Fertility is a convenient but meaningless term unless the outcome measure is stipulated and accounts for dependence of male fertility on the female population. We describe outcome measures and detail the impacts of the physiological status of each female and her external environment, as well as management imposed by humans. We explain the dominant role of the female reproductive tract as a series of hurdles for sperm seeking an ovum. Each spermatozoon in an ejaculate is unique, although usually most are morphologically similar. Semen seemingly contains three subpopulations of sperm, based on fate within a female and role in hampering the success of the ultimate winning spermatozoon; we define these subpopulations. The numerical size of each subpopulation placed into a female determines the shape of the dose-response curve leading to possible live young. Heterospermic artificial insemination provides far greater sensitivity to detect differences, partly because the female environment is identical for each comparison.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Castellani C. 1.  1973. Spermatozoon biology from Leeuwenhoek to Spallanzani. J. Hist. Biol. 6:37–68 [Google Scholar]
  2. Heape W. 2.  1897. The artificial insemination of mammals and subsequent possible fertilization or impregnation of their ova. Proc. R. Soc. Lond. 61:52–63 [Google Scholar]
  3. Ivanoff EI. 3.  1922. On the use of artificial insemination for zootechnical purposes in Russia. J. Agric. Sci. 12:244–56 [Google Scholar]
  4. Iwanoff E. 4.  1912. Die künstliche Befruchtung der Haustiere [transl. from Russian] Hannover, Ger.: M & H Schaper [Google Scholar]
  5. Aurich JE. 5.  2012. Artificial insemination in horses—more than a century of practice. J. Equine Vet. Sci. 32:458–63 [Google Scholar]
  6. Pincus JW. 6.  1938. Artificial insemination in Russia. J. Hered. 20:391–92 [Google Scholar]
  7. Milovanov VK. 7.  1964 (1960). Artificial Insemination of Livestock in the U.S.S.R. transl. A Birron, ZS Cole Jerusalem: Israel Progr. Sci. Transl11 [available from Off. Tech. Serv., US Dep. Commerce] [Google Scholar]
  8. Walton A. 8.  1933. The Technique of Artificial Insemination Imp. Bur. Anim. Genet Edinburgh: Oliver & Boyd [Google Scholar]
  9. Perry EJ. 9.  1945. The Artificial Insemination of Farm Animals New Brunswick, NJ: Rutgers Univ. Press [Google Scholar]
  10. Salisbury GW, VanDemark NL. 10.  1961. Physiology of Reproduction and Artificial Insemination of Cattle San Francisco, CA: W.H. Freeman [Google Scholar]
  11. Foote RH. 11.  2002. The history of artificial insemination: selected notes and notables. J. Anim. Sci. 80:E. Suppl. 21–10 [Google Scholar]
  12. Foote RH. 12.  2005. Highlights in Dairy Cattle Reproduction in the Last 100 Years Ithaca, NY: Internet-First Univ. Press [Google Scholar]
  13. Salisbury GW, VanDemark NL, Lodge JR. 13.  1978. Physiology of Reproduction and Artificial Insemination of Cattle San Francisco, CA: W.H. Freeman, 2nd ed.. [Google Scholar]
  14. Van Eenennaam AL, Weigel KA, Young AE, Cleveland MA, Dekkers JCM. 14.  2014. Applied animal genomics: results from the field. Annu. Rev. Anim. Biosci. 2:105–39 [Google Scholar]
  15. Longo FJ. 15.  1973. Fertilization: a comparative ultrastructural review. Biol. Reprod. 9:149–215 [Google Scholar]
  16. Senger PL. 16.  2015. Pathways to Pregnancy and Parturition Redmond, OR: Curr. Concept, 3rd ed.. [Google Scholar]
  17. Krawetz SA. 17.  2005. Paternal contribution: new insights and future challenges. Nat. Rev. Genet. 6:633–42 [Google Scholar]
  18. Kropp J, Peñagaricano F, Salith SM, Khatib H. 18.  2014. Invited review: genetic contributions underlying the development of preimplantation bovine embryos. J. Dairy Sci. 97:1187–201 [Google Scholar]
  19. Amann RP, DeJarnette JM. 19.  2012. Impact of genomic selection of AI dairy sires on their likely utilization and methods to estimate fertility: a paradigm shift. Theriogenology 77:795–817 [Google Scholar]
