1932

Abstract

Vaccination is essential in livestock farming and in companion animal ownership. Nucleic acid vaccines based on DNA or RNA provide an elegant alternative to those classical veterinary vaccines that have performed suboptimally. Recent advances in terms of rational design, safety, and efficacy have strengthened the position of nucleic acid vaccines in veterinary vaccinology. The present review focuses on replicon vaccines designed for veterinary use. Replicon vaccines are self-amplifying viral RNA sequences that, in addition to the sequence encoding the antigen of interest, contain all elements necessary for RNA replication. Vaccination results in high levels of in situ antigen expression and induction of potent immune responses. Both positive- and negative-stranded viruses have been used to construct replicons, and they can be delivered as RNA, DNA, or viral replicon particles. An introduction to the biology and the construction of different viral replicon vectors is given, and examples of veterinary replicon vaccine applications are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-031716-032328
2017-02-08
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/animal/5/1/annurev-animal-031716-032328.html?itemId=/content/journals/10.1146/annurev-animal-031716-032328&mimeType=html&fmt=ahah

Literature Cited

  1. Lombard M, Pastoret PP, Moulin AM. 1.  2007. A brief history of vaccines and vaccination. Rev. Sci. Tech. Off. Int. Epizoot. 26:29–48 [Google Scholar]
  2. Zuckermann FA, Garcia EA, Luque ID, Christopher-Hennings J, Doster A. 2.  et al. 2007. Assessment of the efficacy of commercial porcine reproductive and respiratory syndrome virus (PRRSV) vaccines based on measurement of serologic response, frequency of gamma-IFN-producing cells and virological parameters of protection upon challenge. Vet. Microbiol. 123:69–85 [Google Scholar]
  3. Song D, Moon H, Kang B. 3.  2015. Porcine epidemic diarrhea: a review of current epidemiology and available vaccines. Clin. Exp. Vaccine Res. 4166–76 [Google Scholar]
  4. Meeusen ENT, Walker J, Peters A, Pastoret P-P, Jungersen G. 4.  2007. Current status of veterinary vaccines. Clin. Microbiol. Rev. 20:489–510 [Google Scholar]
  5. 5. Food Agric. Organ./World Organ. Anim. Health 2011. Global rinderpest eradication - Final report, Food and Agriculture Organization/World Organisation for Animal Health. http://www.fao.org/ag/againfo/resources/documents/AH/GREP_flyer.pdf
  6. Normile D. 6.  2008. Driven to extinction. Science 319:1606–9 [Google Scholar]
  7. Garon J, Seib K, Orenstein WA, Gonzalez AR, Blanc DC. 7.  et al. 2016. Polio endgame: the global switch from tOPV to bOPV. Expert Rev. Vaccines 15:6693–708 [Google Scholar]
  8. Beck AS, Barrett ADT. 8.  2015. Current status and future prospects of yellow fever vaccines. Expert Rev. Vaccines 14:1479–92 [Google Scholar]
  9. Coetzee P, Stokstad M, Venter EH, Myrmel M, Van Vuuren M. 9.  2012. Bluetongue: a historical and epidemiological perspective with the emphasis on South Africa. Virol. J. 9198 [Google Scholar]
  10. Pliaka V, Kyriakopoulou Z, Markoulatos P. 10.  2012. Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis. Expert Rev. Vaccines 11:609–28 [Google Scholar]
  11. Flanagan EB, Zamparo JM, Ball LA, Rodriguez LL, Wertz GW. 11.  2001. Rearrangement of the genes of vesicular stomatitis virus eliminates clinical disease in the natural host: new strategy for vaccine development. J. Virol. 756107–14 [Google Scholar]
  12. Peters MA, Crabb BS, Tivendale KA, Browning GF. 12.  2007. Attenuation of chicken anemia virus by site-directed mutagenesis of VP2. J. Gen. Virol. 882168–75 [Google Scholar]
