1932

Abstract

One potential application of multirobot systems is collective transport, a task in which multiple robots collaboratively move a payload that is too large or heavy for a single robot. In this review, we highlight a variety of control strategies for collective transport that have been developed over the past three decades. We characterize the problem scenarios that have been addressed in terms of the control objective, the robot platform and its interaction with the payload, and the robots’ capabilities and information about the payload and environment. We categorize the control strategies according to whether their sensing, computation, and communication functions are performed by a centralized supervisor or specialized robot or autonomously by the robots. We provide an overview of progress toward control strategies that can be implemented on robots with expanded autonomous functionality in uncertain environments using limited information, and we suggest directions for future work on developing such controllers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-042920-095844
2022-05-03
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/control/5/1/annurev-control-042920-095844.html?itemId=/content/journals/10.1146/annurev-control-042920-095844&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Christensen HI 2020. A roadmap for US robotics: from internet to robotics Tech. Rep. Comput. Comm. Consort. and Univ. Calif. San Diego. http://www.hichristensen.com/pdf/roadmap-2020.pdf
  2. 2. 
    Schranz M, Umlauft M, Sende M, Elmenreich W. 2020. Swarm robotic behaviors and current applications. Front. Robot. AI 7:36
    [Google Scholar]
  3. 3. 
    Caccavale F, Uchiyama M 2016. Cooperative manipulation. Springer Handbook of Robotics B Siciliano, O Khatib 989–1006 Cham, Switz: Springer
    [Google Scholar]
  4. 4. 
    Parker L 2015. Collective manipulation and construction. Springer Handbook of Computational Intelligence J Kacprzyk, W Pedrycz 1395–406 Berlin: Springer
    [Google Scholar]
  5. 5. 
    Tuci E, Alkilabi MH, Akanyeti O. 2018. Cooperative object transport in multi-robot systems: a review of the state-of-the-art. Front. Robot. AI 5:59
    [Google Scholar]
  6. 6. 
    Chung SJ, Paranjape AA, Dames P, Shen S, Kumar V. 2018. A survey on aerial swarm robotics. IEEE Trans. Robot. 34:837–55
    [Google Scholar]
  7. 7. 
    Esposito JM. 2010. Decentralized cooperative manipulation with a swarm of mobile robots: the approach problem. 2010 American Control Conference (ACC)4762–67 Piscataway, NJ: IEEE
  8. 8. 
    Esposito J, Feemster M, Smith E. 2008. Cooperative manipulation on the water using a swarm of autonomous tugboats. 2008 IEEE International Conference on Robotics and Automation (ICRA)1501–6 Piscataway, NJ: IEEE
  9. 9. 
    Heshmati-alamdari S, Karras GC, Kyriakopoulos KJ 2021. A predictive control approach for cooperative transportation by multiple underwater vehicle manipulator systems. IEEE Trans. Control Syst. Technol. In press. https://doi.org/10.1109/TCST.2021.3085121
    [Crossref] [Google Scholar]
  10. 10. 
    Heshmati-alamdari S, Bechlioulis CP, Karras GC, Kyriakopoulos KJ. 2020. Cooperative impedance control for multiple underwater vehicle manipulator systems under lean communication. IEEE J. Ocean. Eng. 46:447–65
    [Google Scholar]
  11. 11. 
    Ren W, Beard RW. 2008. Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications London: Springer
  12. 12. 
    Marino A. 2017. Distributed adaptive control of networked cooperative mobile manipulators. IEEE Trans. Control Syst. Technol. 26:1646–60
    [Google Scholar]
  13. 13. 
    Murray RM, Li Z, Sastry SS 2017. A Mathematical Introduction to Robotic Manipulation Boca Raton, FL: CRC
  14. 14. 
    Michael N, Fink J, Loizou S, Kumar V 2010. Architecture, abstractions, and algorithms for controlling large teams of robots: experimental testbed and results. Robotics Research: The 13th International Symposium ISRR M Kaneko, Y Nakamura 409–19 Berlin: Springer
    [Google Scholar]
  15. 15. 
    Hayati S. 1986. Hybrid position/force control of multi-arm cooperating robots. 1986 IEEE International Conference on Robotics and Automation (ICRA) 382–89 Piscataway, NJ: IEEE
    [Google Scholar]
  16. 16. 
    Tarn T, Bejczy A, Yun X. 1986. Coordinated control of two robot arms. 1986 IEEE International Conference on Robotics and Automation (ICRA) 31193–202 Piscataway, NJ: IEEE
    [Google Scholar]
  17. 17. 
