1932

Abstract

The human skin is a unique organ that embeds multiple functions that no artificial systems can currently replicate. Advances in materials science and engineering are driving the design of electronic skins—large-area sensor arrays that mimic some sensory modalities and have the soft, elastic form of natural skin. Here, we focus on electronic skins designed to be worn on the human body for healthcare monitoring or prosthetic applications. The primary sensing modalities are mechanical, thermal, and electrophysiological. We review key materials and associated designs needed to manufacture electronic devices that can conform to the human body and move along with it. Electronic skins offer exciting opportunities for human–machine interfaces.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-071320-101023
2021-05-03
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-071320-101023.html?itemId=/content/journals/10.1146/annurev-control-071320-101023&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dahiya RS, Valle M. 2013. Human tactile sensing. Robotic Tactile Sensing: Technologies and System RS Dahiya, M Valle 19–41 Dordrecht, Neth.: Springer
    [Google Scholar]
  2. 2. 
    Izmailova ES, Wagner JA, Perakslis ED 2018. Wearable devices in clinical trials: hype and hypothesis. Clin. Pharmacol. Ther. 104:42–52
    [Google Scholar]
  3. 3. 
    Wang X, Liu Z, Zhang T 2017. Flexible sensing electronics for wearable/attachable health monitoring. Small 13:1602790
    [Google Scholar]
  4. 4. 
    Nghiem BT, Sando IC, Gillespie RB, McLaughlin BL, Gerling GJ et al. 2015. Providing a sense of touch to prosthetic hands. Plast. Reconstr. Surg. 135:1652–63
    [Google Scholar]
  5. 5. 
    Fallegger F, Schiavone G, Lacour SP 2020. Conformable hybrid systems for implantable bioelectronic interfaces. Adv. Mater. 32:1903904
    [Google Scholar]
  6. 6. 
    Xue Z, Song H, Rogers JA, Zhang Y, Huang Y 2020. Mechanically-guided structural designs in stretchable inorganic electronics. Adv. Mater. 32:1902254
    [Google Scholar]
  7. 7. 
    Hammock ML, Chortos A, Tee BC-K, Tok JB-H, Bao Z 2013. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25:5997–6038
    [Google Scholar]
  8. 8. 
    Kayser LV, Russell MD, Rodriquez D, Abuhamdieh SN, Dhong C et al. 2018. RAFT polymerization of an intrinsically stretchable water-soluble block copolymer scaffold for PEDOT. Chem. Mater. 30:4459–68
    [Google Scholar]
  9. 9. 
    Kim N, Kee S, Lee SH, Lee BH, Kahng YH et al. 2014. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26:2268–72
    [Google Scholar]
  10. 10. 
    Ma Z, Kong D, Pan L, Bao Z 2020. Skin-inspired electronics: emerging semiconductor devices and systems. J. Semicond. 41:041601
    [Google Scholar]
  11. 11. 
    Lipomi DJ, Lee JA, Vosgueritchian M, Tee BC-K, Bolander JA, Bao Z 2012. Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates. Chem. Mater. 24:373–82
    [Google Scholar]
  12. 12. 
    Sekitani T, Someya T. 2010. Stretchable, large-area organic electronics. Adv. Mater. 22:2228–46
    [Google Scholar]
  13. 13. 
    Stoyanov H, Kollosche M, Risse S, Waché R, Kofod G 2013. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv. Mater. 25:578–83
    [Google Scholar]
  14. 14. 
    Wang Y, Zhu C, Pfattner R, Yan H, Jin L et al. 2017. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3:e1602076
    [Google Scholar]
  15. 15. 
    Vosgueritchian M, Lipomi DJ, Bao Z 2012. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22:421–28
    [Google Scholar]
  16. 16. 
    Gkoupidenis P, Schaefer N, Garlan B, Malliaras GG 2015. Neuromorphic functions in PEDOT:PSS organic electrochemical transistors. Adv. Mater. 27:7176–80
    [Google Scholar]
  17. 17. 
    Savagatrup S, Chan E, Renteria-Garcia SM, Printz AD, Zaretski AV et al. 2015. Plasticization of PEDOT:PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv. Funct. Mater. 25:427–36
    [Google Scholar]
  18. 18. 