  20. Foote RH. 20.  2003. Fertility estimation: a review of past experience and future prospects. Anim. Reprod. Sci. 75:119–39 [Google Scholar]
  21. Purohit G. 21.  2010. Methods of pregnancy diagnosis in domestic animals: the current status. WebmedCentral Reprod 1:WMC001305 http://www.webmedcentral.com/article_view/1305 [Google Scholar]
  22. Etches RJ. 22.  1996. Reproduction in Poultry Wallingford, UK: CAB Int. [Google Scholar]
  23. DeJarnette JM, Amann RP. 23.  2010. Understanding estimates of sire fertility: from A to Z. Proc. 23rd Tech. Conf. Artif. Insem. Reprod., Milwaukee13–27 Columbia, MO: Natl. Assoc. Anim. Breed. [Google Scholar]
  24. Holt WV. 24.  2009. Is semen analysis useful to predict the odds that sperm will meet the egg?. Reprod. Domest. Anim. 44:Suppl. 331–8 [Google Scholar]
  25. Hunter RHF. 25.  2012. Components of oviduct physiology in eutherian mammals. Biol. Rev. 87:244–55 [Google Scholar]
  26. Fazeli A, Holt WV. 26.  2016. Cross talk during the periconception period. Theriogenology 86:438–42 [Google Scholar]
  27. Suarez SS. 27.  2016. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res 363:185–94 [Google Scholar]
  28. McGraw LA, Suarez SS, Wolfner MG. 28.  2015. On a matter of seminal importance: the emerging influence of seminal plasma components on fertility and future pregnancy. Bioessays 37:142–47 [Google Scholar]
  29. Hung PH, Suarez SS. 29.  2010. Regulation of sperm storage and movement in the ruminant oviduct. Soc. Study. Fertil. Suppl. 67:257–66 [Google Scholar]
  30. Saacke RG, DeJarnette JM, Bame JH, Karabinus DS, Whitman S. 30.  1998. Can spermatozoa with abnormal heads gain access to the ovum in artificially inseminated super- and single-ovulating cattle?. Theriogenology 50:117–28 [Google Scholar]
  31. Ardón F, Helms D, Sahin E, Bollwein H, Töpfer-Petersen E, Waberski D. 31.  2008. Chromatin-unstable boar spermatozoa have little chance of reaching oocytes in vivo. Reproduction 135:461–70 [Google Scholar]
  32. Holt WV, Fazeli A. 32.  2016. Sperm storage in the female reproductive tract. Annu. Rev. Anim. Biosci. 4:291–310 [Google Scholar]
  33. Ardón FA, Markello RD, Hu L, Deutsch ZI, Tung C-K. 33.  et al. 2016. Dynamics of bovine sperm interaction with epithelium differ between oviductal isthmus and ampulla. Biol. Reprod. 95:1–7 [Google Scholar]
  34. Wiltbank MC, Baez GM, Garcia-Guerra A, Toledo MZ, Monyerio PLJ. 34.  et al. 2016. Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 86:239–53 [Google Scholar]
  35. Berry DP, Friggens NC, Lucy M, Roche JR. 35.  2016. Milk production and fertility in cattle. Annu. Rev. Anim. Biosci. 4:269–90 [Google Scholar]
  36. Flowers WL. 36.  2013. Sperm characteristics that limit success of fertilization. J. Anim. Sci. 91:3022–29 [Google Scholar]
  37. Hutchison JL, Cole JB, Bickhart DM. 37.  2014. Use of young bulls in the United States. J. Dairy Sci. 97:3213–20 [Google Scholar]
  38. Knox RV. 38.  2014. Impact of swine reproductive technologies on pig and global food production. Adv. Exp. Med. Biol. 752:131–60 [Google Scholar]
  39. Amann RP, Hammerstedt RH. 39.  2002. Detection of differences in fertility. J. Androl. 23:317–25 [Google Scholar]
  40. Amann RP, Hammerstedt RH. 40.  1993. In vitro evaluation of sperm quality: an opinion. J. Androl. 14:397–406 [Google Scholar]
  41. Walton A. 41.  1927. The relationship between “density” of sperm-suspension and fertility as determined by artificial insemination of rabbits. Proc. R. Soc. Lond. 101:303–15 [Google Scholar]
  42. Salisbury GW, Bratton RW. 42.  1948. Fertility level of bull semen diluted at 1:400 with and without sulfanilamide. J. Dairy Sci. 31:817–22 [Google Scholar]
  43. Willett EL. 43.  1950. Fertility and livability of bull semen diluted at various levels to 1:300. J. Dairy Sci. 33:43–49 [Google Scholar]
  44. Branton C, Kellgren HC, Patrick TE. 44.  1953. The importance of numbers of spermatozoa in relation to semen quality and fertility of dairy bulls. J. Dairy Sci. 36:1301–7 [Google Scholar]