    Yun X, Kumar V 1991. An approach to simultaneous control of trajectory and interaction forces in dual-arm configurations. IEEE Trans. Robot. Autom. 7:618–25
    [Google Scholar]
  18. 18. 
    Schneider S, Cannon R. 1992. Object impedance control for cooperative manipulation: theory and experimental results. IEEE Trans. Robot. Autom. 8:383–94
    [Google Scholar]
  19. 19. 
    Moosavian S, Papadopoulos E. 1997. On the control of space free-flyers using multiple impedance control. 1997 IEEE International Conference on Robotics and Automation (ICRA) 1853–58 Piscataway, NJ: IEEE
    [Google Scholar]
  20. 20. 
    Chang K, Holmberg R, Khatib O. 2000. The augmented object model: cooperative manipulation and parallel mechanism dynamics. 2000 IEEE International Conference on Robotics and Automation (ICRA)470–75 Piscataway, NJ: IEEE
  21. 21. 
    Nikou A, Verginis C, Heshmati-alamdari S, Dimarogonas DV. 2017. A Nonlinear Model Predictive Control scheme for cooperative manipulation with singularity and collision avoidance. 2017 25th Mediterranean Conference on Control and Automation (MED)707–12 Piscataway, NJ: IEEE
  22. 22. 
    Verginis CK, Dimarogonas DV. 2020. Energy-optimal cooperative manipulation via provable internal-force regulation. 2020 IEEE International Conference on Robotics and Automation (ICRA)9859–65 Piscataway, NJ: IEEE
  23. 23. 
    Becker A, Habibi G, Werfel J, Rubenstein M, McLurkin J 2013. Massive uniform manipulation: controlling large populations of simple robots with a common input signal. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)520–27 Piscataway, NJ: IEEE
  24. 24. 
    Shahrokhi S, Lin L, Ertel C, Wan M, Becker AT 2018. Steering a swarm of particles using global inputs and swarm statistics. IEEE Trans. Robot. 34:207–19
    [Google Scholar]
  25. 25. 
    Stilwell D, Bay J. 1993. Toward the development of a material transport system using swarms of ant-like robots. 1993 IEEE International Conference on Robotics and Automation (ICRA) 1766–71 Piscataway, NJ: IEEE
    [Google Scholar]
  26. 26. 
    Kosuge K, Oosumi T, Chiba K. 1997. Load sharing of decentralized-controlled multiple mobile robots handling a single object. 1997 IEEE International Conference on Robotics and Automation (ICRA) 43373–78 Piscataway, NJ: IEEE
    [Google Scholar]
  27. 27. 
    Kosuge K, Hirata Y, Asama H, Kaetsu H, Kawabata K. 1999. Motion control of multiple autonomous mobile robots handling a large object in coordination. 1999 IEEE International Conference on Robotics and Automation (ICRA) 42666–73 Piscataway, NJ: IEEE
    [Google Scholar]
  28. 28. 
    Chaimowicz L, Sugar T, Kumar V, Campos M. 2001. An architecture for tightly coupled multi-robot cooperation. 2001 IEEE International Conference on Robotics and Automation (ICRA) 32992–97 Piscataway, NJ: IEEE
    [Google Scholar]
  29. 29. 
    Sugar T, Kumar V. 2002. Control of cooperating mobile manipulators. IEEE Trans. Robot. Autom. 18:94–103
    [Google Scholar]
  30. 30. 
    Wang Z, Schwager M 2016. Multi-robot manipulation without communication. Distributed Autonomous Robotic Systems: The 12th International Symposium NY Chong, YJ Cho 135–49 Tokyo: Springer
  31. 31. 
    Wang Z, Schwager M 2015. Multi-robot manipulation with no communication using only local measurements. 2015 54th IEEE Conference on Decision and Control (CDC)380–85 Piscataway, NJ: IEEE
    [Google Scholar]
  32. 32. 
    Wang Z, Schwager M 2016. Kinematic multi-robot manipulation with no communication using force feedback. 2016 IEEE International Conference on Robotics and Automation (ICRA)427–32 Piscataway, NJ: IEEE
  33. 33. 
    Tsiamis A, Verginis CK, Bechlioulis CP, Kyriakopoulos KJ. 2015. Cooperative manipulation exploiting only implicit communication. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)864–69 Piscataway, NJ: IEEE
  34. 34. 
    Yufka A, Ozkan M. 2015. Formation-based control scheme for cooperative transportation by multiple mobile robots. Int. J. Adv. Robot. Syst. 12: https://doi.org/10.5772/60972
    [Google Scholar]
  35. 35. 