    Oh JY, Kim S, Baik H-K, Jeong U 2016. Conducting polymer dough for deformable electronics. Adv. Mater. 28:4455–61
    [Google Scholar]
  19. 19. 
    Wang G-JN, Gasperini A, Bao Z 2018. Stretchable polymer semiconductors for plastic electronics. Adv. Electron. Mater. 4:1700429
    [Google Scholar]
  20. 20. 
    Xu J, Wang S, Wang G-JN, Zhu C, Luo S et al. 2017. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355:59–64
    [Google Scholar]
  21. 21. 
    Wang S, Xu J, Wang W, Wang G-JN, Rastak R et al. 2018. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555:83–88
    [Google Scholar]
  22. 22. 
    Larmagnac A, Eggenberger S, Janossy H, Vörös J 2014. Stretchable electronics based on Ag-PDMS composites. Sci. Rep. 4:7254
    [Google Scholar]
  23. 23. 
    Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I 2014. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8:5154–63
    [Google Scholar]
  24. 24. 
    Chen H, Miao L, Su Z, Song Y, Han M et al. 2017. Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy 40:65–72
    [Google Scholar]
  25. 25. 
    Matsuhisa N, Inoue D, Zalar P, Jin H, Matsuba Y et al. 2017. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16:834–40
    [Google Scholar]
  26. 26. 
    Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim J-K 2007. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater. 17:3207–15
    [Google Scholar]
  27. 27. 
    Li J, Kim J-K. 2007. Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 67:2114–20
    [Google Scholar]
  28. 28. 
    Park M, Park J, Jeong U 2014. Design of conductive composite elastomers for stretchable electronics. Nano Today 9:244–60
    [Google Scholar]
  29. 29. 
    Chen H, Song Y, Guo H, Miao L, Chen X et al. 2018. Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy 51:496–503
    [Google Scholar]
  30. 30. 
    Guo Y, Otley MT, Li M, Zhang X, Sinha SK et al. 2016. PEDOT:PSS “wires” printed on textile for wearable electronics. ACS Appl. Mater. Interfaces 8:26998–7005
    [Google Scholar]
  31. 31. 
    Tseghai GB, Mengistie DA, Malengier B, Fante KA, Van Langenhove L 2020. PEDOT:PSS-based conductive textiles and their applications. Sensors 20:1881
    [Google Scholar]
  32. 32. 
    Chen H, Su Z, Song Y, Cheng X, Chen X et al. 2017. Omnidirectional bending and pressure sensor based on stretchable CNT-PU sponge. Adv. Funct. Mater. 27:1604434
    [Google Scholar]
  33. 33. 
    Song Y, Chen H, Su Z, Chen X, Miao L et al. 2017. Highly compressible integrated supercapacitor-piezoresistance-sensor system with CNT-PDMS sponge for health monitoring. Small 13:1702091
    [Google Scholar]
  34. 34. 
    Song Y, Zhang J, Guo H, Chen X, Su Z et al. 2017. All-fabric-based wearable self-charging power cloth. Appl. Phys. Lett. 111:073901
    [Google Scholar]
  35. 35. 
    Yan W, Dong C, Xiang Y, Jiang S, Leber A et al. 2020. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35:168–94
    [Google Scholar]
  36. 36. 
    Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM 2008. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18:1097–104
    [Google Scholar]
  37. 37. 
    Hirsch A, Michaud HO, Gerratt AP, de Mulatier S, Lacour SP 2016. Intrinsically stretchable biphasic (solid-liquid) thin metal films. Adv. Mater. 28:4507–12
    [Google Scholar]
  38. 38. 
    Dejace L, Laubeuf N, Furfaro I, Lacour SP 2019. Gallium-based thin films for wearable human motion sensors. Adv. Intell. Syst. 1:1900079
    [Google Scholar]
  39. 39. 
    Graz IM, Cotton DPJ, Lacour SP 2009. Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 94:071902
    [Google Scholar]
  40. 40. 
    Lacour SP, Wagner S, Huang Z, Suo Z 2003. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82:2404–6
    [Google Scholar]
  41. 41. 
    Xu L, Shyu TC, Kotov NA 2017. Origami and kirigami nanocomposites. ACS Nano 11:7587–99
    [Google Scholar]
  42. 42. 
