Vitiello V, Yang GZ 2015. A cooperative control framework for haptic guidance of bimanual surgical tasks based on learning from demonstration. 2015 IEEE International Conference on Robotics and Automation5330–37 Piscataway, NJ: IEEE
    [Google Scholar]
  54. 54. 
    Padoy N, Hager GD. 2011. Human-machine collaborative surgery using learned models. 2011 IEEE International Conference on Robotics and Automation5285–92 Piscataway, NJ: IEEE
    [Google Scholar]
  55. 55. 
    Kaplan KE, Nichols KA, Okamura AM 2016. Toward human-robot collaboration in surgery: performance assessment of human and robotic agents in an inclusion segmentation task. 2016 IEEE International Conference on Robotics and Automation723–29 Piscataway, NJ: IEEE
    [Google Scholar]
  56. 56. 
    Netravali NA, Börner M, Bargar WL 2016. The use of ROBODOC in total hip and knee arthroplasty. Computer-Assisted Musculoskeletal Surgery L Ritacco, F Milano, E Chao 219–34 Cham, Switz: Springer
    [Google Scholar]
  57. 57. 
    Adler JR Jr, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL. 1997. The CyberKnife: a frameless robotic system for radiosurgery. Stereotact. Funct. Neurosurg. 69:124–28
    [Google Scholar]
  58. 58. 
    Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PC 2016. Supervised autonomous robotic soft tissue surgery. Sci. Transl. Med. 8:337ra64
    [Google Scholar]
  59. 59. 
    Van Den Berg J, Miller S, Duckworth D, Hu H, Wan A et al. 2010. Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations. 2010 IEEE International Conference on Robotics and Automation2074–81 Piscataway, NJ: IEEE
    [Google Scholar]
  60. 60. 
    Murali A, Sen S, Kehoe B, Garg A, McFarland S et al. 2015. Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms. 2015 IEEE International Conference on Robotics and Automation1202–9 Piscataway, NJ: IEEE
    [Google Scholar]
  61. 61. 
    Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM 2011. Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int. J. Med. Robot. Comput. Assist. Surg. 7:375–92
    [Google Scholar]
  62. 62. 
    Kehoe B, Kahn G, Mahler J, Kim J, Lee A et al. 2014. Autonomous multilateral debridement with the raven surgical robot. 2014 IEEE International Conference on Robotics and Automation1432–39 Piscataway, NJ: IEEE
    [Google Scholar]
  63. 63. 
    Sen S, Garg A, Gealy DV, McKinley S, Jen Y, Goldberg K 2016. Automating multi-throw multilateral surgical suturing with a mechanical needle guide and sequential convex optimization. 2016 IEEE International Conference on Robotics and Automation4178–85 Piscataway, NJ: IEEE
    [Google Scholar]
  64. 64. 
    US Food Drug Adm. (FDA) 2016. Applying human factors and usability engineering to medical devices: guidance for industry and Food and Drug Administration staff Guid. Doc., FDA, Silver Spring MD: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/applying-human-factors-and-usability-engineering-medical-devices
  65. 65. 
    Okamura AM. 2004. Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Robot 31:499–508
    [Google Scholar]
  66. 66. 
    Mylonas GP, Darzi A, Zhong Yang G 2006. Gaze-contingent control for minimally invasive robotic surgery. Comput. Aided Surg. 11:256–66
    [Google Scholar]
  67. 67. 
    Zinchenko K, Wu CY, Song KT 2016. A study on speech recognition control for a surgical robot. IEEE Trans. Ind. Informat. 13:607–15
    [Google Scholar]
  68. 68. 
    Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J 2015. Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbeck's Arch. Surg. 400:381–85
    [Google Scholar]
  69. 69. 
    Catchpole K, Bisantz A, Hallbeck MS, Weigl M, Randell R et al. 2019. Human factors in robotic assisted surgery: lessons from studies “in the wild.”. Appl. Ergon. 78:270–76
    [Google Scholar]
  70. 70. 