    Verginis CK, Nikou A, Dimarogonas DV. 2018. Communication-based decentralized cooperative object transportation using nonlinear model predictive control. 2018 European Control Conference (ECC)733–38 Piscataway, NJ: IEEE
    [Google Scholar]
  36. 36. 
    Carey NE, Werfel J 2021. Collective transport of unconstrained objects via implicit coordination and adaptive compliance. 2021 IEEE International Conference on Robotics and Automation (ICRA)pp. 12603–9 Piscataway, NJ: IEEE
  37. 37. 
    Gabellieri C, Tognon M, Sanalitro D, Pallottino L, Franchi A 2020. A study on force-based collaboration in swarms. Swarm Intell. 14:57–82
    [Google Scholar]
  38. 38. 
    Khatib O, Yokoi K, Chang K, Ruspini D, Holmberg R, Casal A. 1996. Coordination and decentralized cooperation of multiple mobile manipulators. J. Robot. Syst. 13:755–64
    [Google Scholar]
  39. 39. 
    Dickson W, Cannon R, Rock S. 1997. A decentralized object impedance controller for object/robot-team systems: theory and experiments. 1997 IEEE International Conference on Robotics and Automation (ICRA) 43589–96 Piscataway, NJ: IEEE
    [Google Scholar]
  40. 40. 
    Pierri F, Nigro M, Muscio G, Caccavale F 2020. Cooperative manipulation of an unknown object via omnidirectional unmanned aerial vehicles. J. Intell. Robot. Syst. 100:1635–49
    [Google Scholar]
  41. 41. 
    Liu YH, Arimoto S, Ogasawara T 1996. Decentralized cooperation control: non-communication object handling. 1996 IEEE International Conference on Robotics and Automation (ICRA) 32414–19 Piscataway, NJ: IEEE
    [Google Scholar]
  42. 42. 
    Tang CP, Bhatt R, Abou-Samah M, Krovi V. 2006. Screw-theoretic analysis framework for cooperative payload transport by mobile manipulator collectives. IEEE/ASME Trans. Mechatron. 11:169–78
    [Google Scholar]
  43. 43. 
    Abou-Samah M, Tang CP, Bhatt RM, Krovi V. 2006. A kinematically compatible framework for cooperative payload transport by nonholonomic mobile manipulators. Auton. Robots 21:227–42
    [Google Scholar]
  44. 44. 
    Song P, Kumar V. 2002. A potential field based approach to multi-robot manipulation. 2002 IEEE International Conference on Robotics and Automation (ICRA) 21217–22 Piscataway, NJ: IEEE
    [Google Scholar]
  45. 45. 
    Kennedy MD III, Guerrero L, Kumar V. 2015. Decentralized algorithm for force distribution with applications to cooperative transport. Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 5C 39th Mechanisms and Robotics Conference pap. V05CT08A013 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  46. 46. 
    Fink J, Michael N, Kumar V 2008. Composition of vector fields for multi-robot manipulation via caging. Robotics: Science and Systems III W Burgard, O Brock, C Stachniss 25–32 Cambridge, MA: MIT Press
    [Google Scholar]
  47. 47. 
    Fink J, Hsieh MA, Kumar V. 2008. Multi-robot manipulation via caging in environments with obstacles. 2008 IEEE International Conference on Robotics and Automation (ICRA)1471–76 Piscataway, NJ: IEEE
    [Google Scholar]
  48. 48. 
    Chen J, Gauci M, Li W, Kolling A, Groß R 2015. Occlusion-based cooperative transport with a swarm of miniature mobile robots. IEEE Trans. Robot. 31:307–21
    [Google Scholar]
  49. 49. 
    Habibi G, Zachary K, Xie W, Jellins M, McLurkin J 2015. Distributed centroid estimation and motion controllers for collective transport by multi-robot systems. 2015 IEEE International Conference on Robotics and Automation (ICRA)1282–88 Piscataway, NJ: IEEE
  50. 50. 
    Bai H, Wen JT. 2009. Motion coordination through cooperative payload transport. . In 2009 American Control Conference (ACC)1310–15 Piscataway, NJ: IEEE
  51. 51. 
    Bai H, Wen JT. 2010. Cooperative load transport: a formation-control perspective. IEEE Trans. Robot. 26:742–50
    [Google Scholar]
  52. 52. 
    Bais AZ, Erhart S, Zaccarian L, Hirche S 2015. Dynamic load distribution in cooperative manipulation tasks. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2380–85 Piscataway, NJ: IEEE
  53. 53. 
    Kalat ST, Faal SG, Onal CD. 2018. A decentralized, communication-free force distribution method with application to collective object manipulation. J. Dyn. Syst. Meas. Control 140:091012
    [Google Scholar]
  54. 54. 