    Vachicouras N, Tringides CM, Campiche PB, Lacour SP 2017. Engineering reversible elasticity in ductile and brittle thin films supported by a plastic foil. Extreme Mech. Lett. 15:63–69
    [Google Scholar]
  43. 43. 
    Gerratt AP, Michaud HO, Lacour SP 2015. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 25:2287–95
    [Google Scholar]
  44. 44. 
    Cotton DPJ, Graz IM, Lacour SP 2009. A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sens. J. 9:2008–9
    [Google Scholar]
  45. 45. 
    Sonar HA, Gerratt AP, Lacour SP, Paik J 2019. Closed-loop haptic feedback control using a self-sensing soft pneumatic actuator skin. Soft Robot 7:22–29
    [Google Scholar]
  46. 46. 
    Lacour SP, Jones J, Wagner S, Teng LI, Suo Z 2005. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93:1459–67
    [Google Scholar]
  47. 47. 
    Vachicouras N, Tarabichi O, Kanumuri VV, Tringides CM, Macron J et al. 2019. Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Sci. Transl. Med. 11:eaax9487
    [Google Scholar]
  48. 48. 
    Chew DJ, Zhu L, Delivopoulos E, Minev IR, Musick KM et al. 2013. A microchannel neuroprosthesis for bladder control after spinal cord injury in rat. Sci. Transl. Med. 5:210ra155
    [Google Scholar]
  49. 49. 
    Minev IR, Musienko P, Hirsch A, Barraud Q, Wenger N et al. 2015. Electronic dura mater for long-term multimodal neural interfaces. Science 347:159–63
    [Google Scholar]
  50. 50. 
    Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM 1998. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393:146–49
    [Google Scholar]
  51. 51. 
    Song J, Jiang H, Huang Y, Rogers JA 2009. Mechanics of stretchable inorganic electronic materials. J. Vac. Sci. Technol. A 27:1107–25
    [Google Scholar]
  52. 52. 
    Kim D-H, Ahn J-H, Choi WM, Kim H-S, Kim T-H et al. 2008. Stretchable and foldable silicon integrated circuits. Science 320:507–11
    [Google Scholar]
  53. 53. 
    Jang K-I, Li K, Chung HU, Xu S, Jung HN et al. 2017. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 8:15894
    [Google Scholar]
  54. 54. 
    Lacour SP, Wagner S, Narayan RJ, Li T, Suo Z 2006. Stiff subcircuit islands of diamondlike carbon for stretchable electronics. J. Appl. Phys. 100:014913
    [Google Scholar]
  55. 55. 
    Xu S, Zhang Y, Cho J, Lee J, Huang X et al. 2013. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4:1543
    [Google Scholar]
  56. 56. 
    Yeo W-H, Kim Y-S, Lee J, Ameen A, Shi L et al. 2013. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25:2773–78
    [Google Scholar]
  57. 57. 
    Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y et al. 2005. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. PNAS 102:12321–25
    [Google Scholar]
  58. 58. 
    Lanzara G, Salowitz N, Guo Z, Chang F-K 2010. A spider-web-like highly expandable sensor network for multifunctional materials. Adv. Mater. 22:4643–48
    [Google Scholar]
  59. 59. 
    Liu Y, Pharr M, Salvatore GA 2017. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11:9614–35
    [Google Scholar]
  60. 60. 
    Vogel HG. 1981. Directional variations of mechanical parameter in rat skin depending on maturation and age. J. Investig. Dermatol. 76:493–97
    [Google Scholar]
  61. 61. 
    Stark HL. 1977. Directional variations in the extensibility of human skin. Br. J. Plast. Surg. 30:105–14
    [Google Scholar]
  62. 62. 
    Pereira JM, Mansour JM, Davis BR 1991. Dynamic measurement of the viscoelastic properties of skin. J. Biomech. 24:157–62
    [Google Scholar]
  63. 63. 
    Chortos A, Liu J, Bao Z 2016. Pursuing prosthetic electronic skin. Nat. Mater. 15:937–50
    [Google Scholar]
  64. 64. 
    Johansson RS, Vallbo AB. 1979. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. 286:283–300
    [Google Scholar]
  65. 65. 
    Yang G-H, Kwon D-S, Jones LA 2009. Spatial acuity and summation on the hand: the role of thermal cues in material discrimination. Atten. Percept. Psychophys. 71:156–63
    [Google Scholar]
  66. 66. 