    Wahlström M, Seppänen L, Norros L, Aaltonen I, Riikonen J 2018. Resilience through interpretive practice—a study of robotic surgery. Saf. Sci. 108:113–28
    [Google Scholar]
  71. 71. 
    Randell R, Alvarado N, Honey S, Greenhalgh J, Gardner P et al. 2015. Impact of robotic surgery on decision making: perspectives of surgical teams. AMIA Annual Symposium Proceedings 20151057–66 Bethesda, MD: Am. Med. Inform. Soc.
    [Google Scholar]
  72. 72. 
    Kazanzides P. 2009. Safety design for medical robots. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society7208–11 Piscataway, NJ: IEEE
    [Google Scholar]
  73. 73. 
    Ficuciello F, Villani L, Siciliano B 2016. Impedance control of redundant manipulators for safe human-robot collaboration. Acta Polytech. Hung. 13:223–38
    [Google Scholar]
  74. 74. 
    Aghakhani N, Geravand M, Shahriari N, Vendittelli M, Oriolo G 2013. Task control with remote center of motion constraint for minimally invasive robotic surgery. 2013 IEEE International Conference on Robotics and Automation5807–12 Piscataway, NJ: IEEE
    [Google Scholar]
  75. 75. 
    Park S, Howe RD, Torchiana DF 2001. Virtual fixtures for robotic cardiac surgery. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001 WJ Niessen, MA Viergever 1419–20 Berlin: Springer
    [Google Scholar]
  76. 76. 
    DiMaio S, Hanuschik M, Kreaden U 2011. The da Vinci surgical system. Surgical Robotics J Rosen, B Hannaford, R Satava 199–217 Boston, MA: Springer
    [Google Scholar]
  77. 77. 
    Miller K, Curet M. 2019. Intuitive Surgical: an overview. Robotic-Assisted Minimally Invasive Surgery: A Comprehensive Textbook S Tsuda, OY Kudsi 3–11 Cham, Switz: Springer
    [Google Scholar]
  78. 78. 
    Roche ET, Horvath MA, Wamala I, Alazmani A, Song SE et al. 2017. Soft robotic sleeve supports heart function. Sci. Transl. Med. 9:eaaf3925
    [Google Scholar]
  79. 79. 
    Yu HY, Hevelone ND, Lipsitz SR, Kowalczyk KJ, Hu JC 2012. Use, costs and comparative effectiveness of robotic assisted, laparoscopic and open urological surgery. J. Urol. 187:1392–99
    [Google Scholar]
  80. 80. 
    Finkelstein J, Eckersberger E, Sadri H, Taneja SS, Lepor H, Djavan B 2010. Open versus laparoscopic versus robot-assisted laparoscopic prostatectomy: the European and US experience. Rev. Urol. 12:35–43
    [Google Scholar]
  81. 81. 
    Murphy D, Challacombe B, Khan MS, Dasgupta P 2006. Robotic technology in urology. Postgrad. Med. J. 82:743–47
    [Google Scholar]
  82. 82. 
    Simorov A, Otte RS, Kopietz CM, Oleynikov D 2012. Review of surgical robotics user interface: What is the best way to control robotic surgery. Surg. Endosc. 26:2117–25
    [Google Scholar]
  83. 83. 
    Ukimura O, Gill IS. 2006. Real-time transrectal ultrasound guidance during nerve sparing laparoscopic radical prostatectomy: pictorial essay. J. Urol. 175:1311–19
    [Google Scholar]
  84. 84. 
    Ukimura O, Gill IS, Desai MM, Steinberg AP, Kilciler M et al. 2004. Real-time transrectal ultrasonography during laparoscopic radical prostatectomy. J. Urol. 172:112–18
    [Google Scholar]
  85. 85. 