  13. Pijlman GP. 13.  2015. Enveloped virus-like particles as vaccines against pathogenic arboviruses. Biotechnol. J. 10:659–70 [Google Scholar]
  14. Metz SW, Martina BE, van den Doel P, Geertsema C, Osterhaus AD. 14.  et al. 2013. Chikungunya virus-like particles are more immunogenic in a lethal AG129 mouse model compared to glycoprotein E1 or E2 subunits. Vaccine 316092–96 [Google Scholar]
  15. Kutzler MA, Weiner DB. 15.  2008. DNA vaccines: Ready for prime time?. Nat. Rev. Genet. 9776–88 [Google Scholar]
  16. Vander Veen RL, Harris DLH, Kamrud KI. 16.  2012. Alphavirus replicon vaccines. Anim. Health Res. Rev. 13:1–9 [Google Scholar]
  17. Dufour V. 17.  2001. DNA vaccines: new applications for veterinary medicine. Vet. Sci. Tomorrow 21–26 [Google Scholar]
  18. Bower JF, Green TD, Ross TM. 18.  2004. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1. Virology 328:292–300 [Google Scholar]
  19. Salonius K, Simard N, Harland R, Ulmer JB. 19.  2007. The road to licensure of a DNA vaccine. Curr. Opin. Investig. Drugs 8635–41 [Google Scholar]
  20. Saade F, Petrovsky N. 20.  2012. Technologies for enhanced efficacy of DNA vaccines. Expert Rev. Vaccines 11:189–209 [Google Scholar]
  21. Vander Veen RL, Loynachan AT, Mogler MA, Russell BJ, Harris DLH, Kamrud KI. 21.  2012. Safety, immunogenicity, and efficacy of an alphavirus replicon-based swine influenza virus hemagglutinin vaccine. Vaccine 301944–50 [Google Scholar]
  22. Dhama K, Mahendran M, Gupta PK, Rai A. 22.  2008. DNA vaccines and their applications in veterinary practice: current perspectives. Vet. Res. Commun. 32341–56 [Google Scholar]
  23. Redding L, Weiner DB. 23.  2009. DNA vaccines in veterinary use. Expert Rev. Vaccines 81251–76 [Google Scholar]
  24. Mogler MA, Kamrud KI. 24.  2015. RNA-based viral vectors. Expert Rev. Vaccines 14:283–312 [Google Scholar]
  25. Khromykh AA. 25.  2000. Replicon-based vectors of positive strand RNA viruses. Curr. Opin. Mol. Ther. 2555–69 [Google Scholar]
  26. Pijlman GP, Suhrbier A, Khromykh AA. 26.  2006. Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opin. Biol. Ther. 6135–45 [Google Scholar]
  27. Rayner JO, Dryga SA, Kamrud KI. 27.  2002. Alphavirus vectors and vaccination. Rev. Med. Virol 12:279–96 [Google Scholar]
  28. Ljungberg K, Liljeström P. 28.  2015. Self-replicating alphavirus RNA vaccines. Expert Rev. Vaccines 14:177–94 [Google Scholar]
  29. Lundstrom K. 29.  2014. Alphavirus-based vaccines. Viruses 62392–415 [Google Scholar]
  30. Abbas AK, Lichtman AH, Pillai S. 30.  2014. Innate immunity. Cellular and Molecular Immunology51–86 Philadelphia: Saunders Elsevier.544 [Google Scholar]
  31. Varnavski AN, Khromykh AA. 31.  1999. Noncytopathic flavivirus replicon RNA-based system for expression and delivery of heterologous genes. Virology 255:366–75 [Google Scholar]
  32. Anraku I, Harvey TJ, Linedale R, Gardner J, Harrich D. 32.  et al. 2002. Kunjin virus replicon vaccine vectors induce protective CD8+ T-cell immunity. J. Virol. 763791–99 [Google Scholar]
  33. Kuhn RJ. 33.  2007. Togaviridae: the viruses and their replication. Fields Virology DM Knipe, PM Howley 1001–22 Philadelphia: Lippincott-Raven [Google Scholar]
  34. Xiong C, Levis R, Shen P, Schlesinger S, Rice C, Huang H. 34.  1989. Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243:1188–91 [Google Scholar]
  35. Jones KL, Drane D, Gowans EJ. 35.  2007. Long-term storage of DNA-free RNA for use in vaccine studies. BioTechniques 43675–81 [Google Scholar]
  36. Houseley J, Tollervey D. 36.  2009. The many pathways of RNA degradation. Cell 136:763–76 [Google Scholar]