    Jones LA, Lederman SJ. 2006. Human Hand Function Oxford, UK: Oxford Univ. Press
  67. 67. 
    Zhang F, Zang Y, Huang D, Di C, Zhu D 2015. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 6:8356
    [Google Scholar]
  68. 68. 
    Nankali M, Nouri NM, Navidbakhsh M, Malek NG, Amindehghan MA et al. 2020. Highly stretchable and sensitive strain sensors based on carbon nanotube-elastomer nanocomposites: the effect of environmental factors on strain sensing performance. J. Mater. Chem. C 8:6185–95
    [Google Scholar]
  69. 69. 
    Bullock IM, Zheng JZ, De La Rosa S, Guertler C, Dollar AM 2013. Grasp frequency and usage in daily household and machine shop tasks. IEEE Trans. Haptics 6:296–308
    [Google Scholar]
  70. 70. 
    Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH et al. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3:423–28
    [Google Scholar]
  71. 71. 
    Mestach L, Huygens S, Goossens A, Gilissen L 2018. Allergic contact dermatitis caused by acrylic-based medical dressings and adhesives. Contact Derm 79:81–84
    [Google Scholar]
  72. 72. 
    McNichol L, Lund C, Rosen T, Gray M 2013. Medical adhesives and patient safety: state of the science: consensus statements for the assessment, prevention, and treatment of adhesive-related skin injuries. J. Wound Ostomy Cont. Nurs. 40:365–80
    [Google Scholar]
  73. 73. 
    Nawrocki RA, Jin H, Lee S, Yokota T, Sekino M, Someya T 2018. Self-adhesive and ultra-conformable, sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials. Adv. Funct. Mater. 28:1803279
    [Google Scholar]
  74. 74. 
    Chun S, Kim DW, Baik S, Lee HJ, Lee JH et al. 2018. Conductive and stretchable adhesive electronics with miniaturized octopus-like suckers against dry/wet skin for biosignal monitoring. Adv. Funct. Mater. 28:1805224
    [Google Scholar]
  75. 75. 
    Miyamoto A, Lee S, Cooray NF, Lee S, Mori M et al. 2017. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12:907–13
    [Google Scholar]
  76. 76. 
    Chen H, Song Y, Cheng X, Zhang H 2019. Self-powered electronic skin based on the triboelectric generator. Nano Energy 56:252–68
    [Google Scholar]
  77. 77. 
    Son D, Lee J, Qiao S, Ghaffari R, Kim J et al. 2014. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9:397–404
    [Google Scholar]
  78. 78. 
    Jeon H, Hong SK, Kim MS, Cho SJ, Lim G 2017. Omni-purpose stretchable strain sensor based on a highly dense nanocracking structure for whole-body motion monitoring. ACS Appl. Mater. Interfaces 9:41712–21
    [Google Scholar]
  79. 79. 
    Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A et al. 2011. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6:296–301
    [Google Scholar]
  80. 80. 
    Yao S, Lee JS, James K, Miller J, Narasimhan V et al. 2015. Silver nanowire strain sensors for wearable body motion tracking. 2015 IEEE SENSORS Piscataway, NJ: IEEE https://doi.org/10.1109/ICSENS.2015.7370650
    [Crossref] [Google Scholar]
  81. 81. 
    Rezaei A, Ejupi A, Gholami M, Ferrone A, Menon C 2018. Preliminary investigation of textile-based strain sensors for the detection of human gait phases using machine learning. 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics563–68 Piscataway, NJ: IEEE
    [Google Scholar]
  82. 82. 
    Park J, You I, Shin S, Jeong U 2015. Material approaches to stretchable strain sensors. ChemPhysChem 16:1155–63
    [Google Scholar]
  83. 83. 
    Lu N, Lu C, Yang S, Rogers J 2012. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22:4044–50
    [Google Scholar]
  84. 84. 
    Lim H-R, Kim HS, Qazi R, Kwon Y-T, Jeong J-W, Yeo W-H 2020. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32:1901924
    [Google Scholar]
  85. 85. 
    Chi YM, Jung T-P, Cauwenberghs G 2010. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3:106–19
    [Google Scholar]
  86. 86. 