    Han M, Kim C, Mozer P, Schäfer F, Badaan S et al. 2011. Tandem-robot assisted laparoscopic radical prostatectomy to improve the neurovascular bundle visualization: a feasibility study. Urology 77:502–6
    [Google Scholar]
  86. 86. 
    Kim C, Schäfer F, Chang D, Petrisor D, Han M, Stoianovici D 2011. Robot for ultrasound-guided prostate imaging and intervention. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems943–48 Piscataway, NJ: IEEE
    [Google Scholar]
  87. 87. 
    Adebar T, Salcudean S, Mahdavi S, Moradi M, Nguan C, Goldenberg L 2011. A robotic system for intra-operative trans-rectal ultrasound and ultrasound elastography in radical prostatectomy. Information Processing in Computer-Assisted Interventions RH Taylor, GZ Yang 79–89 Berlin: Springer
    [Google Scholar]
  88. 88. 
    Mohareri O, Nir G, Lobo J, Savdie R, Black P, Salcudean S 2015. A system for MR-ultrasound guidance during robot-assisted laparoscopic radical prostatectomy. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 N Navab, J Hornegger, W Wells, A Frangi 497–504 Cham, Switz: Springer
    [Google Scholar]
  89. 89. 
    Samei G, Tsang K, Lobo J, Kesch C, Chang S et al. 2018. Fused MRI-ultrasound augmented-reality guidance system for robot-assisted laparoscopic radical prostatectomy. Hamlyn Symposium on Medical Robotics79–80 London: Hamlyn Cent., Imp. Coll. London
    [Google Scholar]
  90. 90. 
    Fütterer JJ, Briganti A, De Visschere P, Emberton M, Giannarini G et al. 2015. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur. Urol. 68:1045–53
    [Google Scholar]
  91. 91. 
    Porpiglia F, Checcucci E, Amparore D, Autorino R, Piana A et al. 2019. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D™) technology: a radiological and pathological study. BJU Int 123:834–45
    [Google Scholar]
  92. 92. 
    Porpiglia F, Checcucci E, Amparore D, Manfredi M, Massa F et al. 2019. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur. Urol. 76:505–14
    [Google Scholar]
  93. 93. 
    van den Haak L, Alleblas C, Nieboer TE, Rhemrev JP, Jansen FW 2015. Efficacy and safety of uterine manipulators in laparoscopic surgery: a review. Arch. Gynecol. Obstet. 292:1003–11
    [Google Scholar]
  94. 94. 
    Long JA, Tostain J, Lanchon C, Voros S, Medici M et al. 2013. First clinical experience in urologic surgery with a novel robotic lightweight laparoscope holder. J. Endourol. 27:58–63
    [Google Scholar]
  95. 95. 
    Akrivos N, Barton-Smith P. 2013. A pilot study of robotic uterine and vaginal vault manipulation: the ViKY Uterine Positioner™. J. Robot. Surg. 7:371–75
    [Google Scholar]
  96. 96. 
    Gosrisirikul C, Don Chang K, Raheem AA, Rha KH 2018. New era of robotic surgical systems. Asian J. Endosc. Surg. 11:291–99
    [Google Scholar]
  97. 97. 
    deBeche Adams T, Eubanks WS, Sebastian G 2019. Early experience with the Senhance®-laparoscopic/robotic platform in the US. J. Robot. Surg. 13:357–59
    [Google Scholar]
  98. 98. 
    Gilling P, Reuther R, Kahokehr A, Fraundorfer M 2016. Aquablation – image-guided robot-assisted waterjet ablation of the prostate: initial clinical experience. BJU Int 117:923–29
    [Google Scholar]
  99. 99. 
    Desai M, Bidair M, Bhojani N, Trainer A, Arther A et al. 2019. WATER II (80–150 mL) procedural outcomes. BJU Int 123:106–12
    [Google Scholar]
  100. 100. 
