1932

Abstract

Genetically engineered (GE) livestock were first reported in 1985, and yet only a single GE food animal, the fast-growing AquAdvantage salmon, has been commercialized. There are myriad interconnected reasons for the slow progress in this once-promising field, including technical issues, the structure of livestock industries, lack of public research funding and investment, regulatory obstacles, and concern about public opinion. This review focuses on GE livestock that have been produced and documents the difficulties that researchers and developers have encountered en route. Additionally, the costs associated with delayed commercialization of GE livestock were modeled using three case studies: GE mastitis-resistant dairy cattle, genome-edited porcine reproductive and respiratory syndrome virus–resistant pigs, and the AquAdvantage salmon. Delays of 5 or 10 years in the commercialization of GE livestock beyond the normative 10-year GE product evaluation period were associated with billions of dollars in opportunity costs and reduced global food security.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-061220-023052
2021-02-15
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/animal/9/1/annurev-animal-061220-023052.html?itemId=/content/journals/10.1146/annurev-animal-061220-023052&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–83
    [Google Scholar]
  2. 2. 
    Wagner TE, Murray FA. 1985. Genetic engineering of laboratory and livestock mammals. J. Anim. Sci. 61:Suppl. 325–37
    [Google Scholar]
  3. 3. 
    Simons JP, Land RB. 1987. Transgenic livestock. J. Reprod. Fertil. Suppl. 34:237–50
    [Google Scholar]
  4. 4. 
    First NL. 1990. New animal breeding techniques and their application. J. Reprod. Fertil. Suppl. 41:3–14
    [Google Scholar]
  5. 5. 
    Womack JE. 1987. Genetic engineering in agriculture: animal genetics and development. Trends Genet 3:65–68
    [Google Scholar]
  6. 6. 
    Bov. Genome Seq. Anal. Consort Elsik CG, Tellam RL, Worley KC, Gibbs RA 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522–28
    [Google Scholar]
  7. 7. 
    Hayes BJ, Daetwyler HD. 2019. 1000 Bull Genomes Project to map simple and complex genetic traits in cattle: applications and outcomes. Annu. Rev. Anim. Biosci. 7:89–102
    [Google Scholar]
  8. 8. 
    Int. Chick. Genome Seq. Consort 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716
    [Google Scholar]
  9. 9. 
    Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–98
    [Google Scholar]
  10. 10. 
    Dong Y, Xie M, Jiang Y, Xiao NQ, Du XY 2013. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 31:135–41
    [Google Scholar]
  11. 11. 
    Jiang Y, Xie M, Chen WB, Talbot R, Maddox JF 2014. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344:1168–73
    [Google Scholar]
  12. 12. 
    Lien S, Koop BF, Sandve SR, Miller JR, Kent MP 2016. The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–5
    [Google Scholar]
  13. 13. 
    Meuwissen TH, Hayes BJ, Goddard ME 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–29
    [Google Scholar]
  14. 14. 
    Van Eenennaam AL, Weigel KA, Young AE, Cleveland MA, Dekkers JCM 2014. Applied animal genomics: results from the field. Annu. Rev. Anim. Biosci. 2:105–39
    [Google Scholar]
  15. 15. 
    Georges M, Charlier C, Hayes B 2019. Harnessing genomic information for livestock improvement. Nat. Rev. Genet. 20:135–56
    [Google Scholar]
  16. 16. 
    Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS 2017. Genomic selection in dairy cattle: the USDA experience. Annu. Rev. Anim. Biosci. 5:309–27
    [Google Scholar]
  17. 17. 
    Georges M, Andersson L. 1996. Livestock genomics comes of age. Genome Res 6:907–21
    [Google Scholar]
  18. 18. 
    Campbell KH, McWhir J, Ritchie WA, Wilmut I 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66
    [Google Scholar]
  19. 19. 
    US Off. Sci. Technol. Policy 1986. Coordinated framework for regulation of biotechnology; announcement of policy; notice for public comment. Fed. Regist 51:23302–50
    [Google Scholar]
  20. 20. 
    Wall RJ. 1996. Transgenic livestock: progress and prospects for the future. Theriogenology 45:57–68
    [Google Scholar]
  21. 21. 