  37. Cu Y, Broderick KE, Banerjee K, Hickman J, Otten G. 37.  et al. 2013. Enhanced delivery and potency of self-amplifying mRNA vaccines by electroporation in situ. Vaccines 1367–83 [Google Scholar]
  38. Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A. 38.  et al. 2012. Nonviral delivery of self-amplifying RNA vaccines. PNAS 10914604–9 [Google Scholar]
  39. Tavernier G, Andries O, Demeester J, Sanders NN, De Smedt SC, Rejman J. 39.  2011. mRNA as gene therapeutic: how to control protein expression. J. Control Release 150:238–47 [Google Scholar]
  40. Guo T-C, Johansson DX, Liljeström P, Evensen Ø, Haugland Ø. 40.  2015. Modification of a salmonid alphavirus replicon vector for enhanced expression of heterologous antigens. J. Gen. Virol. 96565–70 [Google Scholar]
  41. Moriette C, Leberre M, Lamoureux A, Lai T, Brémont M. 41.  2006. Recovery of a recombinant salmonid alphavirus fully attenuated and protective for rainbow trout. J. Virol. 804088–98 [Google Scholar]
  42. Geiss BJ, Shimonkevitz LH, Sackal CI, Olson KE. 42.  2007. Recombination-ready Sindbis replicon expression vectors for transgene expression. Virol. J. 41–11 [Google Scholar]
  43. Xiao S, Chen H, Fang L, Liu C, Zhang H. 43.  et al. 2004. Comparison of immune responses and protective efficacy of suicidal DNA vaccine and conventional DNA vaccine encoding glycoprotein C of pseudorabies virus in mice. Vaccine 22:345–51 [Google Scholar]
  44. Yu X, Xiao S, Fang L, Jiang Y, Chen H. 44.  2006. Enhanced immunogenicity to foot-and-mouth disease virus in mice vaccination with alphaviral replicon-based DNA vaccine expressing the capsid precursor polypeptide (P1). Virus Genes 33337–44 [Google Scholar]
  45. Wolf A, Hodneland K, Frost P, Braaen S, Rimstad E. 45.  2013. A hemagglutinin-esterase-expressing salmonid alphavirus replicon protects Atlantic salmon (Salmo salar) against infectious salmon anemia (ISA). Vaccine 31661–69 [Google Scholar]
  46. Wolf A, Hodneland K, Frost P, Hoeijmakers M, Rimstad E. 46.  2014. Salmonid alphavirus-based replicon vaccine against infectious salmon anemia (ISA): impact of immunization route and interactions of the replicon vector. Fish Shellfish Immunol 36383–92 [Google Scholar]
  47. Abdullah A, Olsen CM, Hodneland K, Rimstad E. 47.  2015. A polyprotein-expressing salmonid alphavirus replicon induces modest protection in Atlantic salmon (Salmo salar) against infectious pancreatic necrosis. Viruses 7252–67 [Google Scholar]
  48. Hikke MC, Braaen S, Villoing S, Hodneland K, Geertsema C. 48.  et al. 2014. Salmonid alphavirus glycoprotein E2 requires low temperature and E1 for virion formation and induction of protective immunity. Vaccine 326206–12 [Google Scholar]
  49. Dunham SP. 49.  2002. The application of nucleic acid vaccines in veterinary medicine. Res. Vet. Sci. 73:9–16 [Google Scholar]
  50. Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF. 50.  1997. Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239389–401 [Google Scholar]
  51. Frolov I, Frolova E, Schlesinger S. 51.  1997. Sindbis virus replicons and Sindbis virus: assembly of chimeras and of particles deficient in virus RNA. J. Virol. 712819–29 [Google Scholar]
  52. Smerdou C, Liljeström P. 52.  1999. Two-helper RNA system for production of recombinant Semliki Forest virus particles. J. Virol. 731092–98 [Google Scholar]
  53. 53. FiercePharma 2015. Harrisvaccines receives USDA conditional license for avian influenza vaccine News Release, Sept. 28 [Google Scholar]
  54. Rolls MM, Webster P, Balba NH, Rose JK. 54.  1994. Novel infectious particles generated by expression of the vesicular stomatitis virus glycoprotein from a self-replicating RNA. Cell 79497–506 [Google Scholar]