  45. Willett EL, Larson GL. 45.  1952. Fertility of bull semen as influenced by dilution level, antibiotics, spermatozoan numbers and the interaction of these factors. J. Dairy Sci. 35:899–905 [Google Scholar]
  46. Van Duijn C Jr.. 46.  1965. Sperm numbers and fertility: a kinetic approach. Neth. J. Agric. Sci. 13:378–91 [Google Scholar]
  47. Sullivan JJ, Elliott FI. 47.  1968. Bull fertility as affected by an interaction between motile sperm concentration and fertility level in artificial insemination. Proc. VI Int. Cong. Anim. Reprod. Artif. Insem. 2:1307–13 [Google Scholar]
  48. Alm K, Peltoniemi OTA, Koskinen E, Anderson M. 48.  2006. Porcine field fertility with two different insemination doses and the effect of sperm morphology. Reprod. Domest. Anim. 41:210–13 [Google Scholar]
  49. Pace MM, Sullivan JJ. 49.  1975. Effect of timing of insemination, numbers of spermatozoa and extender components on the pregnancy rate in mares inseminated with frozen stallion semen. J. Reprod. Fertil. Suppl. 23:115–21 [Google Scholar]
  50. Farrell PB, Foote RH, Simkin ME, Clegg ED, Wall RJ. 50.  1993. Relationship of semen quality, number of sperm inseminated, and fertility in rabbits. J. Androl. 14:464–71 [Google Scholar]
  51. Wishart GJ. 51.  1985. Quantitation of the fertilising ability of fresh compared with frozen and thawed fowl spermatozoa. Br. Poult. Sci. 26:375–80 [Google Scholar]
  52. Den Daas JHG, de Jong G, Lansbergen LMTE, van Wagtendonk-de Leeuw AM. 52.  1998. The relationship between the number of spermatozoa inseminated and the reproductive efficiency of individual dairy bulls. J. Dairy Sci. 81:1714–23 [Google Scholar]
  53. Pace M, Sullivan JJ, Elliott FI, Graham EF, Coulter GH. 53.  1981. Effects of thawing temperature, number of spermatozoa and spermatozoal quality on fertility of bovine spermatozoa packaged in 0.5-ml French straws. J. Anim. Sci. 53:693–701 [Google Scholar]
  54. Fearon JM, Wegener PT. 54.  2000. Relationship between fertility in cattle and the number of inseminated spermatozoa. J. Reprod. Fertil. 119:293–308 [Google Scholar]
  55. Christensen P, Labouriau R, Birck A, Boe-Hansen GB, Pedersen J, Borchersen S. 55.  2011. Relationship among seminal quality measures and field fertility of young bulls using low-dose inseminations. J. Dairy Sci. 94:1744–54 [Google Scholar]
  56. Saacke RG, Nebel RL, Karabinus DS, Bame JH, Mullins J. 56.  1988. Sperm transport and accessory sperm evaluation. Proc. 12th Tech. Conf. Artif. Insem. Reprod., Milwaukee7–11 Columbia, MO: Natl. Assoc. Anim. Breed. [Google Scholar]
  57. Saacke RG. 57.  1982. Components of semen quality. J. Anim. Sci. 55:Suppl. 21–13 [Google Scholar]
  58. Den Daas N. 58.  1992. Laboratory assessments of semen characteristics. Anim. Reprod. Sci. 28:87–94 [Google Scholar]
  59. Saacke RG, Nadir S, Nebel RL. 59.  1994. Relationship of semen quality to sperm transport, fertilization, and embryo quality in ruminants. Theriogenology 41:45–50 [Google Scholar]
  60. Saacke RG, Dalton JC, Nadir S, Nebel RL, Bame JH. 60.  2000. Relationship of seminal traits and insemination time to fertilization rate and embryo quality. Anim. Reprod. Sci. 60–61:633–77 [Google Scholar]
  61. Dalton JC, Nadir S, Bame JH, Noftsinger M, Nebel R, Saacke RG. 61.  2001. Effect of time of insemination on number of accessory sperm, fertilization rate, and embryo quality in nonlactating dairy cattle. J. Dairy Sci. 84:2413–18 [Google Scholar]
  62. Saacke RG. 62.  2008. Sperm morphology: its relevance to compensable and uncompensable traits in semen. Theriogenology 70:473–78 [Google Scholar]
  63. Walters AH, Saacke RG, Pearson RE, Gwazdauskas FC. 63.  2006. Assessment of pronuclear formation following in vitro fertilization with bovine spermatozoa obtained after thermal insulation of the testis. Theriogenology 65:1016–28 [Google Scholar]
  64. Eid LN, Lorton SP, Parish JJ. 64.  1994. Paternal influence on S-phase in the first cycle of bovine embryo. Biol. Reprod. 51:1232–37 [Google Scholar]