    Du SJ, Gong ZY, Fletcher GL, Shears MA, King MJ 1992. Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth-hormone gene construct. Bio/Technology 10:176–81
    [Google Scholar]
  22. 22. 
    Parrington J, Coward K, Gadea J 2011. Sperm and testis mediated DNA transfer as a means of gene therapy. Syst. Biol. Reprod. Med. 57:35–42
    [Google Scholar]
  23. 23. 
    Ikawa M, Tanaka N, Kao WW, Verma IM 2003. Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Mol. Ther. 8:666–73
    [Google Scholar]
  24. 24. 
    Oback B. 2008. Climbing Mount Efficiency—small steps, not giant leaps towards higher cloning success in farm animals. Reprod. Domest. Anim. 43:Suppl. 2407–16
    [Google Scholar]
  25. 25. 
    Wall RJ, Hawk HW, Nel N 1992. Making transgenic livestock: genetic engineering on a large scale. . J. Cell. Biochem. 49:113–20
    [Google Scholar]
  26. 26. 
    van Berkel PHC, Welling MM, Geerts M, van Veen HA, Ravensbergen B 2002. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat. Biotechnol. 20:484–87
    [Google Scholar]
  27. 27. 
    Yang B, Wang J, Tang B, Liu Y, Guo C 2011. Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle. PLOS ONE 6:e17593
    [Google Scholar]
  28. 28. 
    Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T 2007. Production of cattle lacking prion protein. Nat. Biotechnol. 25:132–38
    [Google Scholar]
  29. 29. 
    Brophy B, Smolenski G, Wheeler T, Wells D, L'Huillier P, Laible G 2003. Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nat. Biotechnol. 21:157–62
    [Google Scholar]
  30. 30. 
    Wu X, Ouyang H, Duan B, Pang D, Zhang L 2012. Production of cloned transgenic cow expressing omega-3 fatty acids. Transgenic Res 21:537–43
    [Google Scholar]
  31. 31. 
    Jabed A, Wagner S, McCracken J, Wells DN, Laible G 2012. Targeted microRNA expression in dairy cattle directs production of β-lactoglobulin-free, high-casein milk. PNAS 109:16811–16
    [Google Scholar]
  32. 32. 
    Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD 2005. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat. Biotechnol. 23:445–51
    [Google Scholar]
  33. 33. 
    Wu H, Wang Y, Zhang Y, Yang M, Lv J 2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. PNAS 112:E1530–39
    [Google Scholar]
  34. 34. 
    Tessanne K, Golding MC, Long CR, Peoples MD, Hannon G, Westhusin ME 2012. Production of transgenic calves expressing an shRNA targeting myostatin. Mol. Reprod. Dev. 79:176–85
    [Google Scholar]
  35. 35. 
    Salter DW, Crittenden LB. 1989. Artificial insertion of a dominant gene for resistance to avian leukosis virus into the germ line of the chicken. Theor. Appl. Genet. 77:457–61
    [Google Scholar]
  36. 36. 
    Lyall J, Irvine RM, Sherman A, McKinley TJ, Núñez A 2011. Suppression of avian influenza transmission in genetically modified chickens. Science 331:223–26
    [Google Scholar]
  37. 37. 
    Mozdziak PE, Pophal S, Borwornpinyo S, Petitte JN 2003. Transgenic chickens expressing β-galactosidase hydrolyze lactose in the intestine. J. Nutr. 133:3076–79
    [Google Scholar]
  38. 38. 
    Wu B, Sun YH, Wang YW, Wang YP, Zhu ZY 2005. Characterization of transgene integration pattern in F4 hGH-transgenic common carp (Cyprinus carpio L.). Cell Res 15:447–54
    [Google Scholar]
  39. 39. 
    Weifeng M, Yaping W, Wenbo W, Bo W, Jianxin F, Zuoyan Z 2004. Enhanced resistance to Aeromonas hydrophila infection and enhanced phagocytic activities in human lactoferrin-transgenic grass carp (Ctenopharyngodon idellus). Aquaculture 242:93–103
    [Google Scholar]
  40. 40. 
    Dunham RA, Warr GW, Nichols A, Duncan PL, Argue B 2002. Enhanced bacterial disease resistance of transgenic channel catfish Ictalurus punctatus possessing cecropin genes. Mar. Biotechnol. 4:338–44
    [Google Scholar]
  41. 41. 
    Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD 2006. Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathog. Dis. 3:384–92
    [Google Scholar]
  42. 42. 
    Reh WA, Maga EA, Collette NM, Moyer A, Conrad-Brink JS 2004. Hot topic: using a stearoyl-CoA desaturase transgene to alter milk fatty acid composition. J. Dairy Sci. 87:3510–14
    [Google Scholar]
  43. 43. 
    Zhang J, Li L, Cai Y, Xu X, Chen J 2008. Expression of active recombinant human lactoferrin in the milk of transgenic goats. Protein Expr. Purif. 57:127–35
    [Google Scholar]
  44. 44. 
    Liu J, Luo Y, Ge H, Han C, Zhang H 2013. Anti-bacterial activity of recombinant human β-defensin-3 secreted in the milk of transgenic goats produced by somatic cell nuclear transfer. PLOS ONE 8:e65379
    [Google Scholar]
  45. 45. 
    Zhou ZR, Zhong BS, Jia RX, Wan YJ, Zhang YL 2013. Production of myostatin-targeted goat by nuclear transfer from cultured adult somatic cells. Theriogenology 79:225–33
    [Google Scholar]
  46. 46. 
    Golding MC, Long CR, Carmell MA, Hannon GJ, Westhusin ME 2006. Suppression of prion protein in livestock by RNA interference. PNAS 103:5285–90
    [Google Scholar]
  47. 47. 
    Zhang J, Cui ML, Nie YW, Dai B, Li FR 2018. CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus. FEBS J 285:2828–39
    [Google Scholar]
  48. 48. 
    Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ 2001. Pigs expressing salivary phytase produce low-phosphorus manure. Nat. Biotechnol. 19:741–45
    [Google Scholar]
  49. 49. 
    Nottle M, Nagashima H, Verma P, Du Z, Grupen C 1999. Production and analysis of transgenic pigs containing a metallothionein porcine growth hormone gene construct. . In Transgenic Animals in Agriculture J Murray, G Anderson, A Oberbauer, M McGloughlin 145–56 London: Commonw. Agric. Bur. Int.
    [Google Scholar]
  50. 50. 
    Pursel VG, Hammer RE, Bolt DJ, Palmiter RD, Brinster RL 1990. Integration, expression and germ-line transmission of growth-related genes in pigs. J. Reprod. Fertil. Suppl. 41:77–87
    [Google Scholar]
  51. 51. 
    Pursel VG, Pinkert CA, Miller KF, Bolt DJ, Campbell RG 1989. Genetic engineering of livestock. Science 244:1281–88
    [Google Scholar]
  52. 52. 
    Pursel VG, Sutrave P, Wall RJ, Kelly AM, Hughes SH 1992. Transfer of c-SKI gene into swine to enhance muscle development. Theriogenology 37:278–82
    [Google Scholar]
  53. 53. 
    Tong J, Wei H, Liu X, Hu W, Bi M 2011. Production of recombinant human lysozyme in the milk of transgenic pigs. Transgenic Res 20:417–19
    [Google Scholar]
  54. 54. 
    Saeki K, Matsumoto K, Kinoshita M, Suzuki I, Tasaka Y 2004. Functional expression of a Δ12 fatty acid desaturase gene from spinach in transgenic pigs. PNAS 101:6361–66
    [Google Scholar]
  55. 55. 
    Lai L, Kang JX, Li R, Wang J, Witt WT 2006. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat. Biotechnol. 24:435–36
    [Google Scholar]
  56. 56. 
    Wheeler M, Bleck G, Donovan S 2001. Transgenic alteration of sow milk to improve piglet growth and health. Reproduction 58:Suppl.313–24
    [Google Scholar]
  57. 57. 
    Muller M, Brenig B, Winnacker EL, Brem G 1992. Transgenic pigs carrying cDNA copies encoding the murine Mx1 protein which confers resistance to influenza virus infection. Gene 121:263–70
    [Google Scholar]
  58. 58. 
    Hu S, Qiao J, Fu Q, Chen C, Ni W 2015. Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection. eLife 4:e06951
    [Google Scholar]
  59. 59. 