  55. Tretyakova I, Lukashevich IS, Glass P, Wang E, Weaver S, Pushko P. 55.  2013. Novel vaccine against Venezuelan equine encephalitis combines advantages of DNA immunization and a live attenuated vaccine. Vaccine 311019–25 [Google Scholar]
  56. Berge TO, Banks IS, Tigertt WD. 56.  1961. Attenuation of Venezuelan equine encephalomyelitis virus by in vitro cultivation in guinea-pig heart cells. Am. J. Epidemiol. 73209–18 [Google Scholar]
  57. Wang S, Fang L, Fan H, Jiang Y, Pan Y. 57.  et al. 2007. Construction and immunogenicity of pseudotype baculovirus expressing GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine 25:8220–27 [Google Scholar]
  58. Wu Q, Xu F, Fang L, Xu J, Li B. 58.  et al. 2013. Enhanced immunogenicity induced by an alphavirus replicon-based pseudotyped baculovirus vaccine against porcine reproductive and respiratory syndrome virus. J. Virol. Methods 187:251–58 [Google Scholar]
  59. Sun Y, Li H-Y, Tian D-Y, Han Q-Y, Zhang X. 59.  et al. 2011. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever. Vaccine 29:8364–72 [Google Scholar]
  60. Sun Y, Li N, Li H-Y, Li M, Qiu H-J. 60.  2010. Enhanced immunity against classical swine fever in pigs induced by prime-boost immunization using an alphavirus replicon-vectored DNA vaccine and a recombinant adenovirus. Vet. Immunol. Immunopathol. 137:20–27 [Google Scholar]
  61. Lindenbach BD, Thiel H-J, Rice CM. 61.  2007. Flaviviridae: the viruses and their replication. Fields Virology DM Knipe, PM Howley Philadelphia: Lippincott-Raven [Google Scholar]
  62. Mukhopadhyay S, Kuhn RJ, Rossmann MG. 62.  2005. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 313–22 [Google Scholar]
  63. Aubry F, Nougairède A, Gould EA, de Lamballerie X. 63.  2015. Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antivir. Res. 114:67–85 [Google Scholar]
  64. Khromykh AA, Westaway EG. 64.  1997. Subgenomic replicons of the flavivirus Kunjin: construction and applications. J. Virol. 711497–505 [Google Scholar]
  65. Varnavski AN, Young PR, Khromykh AA. 65.  2000. Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors. J. Virol. 744394–403 [Google Scholar]
  66. Liu WJ, Sedlak PL, Kondratieva N, Khromykh AA. 66.  2002. Complementation analysis of the flavivirus Kunjin NS3 and NS5 proteins defines the minimal regions essential for formation of a replication complex and shows a requirement of NS3 in cis for virus assembly. J. Virol. 7610766–75 [Google Scholar]
  67. Harvey TJ, Liu WJ, Wang XJ, Linedale R, Jacobs M. 67.  et al. 2004. Tetracycline-inducible packaging cell line for production of flavivirus replicon particles. J. Virol. 78531–38 [Google Scholar]
  68. Khromykh AA, Sedlak PL, Guyatt KJ, Hall RA, Westaway EG. 68.  1999. Efficient trans-complementation of the flavivirus Kunjin NS5 protein but not of the NS1 protein requires its coexpression with other components of the viral replicase. J. Virol. 7310272–80 [Google Scholar]
  69. Khromykh AA, Varnavski AN, Westaway EG. 69.  1998. Encapsidation of the flavivirus Kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans. J. Virol. 725967–77 [Google Scholar]
  70. Pyankov OV, Bodnev SA, Pyankova OG, Solodkyi VV, Pyankov SA. 70.  et al. 2015. A Kunjin replicon virus-like particle vaccine provides protection against Ebola virus infection in nonhuman primates. J. Infect. Dis. 212:S368–S71 [Google Scholar]
  71. Lindenbach BD, Rice CM. 71.  1997. trans-complementation of yellow fever virus NS1 reveals a role in early RNA replication. J. Virol. 719608–17 [Google Scholar]
  72. Jones CT, Patkar CG, Kuhn RJ. 72.  2005. Construction and applications of yellow fever virus replicons. Virology 331247–59 [Google Scholar]