  65. Comizzoli P, Marquant-Le Guienne B, Heyman Y, Renard JP. 65.  2000. Onset of the first S-phase is determined by a parental effect during the G1-phase in bovine zygotes. Biol. Reprod. 62:1677–84 [Google Scholar]
  66. Huang W, Kirkpatrick BW, Rosa GJM, Khatib H. 66.  2010. A genome-wide association study using selective DNA pooling identifies candidate markers for fertility in Holstein cattle. Anim. Genet. 41:570–78 [Google Scholar]
  67. 67. EFSA Sci. Comm. 2011. Statistical significance and biological relevance. EFSA J 9:92372 [Google Scholar]
  68. Walker E, Nowacki AS. 68.  2010. Understanding equivalence and noninferiority testing. J. Gen. Intern. Med. 26:192–96 [Google Scholar]
  69. Macmillian KL, Watson JD. 69.  1975. Fertility differences between groups of sires relative to the stage of oestrus at the time of insemination. Anim. Prod. 21:243–49 [Google Scholar]
  70. Cumming G, Fidler F, Vaux DL. 70.  2007. Error bars in experimental biology. J. Cell Biol. 177:7–11 [Google Scholar]
  71. Clay JS, McDaniel BT. 71.  2001. Computing mating bull fertility from DHI nonreturn data. J. Dairy Sci. 84:1238–45 [Google Scholar]
  72. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. 72.  2009. Invited review: genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92:433–43 [Google Scholar]
  73. Wiggans GR, Vole JB, Hubbard SM, Sonstegard TS. 73.  2017. Genomic selection in dairy cattle: the USDA experience. Annu. Rev. Anim. Biosci. 5:309–27 [Google Scholar]
  74. Garcia-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López F, Van Tassel CP. 74.  2016. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. PNAS 113:E3995–4004 [Google Scholar]
  75. VanRaden PM, Olson KM, Null DJ, Hutchison JL. 75.  2011. Harmful recessive effects on fertility detected by absence of homozygous haplotypes. J. Dairy Sci. 94:6153–61 [Google Scholar]
  76. Adams HA, Sonstegard TS, VanRaden PM, Null DJ, VanTassell CP. 76.  et al. 2016. Identification of a nonsense mutation APAF1 that is likely causal for a decrease in reproductive efficiency in Holstein cattle. J. Dairy Sci. 99:6693–701 [Google Scholar]
  77. Han Y, Perñagaricano F. 77.  2016. Unraveling the genomic architecture of bull fertility in Holstein cattle. BMC Genet 17:143 [Google Scholar]
  78. Weigel K. 78.  2016. Description of AgriTech Analytics Holstein Fertility Summary Rep., AgriTech Anal. Visalia CA: http://www.agritech.com/PDF/SSF/dec16/ATA%20Holstein%20Bull%20Fertility%20Description%20-%20December%202016.pdf [Google Scholar]
  79. Seidel GE Jr.. 79.  2014. Update on sexed semen technology in cattle. Animal 8:Suppl. 1160–64 [Google Scholar]
  80. Love CC. 80.  2006. Fertility evaluation. Equine Vet. Educ. 18:165–67 [Google Scholar]
  81. Morris LHA, Allen WR. 81.  2002. Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket. Equine Vet. J. 34:51–60 [Google Scholar]
  82. Brinsko SP. 82.  2006. Insemination doses: How low can we go?. Theriogenology 66:543–50 [Google Scholar]
  83. Allen WH, Brown L, Wright M, Wilsher S. 83.  2007. Reproductive efficiency of Flatrace and National Hunt Thoroughbred mares and stallions in England. Equine Vet. J. 39:438–45 [Google Scholar]
  84. Haadem CS, Nødtvedt A, Farstad W, Thomassen R. 84.  2015. A retrospective cohort study on fertility in the Norwegian Coldblooded trotter after artificial insemination with cooled, shipped versus fresh extended semen. Acta Vet. Scand. 57:77 [Google Scholar]
  85. Knox RV. 85.  2016. Artificial insemination in pigs today. Theriogenology 85:83–93 [Google Scholar]
  86. Roca J, Parrilla I, Bolarin A, Martinez EA, Rodriguez-Martinez H. 86.  2016. Will AI in pigs become more efficient?. Theriogenology 86:187–93 [Google Scholar]
  87. Knox RV. 87.  2015. The fertility of frozen boar sperm when used for artificial insemination. Reprod. Domest. Anim. 50:Suppl. 290–97 [Google Scholar]
  88. Roca J, Broekhuijse ML, Parrilla I, Rodriguez-Martinez H, Martinez EA, Bolarin A. 88.  2015. Boar differences in artificial insemination outcomes: Can they be minimized?. Reprod. Domest. Anim. 50:Suppl. 248–55 [Google Scholar]