    Hendrick RJ, Mitchell CR, Herrell SD, Webster RJ III 2015. Hand-held transendoscopic robotic manipulators: a transurethral laser prostate surgery case study. Int. J. Robot. Res. 34:1559–72
    [Google Scholar]
  101. 101. 
    Yu F, Li L, Teng H, Shi D, Jiang Q 2018. Robots in orthopedic surgery. Ann. Joint 3:15
    [Google Scholar]
  102. 102. 
    Chen AF, Kazarian GS, Jessop GW, Makhdom A 2018. Robotic technology in orthopaedic surgery. J. Bone Joint Surg. 100:1984–92
    [Google Scholar]
  103. 103. 
    Jacofsky DJ, Allen M. 2016. Robotics in arthroplasty: a comprehensive review. J. Arthroplasty 31:2353–63
    [Google Scholar]
  104. 104. 
    Zheng G, Nolte LP. 2015. Computer-assisted orthopedic surgery: current state and future perspective. Front. Surg. 2:66
    [Google Scholar]
  105. 105. 
    Lin EL, Park DK, Whang PG, An HS, Phillips FM 2008. O-arm surgical imaging system. Semin. Spine Surg. 20:209–13
    [Google Scholar]
  106. 106. 
    Liow MHL, Chin PL, Pang HN, Tay DKJ, Yeo SJ 2017. THINK surgical TSolution-One® (Robodoc) total knee arthroplasty. SICOT J 3:63
    [Google Scholar]
  107. 107. 
    Bargar WL, Netravali NA. 2019. Total hip arthroplasty technique: TSolution One. Robotics in Knee and Hip Arthroplasty J Lonner 219–24 Cham, Switz: Springer
    [Google Scholar]
  108. 108. 
    Runciman M, Darzi A, Mylonas GP 2019. Soft robotics in minimally invasive surgery. Soft Robot 6:42343
    [Google Scholar]
  109. 109. 
    Schuler PJ, Duvvuri U, Friedrich DT, Rotter N, Scheithauer MO, Hoffmann TK 2015. First use of a computer-assisted operator-controlled flexible endoscope for transoral surgery. Laryngoscope 125:645–48
    [Google Scholar]
  110. 110. 
    Friedrich DT, Scheithauer MO, Greve J, Duvvuri U, Sommer F et al. 2015. Potential advantages of a single-port, operator-controlled flexible endoscope system for transoral surgery of the larynx. Ann. Otol. Rhinol. Laryngol. 124:655–62
    [Google Scholar]
  111. 111. 
    Schuler PJ, Hoffmann TK, Duvvuri U, Rotter N, Greve J, Scheithauer MO 2016. Demonstration of nasopharyngeal surgery with a single port operator-controlled flexible endoscope system. Head Neck 38:370–74
    [Google Scholar]
  112. 112. 
    Friedrich DT, Scheithauer MO, Greve J, Hoffmann TK, Schuler PJ 2017. Recent advances in robot-assisted head and neck surgery. Int. J. Med. Robot. Comput. Assist. Surg. 13:e1744
    [Google Scholar]
  113. 113. 
    O'Malley BW Jr, Weinstein GS, Snyder W, Hockstein NG. 2006. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 116:1465–72
    [Google Scholar]
  114. 114. 
    Rivera-Serrano CM, Johnson P, Zubiate B, Kuenzler R, Choset H et al. 2012. A transoral highly flexible robot: novel technology and application. Laryngoscope 122:1067–71
    [Google Scholar]
  115. 115. 
    Remacle M, Prasad V, Lawson G, Plisson L, Bachy V, Van der Vorst S 2015. Transoral robotic surgery (TORS) with the Medrobotics Flex system: first surgical application on humans. Eur. Arch. Oto-Rhino-Laryngol. 272:1451–55
    [Google Scholar]
  116. 116. 