  73. Shustov AV, Mason PW, Frolov I. 73.  2007. Production of pseudoinfectious yellow fever virus with a two-component genome. J. Virol. 8111737–48 [Google Scholar]
  74. Scholle F, Girard YA, Zhao Q, Higgs S, Mason PW. 74.  2004. trans-packaged West Nile virus-like particles: infectious properties in vitro and in infected mosquito vectors. J. Virol. 7811605–14 [Google Scholar]
  75. Suzuki R, Winkelmann ER, Mason PW. 75.  2009. Construction and characterization of a single-cycle chimeric flavivirus vaccine candidate that protects mice against lethal challenge with dengue virus type 2. J. Virol. 831870–80 [Google Scholar]
  76. Gehrke R, Ecker M, Aberle SW, Allison SL, Heinz FX, Mandl CW. 76.  2003. Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line. J. Virol. 778924–33 [Google Scholar]
  77. Yoshii K, Hayasaka D, Goto A, Kawakami K, Kariwa H, Takashima I. 77.  2005. Packaging the replicon RNA of the Far-Eastern subtype of tick-borne encephalitis virus into single-round infectious particles: development of a heterologous gene delivery system. Vaccine 23:3946–56 [Google Scholar]
  78. Yoshii K, Holbrook M. 78.  2009. Sub-genomic replicon and virus-like particles of Omsk hemorrhagic fever virus. Arch. Virol. 154:573–80 [Google Scholar]
  79. Lai C-Y, Hu H-P, King C-C, Wang W-K. 79.  2008. Incorporation of dengue virus replicon into virus-like particles by a cell line stably expressing precursor membrane and envelope proteins of dengue virus type 2. J. Biomed. Sci 15:15–27 [Google Scholar]
  80. Kofler RM, Aberle JH, Aberle SW, Allison SL, Heinz FX, Mandl CW. 80.  2004. Mimicking live flavivirus immunization with a noninfectious RNA vaccine. PNAS 101:1951–56 [Google Scholar]
  81. Mandl CW. 81.  2004. Flavivirus immunization with capsid-deletion mutants: basics, benefits, and barriers. Viral Immunol. 17:461–72 [Google Scholar]
  82. Aberle JH, Aberle SW, Kofler RM, Mandl CW. 82.  2005. Humoral and cellular immune response to RNA immunization with flavivirus replicons derived from tick-borne encephalitis virus. J. Virol. 7915107–13 [Google Scholar]
  83. Chang DC, Liu WJ, Anraku I, Clark DC, Pollitt CC. 83.  et al. 2008. Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus. Nat. Biotechnol. 26:571–77 [Google Scholar]
  84. Tautz N, Tews BA, Meyers G. 84.  2015. The molecular biology of pestiviruses. Adv. Virus Res. 9347–160 [Google Scholar]
  85. Reddy JR, Kwang J, Varthakavi V, Lechtenberg KF, Minocha HC. 85.  1999. Semliki Forest virus vector carrying the bovine viral diarrhea virus NS3 (p80) cDNA induced immune responses in mice and expressed BVDV protein in mammalian cells. Comp. Immunol. Microbiol. Infect. Dis. 22:231–46 [Google Scholar]
  86. Loy JD, Gander J, Mogler M, Vander Veen R, Ridpath J. 86.  et al. 2013. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV) in cattle. Virol. J. 1035 [Google Scholar]
  87. Horscroft N, Bellows D, Ansari I, Lai VCH, Dempsey S. 87.  et al. 2005. Establishment of a subgenomic replicon for bovine viral diarrhea virus in Huh-7 cells and modulation of interferon-regulated factor 3-mediated antiviral response. J. Virol. 792788–96 [Google Scholar]
  88. Reimann I, Semmler I, Beer M. 88.  2007. Packaged replicons of bovine viral diarrhea virus are capable of inducing a protective immune response. Virology 366377–86 [Google Scholar]
  89. Widjojoatmodjo MN, Van Gennip HGP, Bouma A, Van Rijn PA, Moormann RJM. 89.  2000. Classical swine fever virus Erns deletion mutants: trans-complementation and potential use as nontransmissible, modified, live-attenuated marker vaccines. J. Virol. 742973–80 [Google Scholar]