  89. Broekhuijse ML, Soštarić E, Feitsma H, Gadella BM. 89.  2012. The value of microscopic semen motility assessment at collection for a commercial artificial insemination center, a retrospective study on factors explaining variation in pig fertility. Theriogenology 77:1466–79.e3 [Google Scholar]
  90. Weitze KF, Waberski D, Wagner-Rietschel H, Richter L, Krieter J. 90.  1994. The onset of heat after weaning, heat duration, and ovulation as major factors in AI timing in sows. Reprod. Domest. Anim. 29:433–43 [Google Scholar]
  91. Althouse G. 91.  2016. Boar stud contributions to sow farm fecundity goals. Proc. 24th Int. Pig Vet. Soc. Congr.9–12 Dublin, Irel: http://imgpublic.mci-group.com/ie/PCO/IPVS_ESPHM_2016_Book_of_Abstracts.pdf [Google Scholar]
  92. Nerin C, Ubeda JL, Alfaro P, Dahmani Y, Anzar M. 92.  et al. 2014. Compounds from multilayer plastic bags cause reproductive failures in artificial insemination. Sci. Rep. 4:4913 [Google Scholar]
  93. Waberski D, Weitze KF, Gleumes T, Schwarz M, Willmen T, Petzoldt R. 93.  1994. Effect of time of insemination relative to ovulation on fertility with liquid and frozen boar semen. Theriogenology 42:831–40 [Google Scholar]
  94. Petrunkina AM, Volker G, Brandt H, Töpfer-Petersen E, Waberski D. 94.  2005. Functional significance of responsiveness to capacitating conditions in boar spermatozoa. Theriogenology 64:1766–82 [Google Scholar]
  95. Suarez SS, Wu M. 95.  2016. Microfluidic devices for the study of sperm migration. Mol. Hum. Reprod. 23:227–34 [Google Scholar]
  96. Ferraz MA, Henning HH, Stout TA, Vos PL, Gadella BM. 96.  2016. Designing 3-dimensional in vitro oviduct culture systems to study mammalian fertilization and embryo production. Ann. Biomed. Eng. 45:1731–44 [erratum Ann. Biomed. Eng 45:1745 [Google Scholar]
  97. Kwon WS, Rahman MS, Lee JS, Yoon SJ, Park YJ, Pang MG. 97.  2015. Discovery of predictive biomarkers for litter size in boar spermatozoa. Mol. Cell. Proteom. 14:1230–40 [Google Scholar]
  98. Thurston LM, Siggins K, Mileham AJ, Watson PF, Holt WV. 98.  2002. Identification of amplified restriction fragment length polymorphism markers linked to genes controlling boar sperm viability following cryopreservation. Biol. Reprod. 66:545–54 [Google Scholar]
  99. Froman DP, Kirby JD, Proudman JA. 99.  2000. Reproduction in poultry: male and female. Reproduction in Farm Animals B Hafez B, ESE Hafez 237–57 Philadelphia, PA: Lippincott Williams & Wilkins, 7th ed.. [Google Scholar]
  100. Bakst MR. 100.  2011. Role of the oviduct in maintaining sustained fertility in hens. J. Anim. Sci. 89:1323–29 [Google Scholar]
  101. Bobr LW, Ogasawara FX, Lorenz FW. 101.  1964. Distribution of spermatozoa in the oviduct and fertility in domestic birds. J. Reprod. Fertil. 8:49–58 [Google Scholar]
  102. Ichikawa Y, Matsuzaki M, Hiyama G, Mizushima S, Sasanami T. 102.  2015. Sperm-egg interaction during fertilization in birds. J. Poult. Sci. 53:173–80 [Google Scholar]
  103. Hemmings N, Birkhead TR. 103.  2015. Polyspermy in birds: sperm numbers and embryo survival. Proc. R. Soc. B Biol. Sci. 282:20151682 [Google Scholar]
  104. Reddy RPK, Sajadi R. 104.  1990. Selection for growth and semen traits in the poultry industry: What can we expect in the future?. Control of Fertility in Domestic Birds JP Brillard 47–59 Paris: INRA [Google Scholar]
  105. McDaniel GR, Craig JV. 105.  1959. Behavior traits, semen measurements and fertility of white leghorn males. Poult. Sci. 38:1005–14 [Google Scholar]
  106. Siegel PB. 106.  1962. A double selection experiment for body weight and breast angle at eight weeks of age in chickens. Genetics 47:1313–19 [Google Scholar]
  107. Barbato GF. 107.  1999. Genetic relationships between selection for growth and reproductive effectiveness. Poult. Sci. 78:444–52 [Google Scholar]
  108. Hale EB. 108.  1955. Duration of fertility and hatchability following natural matings in turkeys. Poult. Sci. 34:228–33 [Google Scholar]
