1932

Abstract

Foods and beverages provide nutrients and alter the gut microbiota, resulting in eubiosis or dysbiosis. Chronic consumption of a diet that is high in saturated or fats, meat proteins, reducing sugars, and salt and low in fiber induces dysbiosis. Dysbiosis, loss of redox homeostasis, mast cells, hypoxia, angiogenesis, the kynurenine pathway, transglutaminase 2, and/or the Janus kinase pathway are implicated in the pathogenesis and development of inflammatory bowel disease, celiac disease, and gastrointestinal malignancy. This review discusses the effects of oxidative, carbonyl, or glycative stress–inducing dietary ingredients or food processing–derived compounds on gut microbiota and gastrointestinal epithelial and mast cells as well as on the development of associated angiogenic diseases, including key signaling pathways. The preventive or therapeutic potential and the biochemical pathways of antiangiogenic or proangiogenic foods or beverages are also described. The outcomes of the interactions between disease pathways and components of food are critical for the design of foods and beverages for healthy lives.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-062520-090235
2021-03-25
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/food/12/1/annurev-food-062520-090235.html?itemId=/content/journals/10.1146/annurev-food-062520-090235&mimeType=html&fmt=ahah

Literature Cited

  1. Abt MC. 2018. An additive sugar helps the C. diff go round. Cell Host Microbe 23:156–58
    [Google Scholar]
  2. Agostini S, Chiavacci E, Matteucci M, Torelli M, Pitto L, Lionetti V. 2015. Barley β-glucan promotes MnSOD expression and enhances angiogenesis under oxidative microenvironment. J. Cell Mol. Med. 19:227–38
    [Google Scholar]
  3. Albert-Bayo M, Paracuellos I, González-Castro AM, Rodríguez-Urrutia A, Rodríguez-Lagunas MJ et al. 2019. Intestinal mucosal mast cells: key modulators of barrier function and homeostasis. Cells 8:135
    [Google Scholar]
  4. Aminova GG, Grigorenko DE. 2015.. [ Age-related peculiarities of mast cell distribution in human esophagus wall. .] Morfologiia 147:42–47 in Russian )
    [Google Scholar]
  5. Ammendola M, Leporini C, Marech I, Gadaleta CD, Scognamillo G et al. 2014. Targeting mast cells tryptase in tumor microenvironment: a potential antiangiogenetic strategy. Biomed. Res. Int. 2014.154702
    [Google Scholar]
  6. Ayinde O, Wang Z, Griffin M. 2017. Tissue transglutaminase induces epithelial-mesenchymal transition and the acquisition of stem cell like characteristics in colorectal cancer cells. Oncotarget 8:20025–41
    [Google Scholar]
  7. Bak YK, Lampe JW, Sung MK. 2014. Effects of dietary supplementation of glucosamine sulfate on intestinal inflammation in a mouse model of experimental colitis. J. Gastroenterol. Hepatol. 29:957–63
    [Google Scholar]
  8. Bekier E, Wyczólkowska J, Szyc H, Maśliński C. 1974. The inhibitory effect of nicotinamide on asthma-like symptoms and eosinophilia in guinea pigs, anaphylactic mast cell degranulation in mice, and histamine release from rat isolated peritoneal mast cells by compound 48–80. Int. Arch. Allergy Appl. Immunol. 47:737–48
    [Google Scholar]
  9. Bennick A. 2002. Interaction of plant polyphenols with salivary proteins. Crit. Rev. Oral Biol. Med. 13:184–96
    [Google Scholar]
  10. Bischoff SC. 2016. Mast cells in gastrointestinal disorders. Eur. J. Pharmacol. 778:139–45
    [Google Scholar]
  11. Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD et al. 2014. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol 14:189
    [Google Scholar]
  12. Blaszczak W, Barczak W, Masternak J, Kopczyński P, Zhitkovich A, Rubiś B. 2019. Vitamin C as a modulator of the response to cancer therapy. Molecules 24:453
    [Google Scholar]
  13. Blouin CC, Pagé EL, Soucy GM, Richard DE. 2004. Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1α. Blood 103:1124–30
    [Google Scholar]
  14. Boeckxstaens G. 2015. Mast cells and inflammatory bowel disease. Curr. Opin. Pharmacol. 25:45–49
    [Google Scholar]
  15. Botschuijver S, Roeselers G, Levin E, Jonkers DM, Welting O et al. 2017. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology 153:1026–39
    [Google Scholar]