    Zheng Q, Lin J, Huang J, Zhang H, Zhang R 2017. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. PNAS 114:E9474–82
    [Google Scholar]
  60. 60. 
    Xie Z, Pang D, Yuan H, Jiao H, Lu C 2018. Genetically modified pigs are protected from classical swine fever virus. PLOS Pathog 14:e1007193
    [Google Scholar]
  61. 61. 
    Ward KA, Brown BW. 1998. The production of transgenic domestic livestock: successes, failures and the need for nuclear transfer. Reprod. Fertil. Dev. 10:659–65
    [Google Scholar]
  62. 62. 
    Rexroad CE Jr, Hammer RE, Bolt DJ, Mayo KE, Frohman LA 1989. Production of transgenic sheep with growth-regulating genes. Mol. Reprod. Dev. 1:164–69
    [Google Scholar]
  63. 63. 
    Damak S, Su H, Jay NP, Bullock DW 1996. Improved wool production in transgenic sheep expressing insulin-like growth factor 1. Biotechnology 14:185–88
    [Google Scholar]
  64. 64. 
    Bawden CS, Powell BC, Walker SK, Rogers GE 1998. Expression of a wool intermediate filament keratin transgene in sheep fibre alters structure. Transgenic Res 7:273–87
    [Google Scholar]
  65. 65. 
    Clements JE, Wall RJ, Narayan O, Hauer D, Schoborg R 1994. Development of transgenic sheep that express the visna virus envelope gene. Virology 200:370–80
    [Google Scholar]
  66. 66. 
    Zhang P, Liu P, Dou H, Chen L, Chen L 2013. Handmade cloned transgenic sheep rich in omega-3 fatty acids. PLOS ONE 8:e55941
    [Google Scholar]
  67. 67. 
    Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A 2001. Deletion of the α(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat. Biotechnol. 19:559–62
    [Google Scholar]
  68. 68. 
    Lo D, Pursel V, Linton PJ, Sandgren E, Behringer R 1991. Expression of mouse IgA by transgenic mice, pigs and sheep. Eur. J. Immunol. 21:1001–6
    [Google Scholar]
  69. 69. 
    Fletcher GL, Hobbs RS, Evans RP, Shears MA, Hahn AL, Hew CL 2011. Lysozyme transgenic Atlantic salmon (Salmo salar L.). Aquacult. Res. 42:427–40
    [Google Scholar]
  70. 70. 
    Hew C, Poon R, Xiong F, Gauthier S, Shears M 1999. Liver-specific and seasonal expression of transgenic Atlantic salmon harboring the winter flounder antifreeze protein gene. Transgenic Res 8:405–14
    [Google Scholar]
  71. 71. 
    Rahman MA, Mak R, Ayad H, Smith A, Maclean N 1998. Expression of a novel piscine growth hormone gene results in growth enhancement in transgenic tilapia (Oreochromis niloticus). Transgenic Res 7:357–69
    [Google Scholar]
  72. 72. 
    Medeiros EF, Phelps MP, Fuentes FD, Bradley TM 2009. Overexpression of follistatin in trout stimulates increased muscling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R235–42
    [Google Scholar]
  73. 73. 
    Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA 2018. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. PNAS 115:2090–95
    [Google Scholar]
  74. 74. 
    Vilarino M, Soto DA, Bogliotti YS, Yu L, Zhang Y 2020. Derivation of sheep embryonic stem cells under optimized conditions. Reproduction 160:761–72
    [Google Scholar]
  75. 75. 
    Tan W, Proudfoot C, Lillico SG, Whitelaw CB 2016. Gene targeting, genome editing: from Dolly to editors. Transgenic Res 25:273–87
    [Google Scholar]
  76. 76. 
    Bishop TF, Van Eenennaam AL 2020. Genome editing approaches to augment livestock breeding programs. J. Exp. Biol. 223:jeb207159
    [Google Scholar]
  77. 77. 
    Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ 2017. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLOS Pathog 13:e1006206
    [Google Scholar]
  78. 78. 
    Chen J, Wang H, Bai J, Liu W, Liu X 2019. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163. Int. J. Biol. . Sci 15:481–92
    [Google Scholar]
  79. 79. 
    Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA 2016. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat. Biotechnol. 34:20–22
    [Google Scholar]
  80. 80. 
