1932

Abstract

The direct targeting of chromatin-associated proteins is increasingly recognized as a potential therapeutic strategy for the treatment of cancer. In this review, we discuss a prominent example, namely, small-molecule inhibitors that target the menin–KMT2A interaction. These molecules are currently being investigated in clinical trials and showing significant promise. We describe the unique specificity of menin–KMT2A protein complexes for the transcriptional regulation of a small subset of genes that drive developmental and leukemic gene expression. We review the chromatin-associated KMT2A complex and the protein–protein interaction between menin and KMT2A that is essential for the maintenance of different types of cancer cells, but most notably acute myeloid leukemia (AML). We also summarize the development of menin inhibitors and their effects on chromatin. Finally, we discuss the promising early results from clinical trials in patients with AML and the recent discovery of therapy-resistant menin mutants that validate menin as a therapeutic target but also may present therapeutic challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062822-021934
2024-06-12
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062822-021934.html?itemId=/content/journals/10.1146/annurev-cancerbio-062822-021934&mimeType=html&fmt=ahah

Literature Cited

  1. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, et al. 2002.. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. . Nat. Genet. 30::4147
    [Crossref] [Google Scholar]
  2. Aubrey BJ, Cutler JA, Bourgeois W, Donovan KA, Gu S, et al. 2022.. IKAROS and MENIN coordinate therapeutically actionable leukemogenic gene expression in MLL-r acute myeloid leukemia. . Nat. Cancer 3::595613
    [Crossref] [Google Scholar]
  3. Bai H, Zhang S-Q, Lei H, Wang F, Ma M, Xin M. 2022.. Menin-MLL protein-protein interaction inhibitors: a patent review (2014–2021). . Expert Opin. Ther. Pat. 32::50722
    [Crossref] [Google Scholar]
  4. Bergman L, Teh B, Cardinal J, Palmer J, Walters M, et al. 2000.. Identification of MEN1 gene mutations in families with MEN 1 and related disorders. . Br. J. Cancer 83::100914
    [Crossref] [Google Scholar]
  5. Bertolino P, Radovanovic I, Casse H, Aguzzi A, Wang Z-Q, Zhang C-X. 2003.. Genetic ablation of the tumor suppressor menin causes lethality at mid-gestation with defects in multiple organs. . Mech. Dev. 120::54960
    [Crossref] [Google Scholar]
  6. Borkin D, He S, Miao H, Kempinska K, Pollock J, et al. 2015.. Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. . Cancer Cell 27::589602
    [Crossref] [Google Scholar]
  7. Bradner JE, Hnisz D, Young RA. 2017.. Transcriptional addiction in cancer. . Cell 168::62943
    [Crossref] [Google Scholar]
  8. Brzezinka K, Nevedomskaya E, Lesche R, Haegebarth A, Ter Laak A, et al. 2020.. Characterization of the Menin-MLL interaction as therapeutic cancer target. . Cancers 12::201
    [Crossref] [Google Scholar]
  9. Butler T, Li W, Law B, Archer T, Kinoshita T, Somanath P. 2022.. 851-P: Oral long-acting menin inhibitor normalizes type 2 diabetes mellitus (T2DM) in two rat models. . Diabetes 71::851-P
    [Crossref] [Google Scholar]
  10. Carter BZ, Tao W, Mak PY, Ostermann LB, Mak D, et al. 2021.. Menin inhibition decreases Bcl-2 and synergizes with venetoclax in NPM1/FLT3-mutated AML. . Blood 138::163741
    [Crossref] [Google Scholar]
  11. Caslini C, Yang Z, El-Osta M, Milne TA, Slany RK, Hess JL. 2007.. Interaction of MLL amino terminal sequences with menin is required for transformation. . Cancer Res. 67::727583
    [Crossref] [Google Scholar]
  12. Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, et al. 1997.. Positional cloning of the gene for multiple endocrine neoplasia-type 1. . Science 276::4047
    [Crossref] [Google Scholar]
  13. Chang P-Y, Hom RA, Musselman CA, Zhu L, Kuo A, et al. 2010.. Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription. . J. Mol. Biol. 400::13744
    [Crossref] [Google Scholar]
  14. Chen J, Zhao L, Peng H, Dai S, Quan Y, et al. 2021.. An organoid-based drug screening identified a menin-MLL inhibitor for endometrial cancer through regulating the HIF pathway. . Cancer Gene Ther. 28::11225