  90. Van Gennip HGP, Bouma A, Van Rijn PA, Widjojoatmodjo MN, Moormann RJM. 90.  2002. Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of Erns or E2 of CSFV. Vaccine 20:1544–56 [Google Scholar]
  91. Frey CF, Bauhofer O, Ruggli N, Summerfield A, Hofmann MA, Tratschin J-D. 91.  2006. Classical swine fever virus replicon particles lacking the Erns gene: a potential marker vaccine for intradermal application. Vet. Res. 37655–70 [Google Scholar]
  92. Maurer R, Stettler P, Ruggli N, Hofmann MA, Tratschin JD. 92.  2005. Oronasal vaccination with classical swine fever virus (CSFV) replicon particles with either partial or complete deletion of the E2 gene induces partial protection against lethal challenge with highly virulent CSFV. Vaccine 23:3318–28 [Google Scholar]
  93. Yang Z, Wu R, Li RW, Li L, Xiong Z. 93.  et al. 2012. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections. Virus Res 165:61–70 [Google Scholar]
  94. Jiang P, Liu Y, Ma H-C, Paul AV, Wimmer E. 94.  2014. Picornavirus morphogenesis. Microbiol. Mol. Biol. Rev. 78418–37 [Google Scholar]
  95. Jia X-Y, Van Eden M, Busch MG, Ehrenfeld E, Summers DF. 95.  1998. trans-encapsidation of a poliovirus replicon by different picornavirus capsid proteins. J. Virol. 727972–77 [Google Scholar]
  96. Kaplan G, Racaniello VR. 96.  1988. Construction and characterization of poliovirus subgenomic replicons. J. Virol. 621687–96 [Google Scholar]
  97. Tulloch F, Pathania U, Luke GA, Nicholson J, Stonehouse NJ. 97.  et al. 2014. FMDV replicons encoding green fluorescent protein are replication competent. J. Virol. Methods 209:35–40 [Google Scholar]
  98. Brito BP, Rodriguez LL, Hammond JM, Pinto J, Perez AM. 98.  2015. Review of the global distribution of foot-and-mouth disease virus from 2007 to 2014. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.12373 [Google Scholar]
  99. Sobrino F, Domingo E. 99.  2001. Foot-and-mouth disease in Europe. EMBO Rep 2459–61 [Google Scholar]
  100. Loving CL, Osorio FA, Murtaugh MP, Zuckermann FA. 100.  2015. Innate and adaptive immunity against porcine reproductive and respiratory syndrome virus. Vet. Immunol. Immunopathol. 167:1–14 [Google Scholar]
  101. Huang Q, Yao Q, Fan H, Xiao S, Si Y, Chen H. 101.  2009. Development of a vaccine vector based on a subgenomic replicon of porcine reproductive and respiratory syndrome virus. J. Virol. Methods 160:22–28 [Google Scholar]
  102. Jeeva S, Lee J-A, Park S-Y, Song C-S, Choi I-S, Lee J-B. 102.  2014. Development of porcine respiratory and reproductive syndrome virus replicon vector for foot-and-mouth disease vaccine. Clin. Exp. Vaccine Res. 3100–9 [Google Scholar]
  103. Pujhari S, Baig TT, Hansra S, Zakhartchouk AN. 103.  2013. Development of a DNA-launched replicon as a vaccine for porcine reproductive and respiratory syndrome virus. Virus Res 173:321–26 [Google Scholar]
  104. Song B-H, Kim J-M, Kim J-K, Jang H-S, Yun G-N. 104.  et al. 2011. Packaging of porcine reproductive and respiratory syndrome virus replicon RNA by a stable cell line expressing its nucleocapsid protein. J. Microbiol. 49516–23 [Google Scholar]
  105. Kortekaas J, Oreshkova N, Cobos-Jiménez V, Vloet RPM, Potgieter CA, Moormann RJM. 105.  2011. Creation of a nonspreading Rift Valley fever virus. J. Virol. 8512622–30 [Google Scholar]
  106. Acheson NH. 106.  2011. Fundamentals of Molecular Virology Hoboken, NJ: John Wiley & Sons.500 [Google Scholar]
  107. Oreshkova N, van Keulen L, Kant J, Moormann RJM, Kortekaas J. 107.  2013. A single vaccination with an improved nonspreading Rift Valley fever virus vaccine provides sterile immunity in lambs. PLOS ONE 8e77461 [Google Scholar]