    Yang H, Zhang J, Zhang X, Shi J, Pan Y 2018. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus. Antivir. Res. 151:63–70
    [Google Scholar]
  81. 81. 
    Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH 2015. Genome edited sheep and cattle. Transgenic Res 24:147–53
    [Google Scholar]
  82. 82. 
    Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F 2015. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLOS ONE 10:e0136690
    [Google Scholar]
  83. 83. 
    Wang X, Niu Y, Zhou J, Yu H, Kou Q 2016. Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci. Rep. 6:32271
    [Google Scholar]
  84. 84. 
    Qian L, Tang M, Yang J, Wang Q, Cai C 2015. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci. Rep. 5:14435
    [Google Scholar]
  85. 85. 
    Wang X, Niu Y, Zhou J, Zhu H, Ma B 2018. CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Anim. Genet. 49:43–51
    [Google Scholar]
  86. 86. 
    Hu R, Fan ZY, Wang BY, Deng SL, Zhang XS 2017. Rapid communication: generation of FGF5 knockout sheep via the CRISPR/Cas9 system. J. Anim. Sci. 95:2019–24
    [Google Scholar]
  87. 87. 
    Carlson DF, Lancto CA, Zang B, Kim E-S, Walton M 2016. Production of hornless dairy cattle from genome-edited cell lines. Nat. Biotechnol. 34:479–81
    [Google Scholar]
  88. 88. 
    Gao Y, Wu H, Wang Y, Liu X, Chen L 2017. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol 18:13
    [Google Scholar]
  89. 89. 
    Lillico SG, Proudfoot C, King TJ, Tan W, Zhang L 2016. Mammalian interspecies substitution of immune modulatory alleles by genome editing. Sci. Rep. 6:21645
    [Google Scholar]
  90. 90. 
    McCleary S, Strong R, McCarthy RR, Edwards JC, Howes EL 2020. Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus. Sci. Rep. 10:8951
    [Google Scholar]
  91. 91. 
    Hickey JM, Chiurugwi T, Mackay I, Powell W, Eggen A 2017. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat. Genet. 49:1297–303
    [Google Scholar]
  92. 92. 
    Paxton H, Anthony NB, Corr SA, Hutchinson JR 2010. The effects of selective breeding on the architectural properties of the pelvic limb in broiler chickens: a comparative study across modern and ancestral populations. J. Anat. 217:153–66
    [Google Scholar]
  93. 93. 
    Flint AP, Woolliams JA. 2008. Precision animal breeding. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363:573–90
    [Google Scholar]
  94. 94. 
    Tizard M, Hallerman E, Fahrenkrug S, Newell-McGloughlin M, Gibson J 2016. Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security. Transgenic Res 25:575–95
    [Google Scholar]
  95. 95. 
    Maxmen A. 2012. Politics holds back animal engineers. Nature 490:318
    [Google Scholar]
  96. 96. 
    Laible G, Wei J, Wagner S 2015. Improving livestock for agriculture—technological progress from random transgenesis to precision genome editing heralds a new era. Biotechnol. J. 10:109–20
    [Google Scholar]
  97. 97. 
    Cohen J. 2019. The CRISPR animal kingdom. Science 365:426–29
    [Google Scholar]
  98. 98. 
    Stotish R. 2012. AquAdvantage salmon: pioneer or pyrrhic victory. Transgenic Res 21:913–14
    [Google Scholar]
  99. 99. 
    US Dep. Health Hum. Serv., Food Drug Adm. Cent. Vet. Med 2009. Guidance for Industry #187, regulation of genetically engineered animals containing heritable recombinant DNA constructs. Biotechnol. Law Rep 28:227–40
    [Google Scholar]
  100. 100. 
    Bleck GT, White BR, Miller DJ, Wheeler MB 1998. Production of bovine α-lactalbumin in the milk of transgenic pigs. J. Anim. Sci. 76:3072–78
    [Google Scholar]
  101. 101. 
    Noble MS, Rodriguez-Zas S, Cook JB, Bleck GT, Hurley WL, Wheeler MB 2002. Lactational performance of first-parity transgenic gilts expressing bovine α-lactalbumin in their milk. J. Anim. Sci. 80:1090–96
    [Google Scholar]
  102. 102. 