    [Crossref] [Google Scholar]
  15. Cherif C, Nguyen DT, Paris C, Le TK, Sefiane T, et al. 2022.. Menin inhibition suppresses castration-resistant prostate cancer and enhances chemosensitivity. . Oncogene 41::12537
    [Crossref] [Google Scholar]
  16. Corbo V, Dalai I, Scardoni M, Barbi S, Beghelli S, et al. 2010.. MEN1 in pancreatic endocrine tumors: Analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. . Endocr. Relat. Cancer 17::77183
    [Crossref] [Google Scholar]
  17. DiNardo KW, LeBlanc TW, Chen H. 2023.. Novel agents and regimens in acute myeloid leukemia: latest updates from 2022 ASH Annual Meeting. . J. Hematol. Oncol. 16::17
    [Crossref] [Google Scholar]
  18. Dreijerink KMA, Groner AC, Vos ESM, Font-Tello A, Gu L, et al. 2017.. Enhancer-mediated oncogenic function of the menin tumor suppressor in breast cancer. . Cell Rep. 18::235972
    [Crossref] [Google Scholar]
  19. El Ashkar S, Schwaller J, Pieters T, Goossens S, Demeulemeester J, et al. 2018.. LEDGF/p75 is dispensable for hematopoiesis but essential for MLL-rearranged leukemogenesis. . Blood 131::95107
    [Google Scholar]
  20. Erb MA, Scott TG, Li BE, Xie H, Paulk J, et al. 2017.. Transcription control by the ENL YEATS domain in acute leukaemia. . Nature 543::27074
    [Crossref] [Google Scholar]
  21. Fiskus W, Boettcher S, Daver N, Mill CP, Sasaki K, et al. 2022a.. Effective Menin inhibitor-based combinations against AML with MLL rearrangement or NPM1 mutation (NPM1c). . Blood Cancer J. 12::5
    [Crossref] [Google Scholar]
  22. Fiskus W, Daver N, Boettcher S, Mill CP, Sasaki K, et al. 2022b.. Activity of menin inhibitor ziftomenib (KO-539) as monotherapy or in combinations against AML cells with MLL1 rearrangement or mutant NPM1. . Leukemia 36::272933
    [Crossref] [Google Scholar]
  23. Fontanière S, Duvillié B, Scharfmann R, Carreira C, Wang Z-Q, Zhang C-X. 2008.. Tumour suppressor menin is essential for development of the pancreatic endocrine cells. . J. Endocrinol. 199::28798
    [Crossref] [Google Scholar]
  24. Ganzel C, Sun Z, Cripe LD, Fernandez HF, Douer D, et al. 2018.. Very poor long-term survival in past and more recent studies for relapsed AML patients: the ECOG-ACRIN experience. . Am. J. Hematol. 93::107481
    [Crossref] [Google Scholar]
  25. Gough SM, Slape CI, Aplan PD. 2011.. NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. . Blood 118::624757
    [Crossref] [Google Scholar]
  26. Grembecka J, Belcher AM, Hartley T, Cierpicki T. 2010.. Molecular basis of the mixed lineage leukemia-menin interaction: implications for targeting mixed lineage leukemias. . J. Biol. Chem. 285::4069098
    [Crossref] [Google Scholar]
  27. Grembecka J, He S, Shi A, Purohit T, Muntean AG, et al. 2012.. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. . Nat. Chem. Biol. 8::27784
    [Crossref] [Google Scholar]
  28. He S, Senter TJ, Pollock J, Han C, Upadhyay SK, et al. 2014.. High-affinity small-molecule inhibitors of the menin-mixed lineage leukemia (MLL) interaction closely mimic a natural protein-protein interaction. . J. Med. Chem. 57::154356
    [Crossref] [Google Scholar]
  29. Heikamp EB, Henrich JA, Perner F, Wong EM, Hatton C, et al. 2022.. The menin-MLL1 interaction is a molecular dependency in NUP98-rearranged AML. . Blood 139::894906
    [Crossref] [Google Scholar]
  30. Hemming ML, Benson MR, Loycano MA, Anderson JA, Andersen JL, et al. 2022.. MOZ and Menin-MLL complexes are complementary regulators of chromatin association and transcriptional output in gastrointestinal stromal tumor. . Cancer Discov. 12::180423
    [Crossref] [Google Scholar]
  31. Heuser M, Yun H, Berg T, Yung E, Argiropoulos B, et al. 2011.. Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex. . Cancer Cell 20::3952
    [Crossref] [Google Scholar]
  32. Huang J, Gurung B, Wan B, Wan K, Hua X, Lei M. 2012.. The same pocket in menin binds both MLL and JunD, but oppositely regulates transcription. . Nature 482::54246
    [Crossref] [Google Scholar]