  16. Bravo D, Hoare A, Soto C, Valenzuela MA, Quest AF. 2018. Helicobacter pylori in human health and disease: mechanisms for local gastric and systemic effects. World J. Gastroenterol. 24:3071–89
    [Google Scholar]
  17. Brenner H, Rothenbacher D, Bode G, Adler G. 1999. Inverse graded relation between alcohol consumption and active infection with Helicobacter pylori. Am. J. Epidemiol. 149:571–76
    [Google Scholar]
  18. Bull-Otterson L, Feng W, Kirpich I, Wang Y, Qin X et al. 2013. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLOS ONE 8:e53028
    [Google Scholar]
  19. Campillo-Navarro M, Leyva-Paredes K, Donis-Maturano L, González-Jiménez M, Paredes-Vivas Y et al. 2017. Listeria monocytogenes induces mast cell extracellular traps. Immunobiology 222:432–39
    [Google Scholar]
  20. Cancello R, Turroni S, Rampelli S, Cattaldo S, Candela M et al. 2019. Effect of short-term dietary intervention and probiotic mix supplementation on the gut microbiota of elderly obese women. Nutrients 11:3011
    [Google Scholar]
  21. Casella G, D'Incà R, Oliva L, Daperno M, Saladino V et al. 2010. Prevalence of celiac disease in inflammatory bowel diseases: an IG-IBD multicentre study. Dig. Liver Dis. 42:175–78
    [Google Scholar]
  22. Cash TP, Pan Y, Simon MC. 2007. Reactive oxygen species and cellular oxygen sensing. Free Radic. Biol. Med. 43:1219–25
    [Google Scholar]
  23. Caughey GH. 2016. Mast cell proteases as pharmacological targets. Eur. J. Pharmacol. 778:44–55
    [Google Scholar]
  24. Chassaing B, van de Wiele T, de Bodt J, Marzorati M, Gewirtz AT. 2017. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66:1414–27
    [Google Scholar]
  25. Chen K, Chen H, Faas MM, de Haan BJ, Li J et al. 2017. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Mol. Nutr. Food Res. https://doi.org/10.1002/mnfr.201601006
    [Crossref] [Google Scholar]
  26. Chen Z, Lin S, Jiang Y, Liu L, Jiang J et al. 2019. Effects of bread yeast cell wall β-glucans on mice with loperamide-induced constipation. J. Med. Food 22:1009–21
    [Google Scholar]
  27. Chiba M, Nakane K, Komatsu M. 2019. Westernized diet is the most ubiquitous environmental factor in inflammatory bowel disease. Perm. J. 23:18–107
    [Google Scholar]
  28. Cinova J, Palová-Jelínková L, Smythies LE, Cerná M, Pecharová B et al. 2007. Gliadin peptides activate blood monocytes from patients with celiac disease. J. Clin. Immunol. 27:201–9
    [Google Scholar]
  29. Ciorba MA. 2013. Indoleamine 2,3-dioxygenase in intestinal disease. Curr. Opin. Gastroenterol. 29:146–52
    [Google Scholar]
  30. Colgan SP. 2016. Targeting hypoxia in inflammatory bowel disease. J. Investig. Med. 64:364–68
    [Google Scholar]
  31. Collins J, Robinson C, Danhof H, Knetsch CW, Van Leeuwen HC et al. 2018. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553:291–94
    [Google Scholar]
  32. D'Argenio G, Cosenza V, Sorrentini I, de Ritis F, Gatto A et al. 1994. Butyrate, mesalamine, and factor XIII in experimental colitis in the rat: effects on transglutaminase activity. Gastroenterology 106:399–404
    [Google Scholar]
  33. Danese S, Sans M, Spencer DM, Beck I, Doñate F et al. 2007. Angiogenesis blockade as a new therapeutic approach to experimental colitis. Gut 56:855–62
    [Google Scholar]
  34. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63
    [Google Scholar]
  35. De Zuani M, Dal Secco C, Frossi B 2018. Mast cells at the crossroads of microbiota and IBD. Eur. J. Immunol. 48:1929–37
    [Google Scholar]
  36. Degen J, Hellwig M, Henle T. 2012. 1,2-Dicarbonyl compounds in commonly consumed foods. J. Agric. Food Chem. 60:7071–79
    [Google Scholar]
  37. Dehhaghi M, Panahi HKS, Guillemin GJ. 2019. Microorganisms, tryptophan metabolism, and kynurenine pathway: a complex interconnected loop influencing human health status. Int. J. Tryptophan Res. 12:1178646919852996
    [Google Scholar]
  38. Di Paola R, Menegazzi M, Mazzon E, Genovese T, Crisafulli C et al. 2009. Protective effects of glycyrrhizin in a gut hypoxia (ischemia)-reoxygenation (reperfusion) model. Intensive Care Med 35:687–97
    [Google Scholar]
  39. Dimidi E, Cox SR, Rossi M, Whelan K. 2019. Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients 11:1806