    Mosley JF, Hurley WL, Rodriguez-Zas SL, Wheeler MB 2020. Evaluation of risks from environmental contact with transgenic livestock. J. Vet. Med. Res. 7:1190
    [Google Scholar]
  103. 103. 
    Kling J. 2009. First US approval for a transgenic animal drug. Nat. Biotechnol. 27:302–4
    [Google Scholar]
  104. 104. 
    van Veen HA, Koiter J, Vogelezang CJ, van Wessel N, van Dam T 2012. Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits. J. Biotechnol. 162:319–26
    [Google Scholar]
  105. 105. 
    Nat. Biotechnol 2014. Rabbit milk Ruconest for hereditary angioedema. Nat. Biotechnol. 32:849–49
    [Google Scholar]
  106. 106. 
    Shirley M. 2015. Sebelipase alfa: first global approval. Drugs 75:1935–40
    [Google Scholar]
  107. 107. 
    Gong Z, Wan H, Tay TL, Wang H, Chen M, Yan T 2003. Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle. Biochem. Biophys. Res. Commun. 308:58–63
    [Google Scholar]
  108. 108. 
    Davies G. 2014. Searching for GloFish®: aesthetics, ethics, and encounters with the neon baroque. . Environ. Plan. A 46:2604–21
    [Google Scholar]
  109. 109. 
    Rao RK. 2005. Mutating nemo: assessing the environmental risks and proposing the regulation of the transgenic GloFish™. Adm. Law Rev. 57:903–25
    [Google Scholar]
  110. 110. 
    Knight J. 2003. GloFish casts light on murky policing of transgenic animals. Nature 426:372
    [Google Scholar]
  111. 111. 
    Anderson W. 2017. Austin company behind glow-in-the-dark fish in pet stores sells IP for $50 million. Austin Business Journal Aug. 23. https://www.bizjournals.com/austin/news/2017/08/23/austin-company-behind-glow-in-the-dark-fish-in-pet.html
    [Google Scholar]
  112. 112. 
    Blake AR. 2016. Glo-ing the distance in animal biotechnology. Transgenic Res 25:111
    [Google Scholar]
  113. 113. 
    Van Eenennaam AL, Muir WM 2011. Transgenic salmon: A final leap to the grocery shelf. ? Nat. Biotechnol. 29:706–10
    [Google Scholar]
  114. 114. 
    Vet. Med. Advis. Comm. (VMAC) 2010. VMAC Meeting: September 20, 2010, Chairman's report Rep., Food Drug Adm Sept. 20. http://wayback.archive-it.org/7993/20170404230839/https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/VeterinaryMedicineAdvisoryCommittee/UCM230467.pdf
    [Google Scholar]
  115. 115. 
    Gjedrem T. 2000. Genetic improvement of cold-water fish species. Aquacult. Res. 31:25–33
    [Google Scholar]
  116. 116. 
    Gjedrem T. 2010. The first family‐based breeding program in aquaculture. Rev. Aquacult. 2:2–15
    [Google Scholar]
  117. 117. 
    Solberg MF, Skaala Ø, Nilsen F, Glover KA 2013. Does domestication cause changes in growth reaction norms? A study of farmed, wild and hybrid Atlantic salmon families exposed to environmental stress. PLOS ONE 8:e54469
    [Google Scholar]
  118. 118. 
    Glover KA, Solberg MF, McGinnity P, Hindar K, Verspoor E 2017. Half a century of genetic interaction between farmed and wild Atlantic salmon: status of knowledge and unanswered questions. Fish Fish 18:890–927
    [Google Scholar]
  119. 119. 
    Glover KA, Pertoldi C, Besnier F, Wennevik V, Kent M, Skaala Ø 2013. Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs. BMC Genet 14:74
    [Google Scholar]
  120. 120. 
    US Food Drug Adm 2017. Guidance for Industry #187: regulation of intentionally altered genomic DNA in animals Guid. Doc., US Food Drug Adm cityWashington, DC: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cvm-gfi-187-regulation-intentionally-altered-genomic-dna-animals
    [Google Scholar]
  121. 121. 
    Off. Sci. Technol. Policy 1986. Coordinated Framework for Regulation of Biotechnology. 51 Fed. Reg2330
  122. 122. 