  33. Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, et al. 2004.. Menin associates with a trithorax family histone methyltransferase complex and with the Hoxc8 locus. . Mol. Cell 13::58797
    [Crossref] [Google Scholar]
  34. Issa GC, Aldoss I, DiPersio J, Cuglievan B, Stone R, et al. 2023.. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. . Nature 615::92024
    [Crossref] [Google Scholar]
  35. Kempinska K, Malik B, Borkin D, Klossowski S, Shukla S, et al. 2018.. Pharmacologic inhibition of the menin-MLL interaction leads to transcriptional repression of PEG10 and blocks hepatocellular carcinoma. . Mol. Cancer Ther. 17::2638
    [Crossref] [Google Scholar]
  36. Kerry J, Godfrey L, Repapi E, Tapia M, Blackledge NP, et al. 2017.. MLL-AF4 spreading identifies binding sites that are distinct from super-enhancers and that govern sensitivity to DOT1L inhibition in leukemia. . Cell Rep. 18::48295
    [Crossref] [Google Scholar]
  37. Klossowski S, Miao H, Kempinska K, Wu T, Purohit T, et al. 2020.. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. . J. Clin. Investig. 130::98197
    [Crossref] [Google Scholar]
  38. Krivtsov AV, Evans K, Gadrey JY, Eschle BK, Hatton C, et al. 2019.. A Menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. . Cancer Cell 36::66073.e11
    [Crossref] [Google Scholar]
  39. Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, et al. 2008.. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. . Cancer Cell 14::35568
    [Crossref] [Google Scholar]
  40. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G. 1998.. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. . EMBO J. 17::371425
    [Crossref] [Google Scholar]
  41. Kühn MWM, Song E, Feng Z, Sinha A, Chen C-W, et al. 2016.. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia. . Cancer Discov. 6::116681
    [Crossref] [Google Scholar]
  42. La P, Silva AC, Hou Z, Wang H, Schnepp RW, et al. 2004.. Direct binding of DNA by tumor suppressor menin. . J. Biol. Chem. 279::4904554
    [Crossref] [Google Scholar]
  43. Lebert-Ghali C-É, Fournier M, Kettyle L, Thompson A, Sauvageau G, Bijl JJ. 2016.. Hoxa cluster genes determine the proliferative activity of adult mouse hematopoietic stem and progenitor cells. . Blood 127::8790
    [Crossref] [Google Scholar]
  44. Lei H, Zhang S-Q, Fan S, Bai H-R, Zhao H-Y, et al. 2021.. Recent progress of small molecule menin-MLL interaction inhibitors as therapeutic agents for acute leukemia. . J. Med. Chem. 64::1551933
    [Crossref] [Google Scholar]
  45. Li X, Song Y. 2021.. Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins. . J. Hematol. Oncol. 14::56
    [Crossref] [Google Scholar]
  46. Linhares BM, Grembecka J, Cierpicki T. 2020.. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. . Future Med. Chem. 12::130526
    [Crossref] [Google Scholar]
  47. Maillard I, Chen Y-X, Friedman A, Yang Y, Tubbs AT, et al. 2009.. Menin regulates the function of hematopoietic stem cells and lymphoid progenitors. . Blood 113::166169
    [Crossref] [Google Scholar]
  48. Malik R, Khan AP, Asangani IA, Cieślik M, Prensner JR, et al. 2015.. Targeting the MLL complex in castration resistant prostate cancer. . Nat. Med. 21::34452
    [Crossref] [Google Scholar]
  49. Mele C, Mencarelli M, Caputo M, Mai S, Pagano L, et al. 2020.. Phenotypes associated with MEN1 syndrome: a focus on genotype-phenotype correlations. . Front. Endocrinol. 11::591501
    [Crossref] [Google Scholar]
  50. Meyer C, Larghero P, Almeida Lopes B, Burmeister T, Gröger D, et al. 2023.. The KMT2A recombinome of acute leukemias in 2023. . Leukemia 37::9881005
    [Crossref] [Google Scholar]
  51. Michaud J, Praz V, Faresse NJ, JnBaptiste CK, Tyagi S, et al. 2013.. HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy. . Genome Res. 23::90716
    [Crossref] [Google Scholar]
  52. Milne TA, Hughes CM, Lloyd R, Yang Z, Rozenblatt-Rosen O, et al. 2005.. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. . PNAS 102::74954
    [Crossref] [Google Scholar]
  53. Murai MJ, Chruszcz M, Reddy G, Grembecka J, Cierpicki T. 2011.. Crystal structure of menin reveals binding site for mixed lineage leukemia (MLL) protein. . J. Biol. Chem. 286::3174248