  108. Wichgers Schreur PJ, Oreshkova N, Harders F, Bossers A, Moormann RJM, Kortekaas J. 108.  2014. Paramyxovirus-based production of Rift Valley fever virus replicon particles. J. Gen. Virol. 952638–48 [Google Scholar]
  109. Dodd KA, Bird BH, Metcalfe MG, Nichol ST, Albariño CG. 109.  2012. Single-dose immunization with virus replicon particles confers rapid robust protection against Rift Valley fever virus challenge. J. Virol. 864204–12 [Google Scholar]
  110. Bukreyev A, Skiadopoulos MH, Murphy BR, Collins PL. 110.  2006. Nonsegmented negative-strand viruses as vaccine vectors. J. Virol. 8010293–306 [Google Scholar]
  111. Bernloehr C, Bossow S, Ungerechts G, Armeanu S, Neubert WJ. 111.  et al. 2004. Efficient propagation of single gene deleted recombinant Sendai virus vectors. Virus Res 99193–97 [Google Scholar]
  112. Iida A, Inoue M. 112.  2013. Concept and technology underlying sendai virus (SeV) vector development. Sendai Virus Vector: Advantages and Applications Y Nagai 69–89 Tokyo: Springer Japan [Google Scholar]
  113. Halbherr SJ, Brostoff T, Tippenhauer M, Locher S, Berger Rentsch M, Zimmer G. 113.  2013. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus. PLOS ONE 8e66059 [Google Scholar]
  114. Kalhoro NH, Veits J, Rautenschlein S, Zimmer G. 114.  2009. A recombinant vesicular stomatitis virus replicon vaccine protects chickens from highly pathogenic avian influenza virus (H7N1). Vaccine 27:1174–83 [Google Scholar]
  115. Schwartz JA, Buonocore L, Roberts A, Suguitan A Jr., Kobasa D. 115.  et al. 2007. Vesicular stomatitis virus vectors expressing avian influenza H5 HA induce cross-neutralizing antibodies and long-term protection. Virology 366166–73 [Google Scholar]
  116. Kochinger S, Renevey N, Hofmann MA, Zimmer G. 116.  2014. Vesicular stomatitis virus replicon expressing the VP2 outer capsid protein of bluetongue virus serotype 8 induces complete protection of sheep against challenge infection. Vet. Res. 4564 [Google Scholar]
  117. Li N, Qiu H-J, Zhao J-J, Li Y, Wang M-J. 117.  et al. 2007. A Semliki Forest virus replicon vectored DNA vaccine expressing the E2 glycoprotein of classical swine fever virus protects pigs from lethal challenge. Vaccine 25:2907–12 [Google Scholar]
  118. Phenix KV, Wark K, Luke CJ, Skinner MA, Smyth JA. 118.  et al. 2001. Recombinant Semliki Forest virus vector exhibits potential for avian virus vaccine development. Vaccine 19:3116–23 [Google Scholar]
  119. Fleeton MN, Chen M, Berglund P, Rhodes G, Parker SE. 119.  et al. 2001. Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J. Infect. Dis. 183:1395–98 [Google Scholar]
  120. Morris-Downes MM, Sheahan BJ, Fleeton MN, Liljeström P, Reid HW, Atkins GJ. 120.  2001. A recombinant Semliki Forest virus particle vaccine encoding the prME and NS1 proteins of louping ill virus is effective in a sheep challenge model. Vaccine 19:3877–84 [Google Scholar]
  121. Fleeton MN, Liljeström P, Sheahan BJ, Atkins GJ. 121.  2000. Recombinant Semliki Forest virus particles expressing louping ill virus antigens induce a better protective response than plasmid-based DNA vaccines or an inactivated whole particle vaccine. J. Gen. Virol. 81749–58 [Google Scholar]
  122. Mossman SP, Bex F, Berglund P, Arthos J, O'Neil SP. 122.  et al. 1996. Protection against lethal simian immunodeficiency virus SIVsmmPBj14 disease by a recombinant Semliki Forest virus gp160 vaccine and by a gp120 subunit vaccine. J. Virol. 701953–60 [Google Scholar]
  123. Nilsson C, Mäkitalo B, Berglund P, Bex F, Liljeström P. 123.  et al. 2001. Enhanced simian immunodeficiency virus-specific immune responses in macaques induced by priming with recombinant Semliki Forest virus and boosting with modified vaccinia virus Ankara. Vaccine 19:3526–36 [Google Scholar]