    Off. Sci. Technol. Policy 1992. Exercise of Federal Oversight Within Scope of Statutory Authority: Planned Introduction of Biotechnology Products Into the Environment. 57 Fed. Reg6753
  123. 123. 
    US Dep. Agric 2018. Secretary Perdue issues USDA statement on plant breeding innovation Press Rel. 0070.18. https://www.usda.gov/media/press-releases/2018/03/28/secretary-perdue-issues-usda-statement-plant-breeding-innovation
    [Google Scholar]
  124. 124. 
    Whelan AI, Lema MA. 2015. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food 6:253–65
    [Google Scholar]
  125. 125. 
    Van Eenennaam AL, Wells KD, Murray JD 2019. Proposed U.S. regulation of gene-edited food animals is not fit for purpose. npj Sci. Food 3:3
    [Google Scholar]
  126. 126. 
    Eriksson D, Kershen D, Nepomuceno A, Pogson BJ, Prieto H 2019. A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward. New Phytol 222:1673–84
    [Google Scholar]
  127. 127. 
    Wells KD. 2016. History and future of genetically engineered food animal regulation: an open request. Transgenic Res 25:385–94
    [Google Scholar]
  128. 128. 
    Carroll D, Van Eenennaam AL, Taylor JF, Seger J, Voytas DF 2016. Regulate genome-edited products, not genome editing itself. Nat. Biotechnol. 34:477–79
    [Google Scholar]
  129. 129. 
    Van Eenennaam AL. 2018. The importance of a novel product risk-based trigger for gene-editing regulation in food animal species. CRISPR J 1:101–6
    [Google Scholar]
  130. 130. 
    Klumper W, Qaim M. 2014. A meta-analysis of the impacts of genetically modified crops. PLOS ONE 9:e111629
    [Google Scholar]
  131. 131. 
    Barrows G, Sexton S, Zilberman D 2014. Agricultural biotechnology: the promise and prospects of genetically modified crops. J. Econ. Perspect. 28:99–120
    [Google Scholar]
  132. 132. 
    Zilberman D, Kaplan S, Wesseler J 2015. The loss from underutilizing GM technologies. AgBioForum 18:312–19
    [Google Scholar]
  133. 133. 
    Wesseler J, Smart RD, Thomson J, Zilberman D 2017. Foregone benefits of important food crop improvements in Sub-Saharan Africa. PLOS ONE 12:e0181353
    [Google Scholar]
  134. 134. 
    Zilberman D, Holland TG, Trilnick I 2018. Agricultural GMOs—what we know and where scientists disagree. Sustainability 10:1514
    [Google Scholar]
  135. 135. 
    Murray JD, Maga EA. 2010. Is there a risk from not using GE animals. ? Transgenic Res 19:357–61
    [Google Scholar]
  136. 136. 
    Fahrenkrug SC, Blake A, Carlson DF, Doran T, Van Eenennaam A 2010. Precision genetics for complex objectives in animal agriculture. J. Anim. Sci. 88:72530–39
    [Google Scholar]
  137. 137. 
    Bitsouni V, Lycett S, Opriessnig T, Doeschl-Wilson A 2019. Predicting vaccine effectiveness in livestock populations: a theoretical framework applied to PRRS virus infections in pigs. PLOS ONE 14:e0220738
    [Google Scholar]
  138. 138. 
    Hogeveen H, Steeneveld W, Wolf CA 2019. Production diseases reduce the efficiency of dairy production: a review of the results, methods, and approaches regarding the economics of mastitis. Annu. Rev. Resour. Econ. 11:289–312
    [Google Scholar]
  139. 139. 
    Holtkamp DJ, Kliebenstein JB, Neumann E, Zimmerman JJ, Rotto H 2013. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J. Swine Health Prod. 21:72–84
    [Google Scholar]
  140. 140. 
    Nathues H, Nathues C, Rushton J, Fiebig K, Jimenez M 2017. Cost of porcine reproductive and respiratory syndrome virus at individual farm level – an economic disease model. Prev. Vet. Med. 142:16–29
    [Google Scholar]
  141. 141. 
    Pileri E, Mateu E. 2016. Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination. Vet. Res. 47:108
    [Google Scholar]
  142. 142. 