  109. Hale EB, Schein MW. 109.  1962. The behavior of turkeys. The Behavior of Domestic Animals ESE Hafez 531–64 London: Bailliere, Tindall & Cox [Google Scholar]
  110. Carte IF, Leighton AT. 110.  1969. Mating behavior and fertility in the large white turkey. Poult. Sci. 48:104–14 [Google Scholar]
  111. 111. Statista. 2017. Number of Chickens Worldwide from 1900 to 2014 (in Millions of Animals) New York: Statista https://www.statista.com/statistics/263962/number-of-chickens-worldwide-since-1990/ [Google Scholar]
  112. Bell DD, Weaver WD. 112.  2002. Commercial Chicken Meat and Egg Production New York: Springer [Google Scholar]
  113. Bilgili SF, Renden JA, Krista LM. 113.  1984. Relationships among fertility, sperm storage, and shell quality. Poult. Sci. 63:2292–95 [Google Scholar]
  114. Hazel LN, Lush JL. 114.  1942. The efficiency of three methods of selection. J. Hered. 33:393–99 [Google Scholar]
  115. Wishart GJ, Staines HJ. 115.  1999. Measuring sperm: egg interaction to assess breeding efficiency in chickens and turkeys. Poult. Sci. 78:428–36 [Google Scholar]
  116. Sexton TJ. 116.  1986. Relationship of the number of spermatozoa inseminated to fertility of turkey semen stored 6 h at 5°C. Poult. Sci. 27:237–46 [Google Scholar]
  117. Alexander A, Graham JK, Hammerstedt RH, Barbato GF. 117.  1993. Cryopreservation, line and dose effects on fertility and numbers of spermatozoa trapped in the vitelline membrane of hens' eggs. Br. Poult. Sci. 34:757–64 [Google Scholar]
  118. Taneja GC, Gowe RS. 118.  1962. Effect of varying doses of undiluted semen on fertility and hatchability in the domestic fowl. J. Reprod. Fertil. 4:161–74 [Google Scholar]
  119. Bramwell RK, Howarth B. 119.  1992. Preferential attachment of cock spermatozoa to the perivitelline layer directly over the germinal disc of the hen's ovum. Biol. Reprod. 47:1113–17 [Google Scholar]
  120. Wishart GJ. 120.  1997. Quantitative aspects of sperm:egg interaction in chickens and turkeys. Anim. Reprod. Sci. 48:81–92 [Google Scholar]
  121. Barbato GF, Cramer PG, Hammerstedt RH. 121.  1998. A practical in vitro sperm-egg binding assay that detects subfertile males. Biol. Reprod. 58:686–99 [Google Scholar]
  122. Froman DP, McLean DJ. 122.  1996. Objective measurement of sperm motility based upon sperm penetration of Accudenz®. Poult. Sci. 75:776–84 [Google Scholar]
  123. Froman DP, Pizzari T, Feltmann AJ, Castillo-Juarez H, Birkhead TR. 123.  2002. Sperm mobility: mechanisms of fertilizing efficiency, genetic variation and phenotypic relationship with male status in the domestic fowl, Gallus gallus domesticus. . Proc. R. Soc. Lond. B Biol. Sci. 269:607–12 [Google Scholar]
  124. Bowling ER, Froman DP, Davis AJ, Wilson JL. 124.  2003. Attributes of broiler breeder males characterized by low and high sperm mobility. Poult. Sci. 82:1796–801 [Google Scholar]
  125. Beatty RA. 125.  1955. A pilot experiment with heterospermic insemination in the rabbit. J. Genet. 55:325–32 [Google Scholar]
  126. Beatty RA. 126.  1960. Fertility of mixed semen from different rabbits. J. Reprod. Fertil. 1:52–60 [Google Scholar]
  127. Roche JFP, Dziuk PJ, Lodge JR. 127.  1968. Competition between fresh and aged spermatozoa in fertilizing rabbit eggs. J. Reprod. Fertil. 16:155–57 [Google Scholar]
  128. Edwards RG. 128.  1955. Selective fertilization in the mouse. Nature 175:215–16 [Google Scholar]
  129. Beatty RA, Bennett GH, Hall JG, Hancock JL, Stewart DL. 129.  1969. An experiment with heterospermic insemination in cattle. J. Reprod. Fertil. 19:491–502 [Google Scholar]
  130. Saacke RG, Vinson WE, O'Connor ML, Chandler JE, Mullins KJ. 130.  et al. 1980. The relationship of semen quality and fertility: a heterospermic study. Proc. 8th NAAB Tech. Conf. Artif. Insem. Reprod., Milwaukee84–90 Columbia, MO: Natl. Assoc. Anim. Breed. [Google Scholar]
  131. Heydorn KP, Paufler S. 131.  1976. The results of heterospermic inseminations in pigs. Dtsch. Tierarztl. Wochenschr. 83:449–56 [Google Scholar]