    Schuler P, Scheithauer M, Rotter N, Veit J, Duvvuri U, Hoffmann T 2015. A single-port operator-controlled flexible endoscope system for endoscopic skull base surgery. HNO 63:189–94
    [Google Scholar]
  117. 117. 
    Varma T, Eldridge P. 2006. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int. J. Med. Robot. Comput. Assist. Surg. 2:107–13
    [Google Scholar]
  118. 118. 
    Smith JA, Jivraj J, Wong R, Yang V 2016. 30 years of neurosurgical robots: review and trends for manipulators and associated navigational systems. Ann. Biomed. Eng. 44:836–46
    [Google Scholar]
  119. 119. 
    Sutherland GR, Wolfsberger S, Lama S, Zarei-nia K 2013. The evolution of neuroArm. Neurosurgery 72:A27–32
    [Google Scholar]
  120. 120. 
    Leksell L. 1983. Stereotactic radiosurgery. J. Neurol. Neurosurg. Psychiatry 46:797–803
    [Google Scholar]
  121. 121. 
    Troccaz J, Dagnino G, Yang GZ 2019. Frontiers of medical robotics: from concept to systems to clinical translation. Annu. Rev. Biomed. Eng. 21:193–218
    [Google Scholar]
  122. 122. 
    Dieterich S, Gibbs I. 2011. The CyberKnife in clinical use: current roles, future expectations. Front. Radiat. Ther. Oncol. 43:181–94
    [Google Scholar]
  123. 123. 
    Ho AK, Fu D, Cotrutz C, Hancock SL, Chang SD et al. 2007. A study of the accuracy of CyberKnife spinal radiosurgery using skeletal structure tracking. Oper. Neurosurg. 60:ONS147–56
    [Google Scholar]
  124. 124. 
    Devlin PM. 2015. Brachytherapy: Applications and Techniques New York: Springer, 2nd ed..
  125. 125. 
    Hungr N, Baumann M, Long JA, Troccaz J 2012. A 3-D ultrasound robotic prostate brachytherapy system with prostate motion tracking. IEEE Trans. Robot. 28:1382–97
    [Google Scholar]
  126. 126. 
    Bolliger CT, Mathur PN 2000. Interventional Bronchoscopy Basel, Switz: Karger
  127. 127. 
    Mehta AC, Hood KL, Schwarz Y, Solomon SB 2018. The evolutional history of electromagnetic navigation bronchoscopy: state of the art. Chest 154:935–47
    [Google Scholar]
  128. 128. 
    Muñoz-Largacha JA, Litle VR, Fernando HC 2017. Navigation bronchoscopy for diagnosis and small nodule location. J. Thorac. Dis. 9:S98–103
    [Google Scholar]
  129. 129. 
    Bowling MR, Anciano CJ. 2017. Updates in advanced diagnostic bronchoscopy: electromagnetic navigational bronchoscopy chasing the solitary pulmonary nodule. Clin. Pulm. Med. 24:60–65
    [Google Scholar]
  130. 130. 
    Murgu SD. 2019. Robotic assisted-bronchoscopy: technical tips and lessons learned from the initial experience with sampling peripheral lung lesions. BMC Pulm. Med. 19:89
    [Google Scholar]
  131. 131. 
    Wong JY, Ho KY. 2018. Robotics for advanced therapeutic colonoscopy. Clin. Endosc. 51:552–57
    [Google Scholar]
  132. 132. 
    Krimsky WS, Pritchett MA, Lau KK 2018. Towards an optimization of bronchoscopic approaches to the diagnosis and treatment of the pulmonary nodules: a review. J. Thorac. Dis. 10:S1637–44
    [Google Scholar]
  133. 133. 
    Fielding D, Bashirzadeh F, Son JH, Todman M, Tan H et al. 2017. First human use of a new robotic-assisted navigation system for small peripheral pulmonary nodules demonstrates good safety profile and high diagnostic yield. Chest 152:A858
    [Google Scholar]
  134. 134. 
    Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L et al. 2018. The grand challenges of science robotics. Sci. Robot. 3:eaar7650
    [Google Scholar]
  135. 135. 
    Lazar JF. 2018. Envisioning the future of robotic surgery: the surgeon's perspective. Ann. Thorac. Surg. 105:343–44
    [Google Scholar]
  136. 136. 
    Yang GZ, Cambias J, Cleary K, Daimler E, Drake J et al. 2017. Medical robotics—regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci. Robot. 2:eaam8638
    [Google Scholar]
  137. 137. 
    Pandya A, Reisner L, King B, Lucas N, Composto A et al. 2014. A review of camera viewpoint automation in robotic and laparoscopic surgery. Robotics 3:310–29
    [Google Scholar]
  138. 138. 
    Damian DD, Price K, Arabagi S, Berra I, Machaidze Z et al. 2018. In vivo tissue regeneration with robotic implants. Sci. Robot. 3:eaaq0018
    [Google Scholar]
  139. 139. 
    Iacovacci V, Ricotti L, Dario P, Menciassi A 2014. Design and development of a mechatronic system for noninvasive refilling of implantable artificial pancreas. IEEE/ASME Trans. Mechatron. 20:1160–69
    [Google Scholar]
  140. 140. 
    Fischer K, Weigelin HM, Bodenhagen L 2018. Increasing trust in human–robot medical interactions: effects of transparency and adaptability. Paladyn 9:95–109
    [Google Scholar]
  141. 141. 
    Salem M, Lakatos G, Amirabdollahian F, Dautenhahn K 2015. Towards safe and trustworthy social robots: ethical challenges and practical issues. International Conference on Social Robotics A Tapus, E André, JC Martin, F Ferland, M Ammi 584–93 Cham, Switz: Springer
    [Google Scholar]
  142. 142. 
    Kazanzides P, Chen Z, Deguet A, Fischer GS, Taylor RH, DiMaio SP 2014. An open-source research kit for the da Vinci® surgical system. 2014 IEEE International Conference on Robotics and Automation6434–39 Piscataway, NJ: IEEE
    [Google Scholar]
  143. 143. 
    Hannaford B, Rosen J, Friedman DW, King H, Roan P et al. 2012. Raven-II: an open platform for surgical robotics research. IEEE Trans. Biomed. Eng. 60:954–59
    [Google Scholar]
  144. 144. 
    Hagn U, Konietschke R, Tobergte A, Nickl M, Jörg S et al. 2010. DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int. J. Comput. Assist. Radiol. Surg. 5:183–93
    [Google Scholar]
  145. 145. 
    Nichols KA, Okamura AM. 2015. A framework for multilateral manipulation in surgical tasks. IEEE Trans. Autom. Sci. Eng. 13:68–77
    [Google Scholar]
  146. 146. 
    Cubrich L, Reichenbach MA, Carlson JD, Pracht A, Terry B et al. 2016. A four-DOF laparo-endoscopic single site platform for rapidly-developing next-generation surgical robotics. J. Med. Robot. Res. 1:1650006
    [Google Scholar]
  147. 147. 
    Enayati N, Okamura AM, Mariani A, Pellegrini E, Coad MM et al. 2018. Robotic assistance-as-needed for enhanced visuomotor learning in surgical robotics training: an experimental study. 2018 IEEE International Conference on Robotics and Automation6631–36 Piscataway, NJ: IEEE
    [Google Scholar]
  148. 148. 
    Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R et al. 2017. Surgical data science for next-generation interventions. Nat. Biomed. Eng. 1:691–96
    [Google Scholar]
  149. 149. 
    Ahmidi N, Tao L, Sefati S, Gao Y, Lea C et al. 2017. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans. Biomed. Eng. 64:2025–41
    [Google Scholar]
/content/journals/10.1146/annurev-control-091219-013437
Loading
/content/journals/10.1146/annurev-control-091219-013437
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error