    Rollin E, Dhuyvetter KC, Overton MW 2015. The cost of clinical mastitis in the first 30 days of lactation: an economic modeling tool. Prev. Vet. Med. 122:257–64
    [Google Scholar]
  143. 143. 
    Tibbetts SM, Wall CL, Barbosa-Solomieu V, Bryenton MD, Plouffe DA 2013. Effects of combined ‘all-fish’ growth hormone transgenics and triploidy on growth and nutrient utilization of Atlantic salmon (Salmo salar L.) fed a practical grower diet of known composition. Aquaculture 406–407:141–52
    [Google Scholar]
  144. 144. 
    Food Agric. Organ 2018. The State of World Fisheries and Aquaculture 2018—meeting the sustainable development goals Rome: Food Agric. Organ. License: CC BY-NC-SA 3.0 IGO
    [Google Scholar]
  145. 145. 
    Alston JM, Pardey PG, James JS, Andersen MA 2009. The economics of agricultural R&D. Annu. Rev. Resour. Econ. 1:537–66
    [Google Scholar]
  146. 146. 
    Smart RD, Blum M, Wesseler J 2017. Trends in approval times for genetically engineered crops in the United States and the European Union. J. Agric. Econ. 68:182–98
    [Google Scholar]
  147. 147. 
    García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van Tassell CP 2016. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. PNAS 113:E3995–4004
    [Google Scholar]
  148. 148. 
    Thomas FC, Mullen W, Tassi R, Ramírez-Torres A, Mudaliar M 2016. Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 1. High abundance proteins, acute phase proteins and peptidomics. Mol. Biosyst. 12:2735–47
    [Google Scholar]
  149. 149. 
    Tenhagen BA, Hansen I, Reinecke A, Heuwieser W 2009. Prevalence of pathogens in milk samples of dairy cows with clinical mastitis and in heifers at first parturition. J. Dairy Res. 76:179–87
    [Google Scholar]
  150. 150. 
    Rainard P, Foucras G, Fitzgerald JR, Watts JL, Koop G, Middleton JR 2018. Knowledge gaps and research priorities in Staphylococcus aureus mastitis control. Transbound. Emerg. Dis. 65:149–65
    [Google Scholar]
  151. 151. 
    Jones G, Pearson R, Clabaugh G, Heald C 1984. Relationships between somatic cell counts and milk production. J. Dairy Sci. 67:1823–31
    [Google Scholar]
  152. 152. 
    Food Agric. Organ 2020. Live animals FAOSTAT, accessed on March 27, 2020. http://www.fao.org/faostat/en/#data/
    [Google Scholar]
  153. 153. 
    Cwynar P, Stojkov J, Wlazlak K 2019. African swine fever status in Europe. Viruses 11:310
    [Google Scholar]
  154. 154. 
    Haley M, Gale F. 2020. African swine fever shrinks pork production in China, swells demand for imported pork. Amber Waves Feb. 3. https://www.ers.usda.gov/amber-waves/2020/february/african-swine-fever-shrinks-pork-production-in-china-swells-demand-for-imported-pork
    [Google Scholar]
  155. 155. 
    Hahn W. 2020. Livestock, dairy, and poultry outlook: Mexico was the most important destination for several U.S. meat protein exports in 2019 Situat. Outlook Rep. LDP-M-309, Econ. Res. Serv. March 16. https://www.ers.usda.gov/webdocs/outlooks/98074/ldp-m-309.pdf?v=8603.6
    [Google Scholar]
  156. 156. 
    Natl. Ocean. Atmos. Adm 2016. Imports and exports of fishery products annual summary, 2016 Curr. Fish. Stat. No. 2016:2, Natl. Ocean. Atmos. Adm. Washington, DC.: https://www.st.nmfs.noaa.gov/Assets/commercial/trade/Trade2016.pdf
    [Google Scholar]
  157. 157. 
    Liu YJ, Rosten TW, Henriksen K, Hognes ES, Summerfelt S, Vinci B 2016. Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): land-based closed containment system in freshwater and open net pen in seawater. Aquacult. Eng. 71:1–12
    [Google Scholar]
/content/journals/10.1146/annurev-animal-061220-023052
Loading
/content/journals/10.1146/annurev-animal-061220-023052
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error