  132. Berger T, Dally M. 132.  2001. Do sire dam interactions contribute significantly to fertility comparisons in heterospermic insemination trials?. Theriogenology 56:536–43 [Google Scholar]
  133. Bonnier G, Trulsson S. 133.  1939. Selective fertilization in poultry. Hereditas 25:65–76 [Google Scholar]
  134. Allen CJ, Champion LR. 134.  1955. Competitive fertilization in the fowl. Poult. Sci. 34:1332–42 [Google Scholar]
  135. Martin PA, Reimers TJ, Lodge JR, Dziuk PJ. 135.  1974. The effect of ratios and numbers of spermatozoa mixed from two males on proportions of offspring. J. Reprod. Fertil. 39:251–58 [Google Scholar]
  136. Dziuk PJ. 136.  1996. Factors that influence the proportion of offspring sired by a male following heterospermic insemination. Anim. Reprod. Sci. 43:65–88 [Google Scholar]
  137. Flowers WL, Deller F, Stewart KR. 137.  2016. Use of heterospermic insemination and paternity testing to evaluate the relative contribution of common sperm traits and seminal plasma proteins in boar fertility. Anim. Reprod. Sci. 174:123–31 [Google Scholar]
  138. Napier RAN. 138.  1961. Fertility in the male rabbit. III. Estimation of spermatozoan quality by mixed insemination, and the inheritance of spermatozoan characters. J. Reprod. Fertil. 2:273–89 [Google Scholar]
  139. Martin PA, Dziuk PJ. 139.  1977a. Assessment of relative fertility of males (cockerels and boars) by competitive mating. J. Reprod. Fertil. 49:323–29 [Google Scholar]
  140. Martin PA, Dziuk PJ. 140.  1977b. The effect of storage on spermatozoa in vitro and the composition of the extender on proportion of offspring from heterospermic insemination in the chicken. J. Reprod. Fertil. 50:297–300 [Google Scholar]
  141. Ferreira CER, Savio DB, Guarise AC, Flach MJ, Gastal GDA. 141.  et al. 2015. Contribution of boars to reproductive performance and paternity after homospermic and heterospermic artificial insemination. Reprod. Fertil. Dev. 27:1012–19 [Google Scholar]
  142. Berger T. 142.  1995. Proportion of males with lower fertility spermatozoa estimated from heterospermic insemination. Theriogenology 43:769–75 [Google Scholar]
  143. Overstreet JW, Adams CE. 143.  1971. Mechanisms of selective fertilization in the rabbit: sperm transport and viability. J. Reprod. Fertil. 26:219–31 [Google Scholar]
  144. Stahlberg R, Harlizius B, Weitze KF, Waberski D. 144.  2000. Identification of embryo paternity using polymorphic DNA markers to assess fertilizing capacity of spermatozoa after heterospermic insemination in boars. Theriogenology 53:1365–73 [Google Scholar]
  145. Davis AP, Graham JK, Foote RH. 145.  1987. Homospermic versus heterospermic insemination of zona free hamster eggs to assess fertility of fluorochrome-labeled acrosome-reacted bull spermatozoa. Gamete Res 17:343–54 [Google Scholar]
  146. Braundmeier AG, Demers JM, Shanks RD, Saacke RG, Miller DJ. 146.  2002. Examination of the binding ability of bovine spermatozoa to the zona pellucida as an indicator of fertility. J. Androl. 23:645–51 [Google Scholar]
  147. Puglisi R, Pozzi A, Foglio L, Spano M, Eleuteri P. 147.  et al. 2012. The usefulness of combining traditional sperm assessments with in vitro heterospermic insemination to identify bulls of low fertility as estimated in vivo. . Anim. Reprod. Sci. 132:17–28 [Google Scholar]
  148. Martin PA, Reimers TJ, Lodge JR, Dziuk PJ. 148.  1974. The effect of ratios and numbers of spermatozoa mixed from two males on proportions of offspring. J. Reprod. Fertil. 39:251–58 [Google Scholar]
  149. Petrunkina AM, Gehlhaar R, Drommer W, Waberski D, Töpfer-Petersen E. 149.  2001. Selective sperm binding to pig oviductal epithelium in vitro. Reproduction 121:889–96 [Google Scholar]
  150. Dresdner RD, Katz DF. 150.  1981. Relationship of mammalian sperm motility and morphology to hydrodynamic aspects of cell function. Biol. Reprod. 25:920–30 [Google Scholar]
  151. Ballachey BE, Evenson DP, Saacke RG. 151.  1988. The sperm chromatin structure assay. Relationship with alternate tests of semen quality and heterospermic performance of bulls. J. Androl. 9:109–15 [Google Scholar]