    [Crossref] [Google Scholar]
  54. Murai MJ, Pollock J, He S, Miao H, Purohit T, et al. 2014.. The same site on the integrase-binding domain of lens epithelium-derived growth factor is a therapeutic target for MLL leukemia and HIV. . Blood 124::373037
    [Crossref] [Google Scholar]
  55. Nabet B, Roberts JM, Buckley DL, Paulk J, Dastjerdi S, et al. 2018.. The dTAG system for immediate and target-specific protein degradation. . Nat. Chem. Biol. 14::43141
    [Crossref] [Google Scholar]
  56. Olsen SN, Godfrey L, Healy JP, Choi YA, Kai Y, et al. 2022.. MLL::AF9 degradation induces rapid changes in transcriptional elongation and subsequent loss of an active chromatin landscape. . Mol. Cell 82::114055.e11
    [Crossref] [Google Scholar]
  57. Ozyerli-Goknar E, Nizamuddin S, Timmers HTM. 2021.. A box of chemistry to inhibit the MEN1 tumor suppressor gene promoting leukemia. . ChemMedChem 16::1391402
    [Crossref] [Google Scholar]
  58. Palmer AC, Chidley C, Sorger PK. 2019.. A curative combination cancer therapy achieves high fractional cell killing through low cross-resistance and drug additivity. . eLife 8::e50036
    [Crossref] [Google Scholar]
  59. Parker JB, Yin H, Vinckevicius A, Chakravarti D. 2014.. Host cell factor-1 recruitment to E2F-bound and cell-cycle-control genes is mediated by THAP11 and ZNF143. . Cell Rep. 9::96782
    [Crossref] [Google Scholar]
  60. Pascual-Garcia P, Jeong J, Capelson M. 2014.. Nucleoporin Nup98 associates with Trx/MLL and NSL histone-modifying complexes and regulates Hox gene expression. . Cell Rep. 9::43342
    [Crossref] [Google Scholar]
  61. Perner F, Stein EM, Wenge D, Singh S, Kim J, et al. 2023.. MEN1 mutations mediate clinical resistance to menin inhibition. . Nature 615::91319
    [Crossref] [Google Scholar]
  62. Ranieri R, Pianigiani G, Sciabolacci S, Perriello VM, Marra A, et al. 2022.. Current status and future perspectives in targeted therapy of NPM1-mutated AML. . Leukemia 36::235167
    [Crossref] [Google Scholar]
  63. Salvati A, Melone V, Sellitto A, Rizzo F, Tarallo R, et al. 2022.. Combinatorial targeting of a chromatin complex comprising Dot1L, menin and the tyrosine kinase BAZ1B reveals a new therapeutic vulnerability of endocrine therapy-resistant breast cancer. . Breast Cancer Res. 24::52
    [Crossref] [Google Scholar]
  64. Scacheri PC, Crabtree JS, Kennedy AL, Swain GP, Ward JM, et al. 2004.. Homozygous loss of menin is well tolerated in liver, a tissue not affected in MEN1. . Mamm. Genome 15::87277
    [Crossref] [Google Scholar]
  65. Schnepp RW, Chen Y-X, Wang H, Cash T, Silva A, et al. 2006.. Mutation of tumor suppressor gene Men1 acutely enhances proliferation of pancreatic islet cells. . Cancer Res. 66::570715
    [Crossref] [Google Scholar]
  66. Schuettengruber B, Bourbon H-M, Di Croce L, Cavalli G. 2017.. Genome regulation by Polycomb and Trithorax: 70 years and counting. . Cell 171::3457
    [Crossref] [Google Scholar]
  67. Shi A, Murai MJ, He S, Lund G, Hartley T, et al. 2012.. Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia. . Blood 120::446169
    [Crossref] [Google Scholar]
  68. Soto-Feliciano YM, Sánchez-Rivera FJ, Perner F, Barrows DW, Kastenhuber ER, . 2023.. A molecular switch between mammalian MLL complexes dictates response to menin-MLL inhibition. . Cancer Discov. 13::14669
    [Crossref] [Google Scholar]
  69. Sowa H, Kaji H, Canaff L, Hendy GN, Tsukamoto T, et al. 2003.. Inactivation of menin, the product of the multiple endocrine neoplasia type 1 gene, inhibits the commitment of multipotential mesenchymal stem cells into the osteoblast lineage. . J. Biol. Chem. 278::2105869
    [Crossref] [Google Scholar]
  70. Sparbier CE, Gillespie A, Gomez J, Kumari N, Motazedian A, et al. 2023.. Targeting Menin disrupts the KMT2A/B and polycomb balance to paradoxically activate bivalent genes. . Nat. Cell Biol. 25::25872
    [Google Scholar]
  71. Spencer DH, Russler-Germain DA, Ketkar-Kulkarni S, Helton NM, Lamprecht TL, et al. 2017.. CpG island hypermethylation mediated by DNMT3A is a consequence of AML progression. . Cell 168::80116.e13
    [Crossref] [Google Scholar]