    Rubenstein M, Cabrera A, Werfel J, Habibi G, McLurkin J, Nagpal R 2013. Collective transport of complex objects by simple robots: theory and experiments. Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems47–54 Richland, SC: Int. Found. Auton. Agents Multiagent Syst.
  55. 55. 
    Culbertson P, Schwager M. 2018. Decentralized adaptive control for collaborative manipulation. 2018 IEEE International Conference on Robotics and Automation (ICRA)278–85 Piscataway, NJ: IEEE
  56. 56. 
    Kim S, Seo H, Shin J, Kim HJ 2018. Cooperative aerial manipulation using multirotors with multi-DOF robotic arms. IEEE/ASME Trans. Mechatron. 23:702–13
    [Google Scholar]
  57. 57. 
    Lee H, Kim H, Kim W, Kim HJ 2018. An integrated framework for cooperative aerial manipulators in unknown environments. IEEE Robot. Autom. Lett. 3:2307–14
    [Google Scholar]
  58. 58. 
    Sadati N, Ghaffarkhah A. 2007. Decentralized position and force control of nonredundant multi-manipulator systems. 2007 International Conference on Control, Automation and Systems2223–29 Piscataway, NJ: IEEE
  59. 59. 
    Dai GB, Liu YC. 2017. Distributed coordination and cooperation control for networked mobile manipulators. IEEE Trans. Ind. Electron. 64:5065–74
    [Google Scholar]
  60. 60. 
    Lee H, Kim H, Kim HJ 2016. Planning and control for collision-free cooperative aerial transportation. IEEE Trans. Autom. Sci. Eng. 15:189–201
    [Google Scholar]
  61. 61. 
    Pliego-Jimenez J, Arteaga-Perez M. 2017. On the adaptive control of cooperative robots with time-variant holonomic constraints. Int. J. Adapt. Control Signal Process. 31:1217–31
    [Google Scholar]
  62. 62. 
    Verginis CK, Mastellaro M, Dimarogonas DV. 2020. Robust cooperative manipulation without force/torque measurements: control design and experiments. IEEE Trans. Control Syst. Technol. 28:713–29
    [Google Scholar]
  63. 63. 
    Li X, Xu Z, Li S, Wu H, Zhou X. 2020. Cooperative kinematic control for multiple redundant manipulators under partially known information using recurrent neural network. IEEE Access 8:40029–38
    [Google Scholar]
  64. 64. 
    Ding G, Koh JJ, Merckaert K, Vanderborght B, Nicotra MM et al. 2020. Distributed reinforcement learning for cooperative multi-robot object manipulation. Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems1831–33 Richland, SC: Int. Found. Auton. Agents Multiagent Syst.
  65. 65. 
    Zhang L, Sun Y, Barth A, Ma O 2020. Decentralized control of multi-robot system in cooperative object transportation using deep reinforcement learning. IEEE Access 8:184109–119
    [Google Scholar]
  66. 66. 
    Franchi A, Petitti A, Rizzo A. 2014. Distributed estimation of the inertial parameters of an unknown load via multi-robot manipulation. 2014 IEEE Conference on Decision and Control (CDC)6111–16 Piscataway, NJ: IEEE
  67. 67. 
    Marino A, Muscio G, Pierri F. 2017. Distributed cooperative object parameter estimation and manipulation without explicit communication. 2017 IEEE International Conference on Robotics and Automation (ICRA)2110–16 Piscataway, NJ: IEEE
  68. 68. 
    Dohmann PBG, Hirche S. 2020. Distributed control for cooperative manipulation with event-triggered communication. IEEE Trans. Robot. 36:1038–52
    [Google Scholar]
  69. 69. 
    Marino A, Pierri F. 2018. A two stage approach for distributed cooperative manipulation of an unknown object without explicit communication and unknown number of robots. Robot. Auton. Syst. 103:122–33
    [Google Scholar]
  70. 70. 
    Gueaieb W, Karray F, Al-Sharhan S. 2003. A robust adaptive fuzzy position/force control scheme for cooperative manipulators. IEEE Trans. Control Syst. Technol. 11:516–28
    [Google Scholar]
  71. 71. 
    Li Z, Yang C, Su CY, Deng S, Sun F, Zhang W 2015. Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction. IEEE Trans. Fuzzy Syst. 23:1044–56
    [Google Scholar]
  72. 72. 
    Shorinwa O, Schwager M. 2020. Scalable collaborative manipulation with distributed trajectory planning. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)9108–15 Piscataway, NJ: IEEE
  73. 73. 