  152. Kasimanickam R, Nebel RL, Peeler ID, Silva WL, Wolf KT. 152.  et al. 2006. Breed differences in competitive indices of Holstein and Jersey bulls and their association with sperm DNA fragmentation index and plasma membrane integrity. Theriogenology 66:1307–15 [Google Scholar]
  153. Acevedo N, Bame J, Kuehn LA, Hohenboken WD, Evenson DP, Saacke RG. 153.  2002. Sperm chromatin structure assay (SCSA) and sperm morphology. Proc. 19th NAAB Tech. Conf. Artif. Insem. Reprod., Milwaukee84–90 Columbia, MO: Natl. Assoc. Anim. Breed. [Google Scholar]
  154. Henault MA, Killian GJ, Kavanaugh JF, Griel LC. 154.  1995. Effect of accessory sex gland fluid from bulls of differing fertilities on the ability of cauda epididymal sperm to penetrate zona-free bovine oocytes. Biol. Reprod. 52:390–97 [Google Scholar]
  155. Henault MA, Killian GJ. 155.  1996. Effect of homologous seminal plasma on the fertilizing ability of ejaculated bull spermatozoa assessed by penetration of zona-free bovine oocytes. J. Reprod. Fertil. 108:199–204 [Google Scholar]
  156. Cole LJ, Davis CL. 156.  1914. The effect of alcohol on the male germ cells studied by means of double matings. Science 39:476–77 [Google Scholar]
  157. Hagen DR, Dziuk PJ. 157.  1981. Detection of the effects of ingested caffeine on fertility of cocks by homospermic and heterospermic insemination. J. Reprod. Fertil. 63:11–15 [Google Scholar]
  158. Bedford JM, Overstreet JW. 158.  1972. A method of objective evaluation of the fertilizing ability of spermatozoa irrespective of genetic character. Reproduction 31:407–14 [Google Scholar]
  159. Purcel VG, Johnson LA, Borkovec AB. 159.  1975. Effects of in-vitro treatment of boar spermatozoa with TEPA on the fertilization and development of pig eggs. J. Reprod. Fertil. 45:549–52 [Google Scholar]
  160. O'Reilly PJ, Graves CN, Dziuk PJ. 160.  1972. Heterospermic insemination of rabbit semen as a means of evaluating techniques of semen handling. J. Reprod. Fertil. 29:49–56 [Google Scholar]
  161. Stewart DL, Spooner GH, Bennett RA, Beatty RA, Hancock JL. 161.  1974. A second experiment with heterospermic insemination in cattle. J. Reprod. Fertil. 36:107–12 [Google Scholar]
  162. Munkittrick TW, Nebel RL, Saacke RG. 162.  1992. Accessory sperm numbers for cattle inseminated with protamine sulfate microcapsules. J. Dairy Sci. 75:725–31 [Google Scholar]
  163. Dalton JC, Nadir S, Bame JH, Saacke RG. 163.  1999. Effect of a deep uterine insemination on spermatozoal accessibility to the ovum in cattle: a competitive insemination study. Theriogenology 51:883–90 [Google Scholar]
  164. Blazak WF, Overstreet JW, Katz DF, Hanson FW. 164.  1982. A competitive in vitro assay of human sperm fertilizing ability utilizing contrasting fluorescent sperm markers. J. Androl. 3:165–71 [Google Scholar]
  165. Parrish JJ, Foote RH. 165.  1985. Fertility differences among male rabbits determined by heterospermic insemination of fluorochrome-labeled spermatozoa. Biol. Reprod. 35:940–49 [Google Scholar]
  166. Mellish A, Baker RD. 166.  1970. Marking boar spermatozoa with fluorochromes for evaluating spermatozoan transport within gilts. J. Anim. Sci. 31:917–22 [Google Scholar]
  167. Vasquez ES, Feugang JM, Willard ST, Ryan PL, Walters KB. 167.  2016. Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa. J. Nanotechnol. 14:20 [Google Scholar]
  168. Garrels W, Talluri TR, Apfelbaum R, Carratalá YP, Bosch P. 168.  et al. 2016. One-step multiplex transgenesis via Sleeping Beauty transposition in cattle. Sci. Rep. 6:21953 [Google Scholar]
  169. Garrels W, Holler S, Taylor U, Herrmann D, Stuckmann C. 169.  et al. 2011. Genotype-independent transmission of transgenic fluorophore protein by boar spermatozoa. PLOS ONE 6:11e27563 [Google Scholar]
  170. Flint AF, Chapman PL, Seidel GE Jr.. 170.  2003. Fertility assessment through heterospermic inseminations of flow-sorted sperm in cattle. J. Anim. Sci. 81:1814–22 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error