  72. Spencer DH, Young MA, Lamprecht TL, Helton NM, Fulton R, et al. 2015.. Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells. . Leukemia 29::127989
    [Crossref] [Google Scholar]
  73. Turlure F, Maertens G, Rahman S, Cherepanov P, Engelman A. 2006.. A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo. . Nucleic Acids Res. 34::165365
    [Crossref] [Google Scholar]
  74. Uchino S, Noguchi S, Sato M, Yamashita H, Yamashita H, et al. 2000.. Screening of the MEN1 gene and discovery of germ-line and somatic mutations in apparently sporadic parathyroid tumors. . Cancer Res. 60::555357
    [Google Scholar]
  75. Uckelmann HJ, Haarer EL, Takeda R, Wong EM, Hatton C, et al. 2023.. Mutant NPM1 directly regulates oncogenic transcription in acute myeloid leukemia. . Cancer Discov. 13::74665
    [Crossref] [Google Scholar]
  76. Uckelmann HJ, Kim SM, Wong EM, Hatton C, Giovinazzo H, et al. 2020.. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. . Science 367::58690
    [Crossref] [Google Scholar]
  77. Unnisa Z, Clark JP, Roychoudhury J, Thomas E, Tessarollo L, et al. 2012.. Meis1 preserves hematopoietic stem cells in mice by limiting oxidative stress. . Blood 120::497381
    [Crossref] [Google Scholar]
  78. van Nuland R, Smits AH, Pallaki P, Jansen PWTC, Vermeulen M, Timmers HTM. 2013.. Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes. . Mol. Cell. Biol. 33::206777
    [Crossref] [Google Scholar]
  79. Wang GG, Cai L, Pasillas MP, Kamps MP. 2007.. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. . Nat. Cell Biol. 9::80412
    [Crossref] [Google Scholar]
  80. Wang P, Lin C, Smith ER, Guo H, Sanderson BW, et al. 2009.. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. . Mol. Cell. Biol. 29::607485
    [Crossref] [Google Scholar]
  81. Wang Z, Song J, Milne TA, Wang GG, Li H, et al. 2010.. Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. . Cell 141::118394
    [Crossref] [Google Scholar]
  82. Wells JA, McClendon CL. 2007.. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. . Nature 450::10019
    [Crossref] [Google Scholar]
  83. Wu Y, Doepner M, Hojnacki T, Feng Z, Katona BW, et al. 2019.. Disruption of the menin-MLL interaction triggers menin protein degradation via ubiquitin-proteasome pathway. . Am. J. Cancer Res. 9::168294
    [Google Scholar]
  84. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, et al. 2005.. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. . Nature 434::33845
    [Crossref] [Google Scholar]
  85. Xu H, Valerio DG, Eisold ME, Sinha A, Koche RP, et al. 2016.. NUP98 fusion proteins interact with the NSL and MLL1 complexes to drive leukemogenesis. . Cancer Cell 30::86378
    [Crossref] [Google Scholar]
  86. Yokoyama A, Cleary ML. 2008.. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. . Cancer Cell 14::3646
    [Crossref] [Google Scholar]
  87. Yokoyama A, Lin M, Naresh A, Kitabayashi I, Cleary ML. 2010.. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. . Cancer Cell 17::198212
    [Crossref] [Google Scholar]
  88. Yokoyama A, Somervaille TCP, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. 2005.. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. . Cell 123::20718
    [Crossref] [Google Scholar]
  89. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, et al. 2004.. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. . Mol. Cell. Biol. 24::563949
    [Crossref] [Google Scholar]
  90. Yu BD, Hess JL, Horning SE, Brown GAJ, Korsmeyer SJ. 1995.. Altered Hox expression and segmental identity in Mll-mutant mice. . Nature 378::5058
    [Crossref] [Google Scholar]
  91. Zeleznik-Le NJ, Harden AM, Rowley JD. 1994.. 11q23 translocations split the “AT-hook” cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. . PNAS 91::1061014
    [Crossref] [Google Scholar]
  92. Zou J, Yu C, Zhang C, Guan Y, Zhang Y, et al. 2023.. Inhibition of MLL1-menin interaction attenuates renal fibrosis in obstructive nephropathy. . FASEB J. 37::e22712
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062822-021934
Loading
/content/journals/10.1146/annurev-cancerbio-062822-021934
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error