    Czaczkes TJ, Ratnieks FL. 2013. Cooperative transport in ants (Hymenoptera: Formicidae) and elsewhere. Myrmecol. News 18:1–11
    [Google Scholar]
  74. 74. 
    McCreery HF, Breed M. 2014. Cooperative transport in ants: a review of proximate mechanisms. Insectes Sociaux 61:99–110
    [Google Scholar]
  75. 75. 
    Feinerman O, Pinkoviezky I, Gelblum A, Fonio E, Gov NS 2018. The physics of cooperative transport in groups of ants. Nat. Phys. 14:683–93
    [Google Scholar]
  76. 76. 
    Medina O, Hacohen S, Shvalb N 2020. Robotic swarm motion planning for load carrying and manipulating. IEEE Access 8:53141–50
    [Google Scholar]
  77. 77. 
    Desai J, Wang CC, Zefran M, Kumar V. 1996. Motion planning for multiple mobile manipulators. 1996 IEEE International Conference on Robotics and Automation (ICRA) 32073–78 Piscataway, NJ: IEEE
    [Google Scholar]
  78. 78. 
    Pereira G, Pimentel B, Chaimowicz L, Campos M 2002. Coordination of multiple mobile robots in an object carrying task using implicit communication. 2020 IEEE International Conference on Robotics and Automation (ICRA) 1281–86 Piscataway, NJ: IEEE
    [Google Scholar]
  79. 79. 
    Tanner H, Loizou S, Kyriakopoulos K 2003. Nonholonomic navigation and control of cooperating mobile manipulators. IEEE Trans. Robot. Autom. 19:53–64
    [Google Scholar]
  80. 80. 
    Rimon E, Koditschek DE. 1992. Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8:501–18
    [Google Scholar]
  81. 81. 
    Berman S, Lindsey Q, Sakar M, Kumar V, Pratt S 2011. Study of group food retrieval by ants as a model for multi-robot collective transport strategies. Robotics: Science and Systems VI Y Matsuoka, H Durrant-Whyte, J Neira 259–66 Cambridge, MA: MIT Press
    [Google Scholar]
  82. 82. 
    Wilson S, Pavlic TP, Kumar GP, Buffin A, Pratt SC, Berman S. 2014. Design of ant-inspired stochastic control policies for collective transport by robotic swarms. Swarm Intell 8:303–27
    [Google Scholar]
  83. 83. 
    Kube CR, Bonabeau E. 2000. Cooperative transport by ants and robots. Robot. Auton. Syst. 30:85–101
    [Google Scholar]
  84. 84. 
    Farivarnejad H, Wilson S, Berman S 2016. Decentralized sliding mode control for autonomous collective transport by multi-robot systems. 2016 IEEE Conference on Decision and Control (CDC)1826–33 Piscataway, NJ: IEEE
    [Google Scholar]
  85. 85. 
    Farivarnejad H, Berman S. 2018. Stability and convergence analysis of a decentralized proportional-integral control strategy for collective transport. 2018 American Control Conference (ACC)2794–801 Piscataway, NJ: IEEE
    [Google Scholar]
  86. 86. 
    Farivarnejad H, Berman S 2020. Decentralized PD control for multi-robot collective transport to a target location using minimal information. Unmanned Systems Technology XXII HG Nguyen, PL Muench, CM Shoemaker, pap. 1142506 Bellingham, WA: SPIE
    [Google Scholar]
  87. 87. 
    Bechlioulis CP, Kyriakopoulos KJ. 2018. Collaborative multi-robot transportation in obstacle-cluttered environments via implicit communication. Front. Robot. AI 5:90
    [Google Scholar]
  88. 88. 
    Arslan O, Koditschek DE. 2019. Sensor-based reactive navigation in unknown convex sphere worlds. Int. J. Robot. Res. 38:196–223
    [Google Scholar]
  89. 89. 
    Farivarnejad H. 2020. Decentralized control of collective transport by multi-robot systems with minimal information PhD Thesis Ariz. State Univ. Tempe:
  90. 90. 
    Huber L, Billard A, Slotine JJ. 2019. Avoidance of convex and concave obstacles with convergence ensured through contraction. IEEE Robot. Autom. Lett. 4:1462–69
    [Google Scholar]
  91. 91. 
    Krstić M, Wang HH. 2000. Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica 36:595–601
    [Google Scholar]
  92. 92. 
    Stankovic MS, Stipanovic DM. 2009. Stochastic extremum seeking with applications to mobile sensor networks. 2009 American Control Conference (ACC)5622–27 Piscataway, NJ: IEEE
/content/journals/10.1146/annurev-control-042920-095844
Loading
/content/journals/10.1146/annurev-control-042920-095844
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error