    Lee SM, Byeon HJ, Lee JH, Baek DH, Lee KH et al. 2014. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci. Rep. 4:6074
    [Google Scholar]
  87. 87. 
    Leleux P, Badier J-M, Rivnay J, Bénar C, Hervé T et al. 2014. Conducting polymer electrodes for electroencephalography. Adv. Healthc. Mater. 3:490–93
    [Google Scholar]
  88. 88. 
    You I, Kim B, Park J, Koh K, Shin S et al. 2016. Stretchable e-skin apexcardiogram sensor. Adv. Mater. 28:6359–64
    [Google Scholar]
  89. 89. 
    Pang C, Koo JH, Nguyen A, Caves JM, Kim M-G et al. 2015. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27:634–40
    [Google Scholar]
  90. 90. 
    Kim J, Gutruf P, Chiarelli AM, Heo SY, Cho K et al. 2017. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 27:1604373
    [Google Scholar]
  91. 91. 
    Yokota T, Zalar P, Kaltenbrunner M, Jinno H, Matsuhisa N et al. 2016. Ultraflexible organic photonic skin. Sci. Adv. 2:e1501856
    [Google Scholar]
  92. 92. 
    Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K et al. 2016. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–14
    [Google Scholar]
  93. 93. 
    Yu Y, Nyein HYY, Gao W, Javey A 2020. Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. Adv. Mater. 32:1902083
    [Google Scholar]
  94. 94. 
    Mehrali M, Bagherifard S, Akbari M, Thakur A, Mirani B et al. 2018. Blending electronics with the human body: a pathway toward a cybernetic future. Adv. Sci. 5:1700931
    [Google Scholar]
  95. 95. 
    Choong C-L, Shim M-B, Lee B-S, Jeon S, Ko D-S et al. 2014. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26:3451–58
    [Google Scholar]
  96. 96. 
    Mannsfeld SCB, Tee BC-K, Stoltenberg RM, Chen CVH-H, Barman S et al. 2010. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9:859–64
    [Google Scholar]
  97. 97. 
    Kim SY, Park S, Park HW, Park DH, Jeong Y, Kim DH 2015. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27:4178–85
    [Google Scholar]
  98. 98. 
    Wang G, Liu T, Sun X-C, Li P, Xu Y-S et al. 2018. Flexible pressure sensor based on PVDF nanofiber. Sens. Actuators A 280:319–25
    [Google Scholar]
  99. 99. 
    Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S et al. 2013. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4:1633
    [Google Scholar]
  100. 100. 
    Fan F-R, Lin L, Zhu G, Wu W, Zhang R, Wang ZL 2012. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12:3109–14
    [Google Scholar]
  101. 101. 
    Webb RC, Bonifas AP, Behnaz A, Zhang Y, Yu KJ et al. 2013. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12:938–44
    [Google Scholar]
  102. 102. 
    Yokota T, Inoue Y, Terakawa Y, Reeder J, Kaltenbrunner M et al. 2015. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. PNAS 112:14533–38
    [Google Scholar]
  103. 103. 
    Sundaram S, Kellnhofer P, Li Y, Zhu J-Y, Torralba A, Matusik W 2019. Learning the signatures of the human grasp using a scalable tactile glove. Nature 569:698–702
    [Google Scholar]
  104. 104. 
    Lecun Y, Bottou L, Bengio Y, Haffner P 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86:2278–324
    [Google Scholar]
  105. 105. 
    Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J et al. 2014. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6:222ra19
    [Google Scholar]
  106. 106. 
    Cutrone A, Micera S. 2019. Implantable neural interfaces and wearable tactile systems for bidirectional neuroprosthetics systems. Adv. Healthc. Mater. 8:1801345
    [Google Scholar]
  107. 107. 
    Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR et al. 2014. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5:5747
    [Google Scholar]
  108. 108. 
    Tee BC-K, Chortos A, Berndt A, Nguyen AK, Tom A et al. 2015. A skin-inspired organic digital mechanoreceptor. Science 350:313–16
    [Google Scholar]
  109. 109. 
    Kim Y, Chortos A, Xu W, Liu Y, Oh JY et al. 2018. A bioinspired flexible organic artificial afferent nerve. Science 360:998–1003
    [Google Scholar]
/content/journals/10.1146/annurev-control-071320-101023
Loading
/content/journals/10.1146/annurev-control-071320-101023
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error