  124. Schell JB, Bahl K, Folta-Stogniew E, Rose N, Buonocore L. 124.  et al. 2015. Antigenic requirement for Gag in a vaccine that protects against high-dose mucosal challenge with simian immunodeficiency virus. Virology 476405–12 [Google Scholar]
  125. Schell JB, Rose NF, Bahl K, Diller K, Buonocore L. 125.  et al. 2011. Significant protection against high-dose simian immunodeficiency virus challenge conferred by a new prime-boost vaccine regimen. J. Virol. 855764–72 [Google Scholar]
  126. Cabrera A, Sáez D, Céspedes S, Andrews E, Oñate A. 126.  2009. Vaccination with recombinant Semliki Forest virus particles expressing translation initiation factor 3 of Brucella abortus induces protective immunity in BALB/c mice. Immunobiology 214:467–74 [Google Scholar]
  127. Dar PA, Ganesh K, Nagarajan G, Sarika S, Reddy GR, Suryarayana VVS. 127.  2012. Sindbis virus replicase-based DNA vaccine construct encoding FMDV-specific multivalent epitope gene: studies on its immune responses in guinea pigs. Scand. J. Immunol. 76:345–53 [Google Scholar]
  128. Saxena S, Dahiya SS, Sonwane AA, Patel CL, Saini M. 128.  et al. 2008. A Sindbis virus replicon-based DNA vaccine encoding the rabies virus glycoprotein elicits immune responses and complete protection in mice from lethal challenge. Vaccine 26:6592–601 [Google Scholar]
  129. Dufour V, De Boisséson C. 129.  2003. Use of a Sindbis virus DNA-based expression vector for induction of protective immunity against pseudorabies virus in pigs. Vet. Immunol. Immunopathol. 93125–34 [Google Scholar]
  130. Heise MT, Whitmore A, Thompson J, Parsons M, Grobbelaar AA. 130.  et al. 2009. An alphavirus replicon-derived candidate vaccine against Rift Valley fever virus. Epidemiol. Infect. 137:1309–18 [Google Scholar]
  131. Bhardwaj N, Heise MT, Ross TM. 131.  2010. Vaccination with DNA plasmids expressing Gn coupled to C3d or alphavirus replicons expressing Gn protects mice against Rift Valley fever virus. PLOS Negl. Trop. Dis. 4725 [Google Scholar]
  132. Gorchakov R, Volkova E, Yun N, Petrakova O, Seth Linde N. 132.  et al. 2007. Comparative analysis of the alphavirus-based vectors expressing Rift Valley fever virus glycoproteins. Virology 366212–25 [Google Scholar]
  133. Balasuriya UBR, Heidner HW, Hedges JF, Williams JC, Davis NL. 133.  et al. 2000. Expression of the two major envelope proteins of equine arteritis virus as a heterodimer is necessary for induction of neutralizing antibodies in mice immunized with recombinant Venezuelan equine encephalitis virus replicon particles. J. Virol. 7410623–30 [Google Scholar]
  134. Balasuriya UBR, Heidner HW, Davis NL, Wagner HM, Hullinger PJ. 134.  et al. 2002. Alphavirus replicon particles expressing the two major envelope proteins of equine arteritis virus induce high level protection against challenge with virulent virus in vaccinated horses. Vaccine 20:1609–17 [Google Scholar]
  135. Schultz-Cherry S, Dybing JK, Davis NL, Williamson C, Suarez DL. 135.  et al. 2000. Influenza virus (A/HK/156/97) hemagglutinin expressed by an alphavirus replicon system protects chickens against lethal infection with Hong Kong-origin H5N1 viruses. Virology 278:55–59 [Google Scholar]
  136. Diaz-San Segundo F, Dias CCA, Moraes MP, Weiss M, Perez-Martin E. 136.  et al. 2013. Venezuelan equine encephalitis replicon particles can induce rapid protection against foot-and-mouth disease virus. J. Virol. 875447–60 [Google Scholar]
/content/journals/10.1146/annurev-animal-031716-032328
Loading
/content/journals/10.1146/annurev-animal-031716-032328
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error