    [Google Scholar]
  40. Eltzschig HK, Carmeliet P. 2011. Hypoxia and inflammation. N. Engl. J. Med. 364:656–65
    [Google Scholar]
  41. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J et al. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54
    [Google Scholar]
  42. Fang Y, Wu C, Wang Q, Tang J 2019. Farnesol contributes to intestinal epithelial barrier function by enhancing tight junctions via the JAK/STAT3 signaling pathway in differentiated Caco-2 cells. J. Bioenerg. Biomembr. 51:403–12
    [Google Scholar]
  43. FDA 2010. Overview of food ingredients, additives & colors Rep., Dep. Health Hum. Serv Washington, DC: https://www.fda.gov/food/food-ingredients-packaging/overview-food-ingredients-additives-colors
    [Google Scholar]
  44. FDA 2019. Food additive status list Rep., Dep. Health Hum. Serv. Washington, DC: https://www.fda.gov/food/food-additives-petitions/food-additive-status-list
    [Google Scholar]
  45. Ferdinande L, Demetter P, Perez-Novo C, Waeytens A, Taildeman J et al. 2008. Inflamed intestinal mucosa features a specific epithelial expression pattern of indoleamine 2,3-dioxygenase. Int. J. Immunopathol. Pharmacol. 21:289–95
    [Google Scholar]
  46. Fernandez-Jimenez N, Castellanos-Rubio A, Plaza-Izurieta L, Irastorza I, Elcoroaristizabal X et al. 2014. Coregulation and modulation of NF-κB-related genes in celiac disease: uncovered aspects of gut mucosal inflammation. Hum. Mol. Genet. 23:1298–310
    [Google Scholar]
  47. Furuhashi H, Higashiyama M, Okada Y, Kurihara C, Wada A et al. 2020. Dietary emulsifier polysorbate-80-induced small-intestinal vulnerability to indomethacin-induced lesions via dysbiosis. J. Gastroenterol. Hepatol. 35:110–17
    [Google Scholar]
  48. Ge Y, Liu W, Tao H, Zhang Y, Liu L et al. 2019. Effect of industrial trans-fatty acids–enriched diet on gut microbiota of C57BL/6 mice. Eur. J. Nutr. 58:2625–38
    [Google Scholar]
  49. Ghasiyari H, Rostami-Nejad M, Amani D, Rostami K, Pourhoseingholi MA et al. 2018. Diverse profiles of Toll-like receptors 2, 4, 7, and 9 mRNA in peripheral blood and biopsy specimens of patients with celiac disease. J. Immunol. Res. 2018.7587095
    [Google Scholar]
  50. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC et al. 2020. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ. Res. 126:1456–74
    [Google Scholar]
  51. Gonzalez de Mejia E, Dia VP 2010. The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis Rev 29:511–28
    [Google Scholar]
  52. Goodwin ML, Pennington Z, Westbroek EM, Cottrill E, Ahmed AK, Sciubba DM. 2019. Lactate and cancer: a “lactatic” perspective on spinal tumor metabolism (part 1). Ann. Transl. Med. 7:220
    [Google Scholar]
  53. Gunn J, Hill MM, Cotten BM, Deer TR. 2020. An analysis of biomarkers in patients with chronic pain. Pain Phys 23:e41–49
    [Google Scholar]
  54. Guo S, Al-Sadi R, Said HM, Ma TY. 2013. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am. J. Pathol. 182:375–87
    [Google Scholar]
  55. Hagenlocher Y, Feilhauer K, Schäffer M, Bischoff SC, Lorentz A. 2017. Citrus peel polymethoxyflavones nobiletin and tangeretin suppress LPS- and IgE-mediated activation of human intestinal mast cells. Eur. J. Nutr. 56:1609–20
    [Google Scholar]
  56. He C, Cheng D, Peng C, Li Y, Zhu Y, Lu N. 2018. High-fat diet induces dysbiosis of gastric microbiota prior to gut microbiota in association with metabolic disorders in mice. Front. Microbiol. 9:639
    [Google Scholar]
  57. Hipkiss AR. 2009. Carnosine and its possible roles in nutrition and health. Adv. Food Nutr. Res. 57:87–154
    [Google Scholar]
  58. Ho SM, Lewis JD, Mayer EA, Plevy SE, Chuang E et al. 2019. Challenges in IBD research: environmental triggers. Inflamm. Bowel Dis. 25:S13–23
    [Google Scholar]
  59. Hoffmanová I, Sánchez D, Hábová V, Anděl M, Tučková L, Tlaskalová-Hogenová H. 2015. Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2. Physiol. Res. 64:537–46
    [Google Scholar]
  60. Hua Y, Fan R, Zhao L, Tong C, Qian X et al. 2020. Trans fatty acids alter the gut microbiota in high-fat-diet-induced obese rats. Br. J. Nutr. 124:121251–63
    [Google Scholar]
  61. Hunt RH, Yaghoobi M. 2017. The esophageal and gastric microbiome in health and disease. Gastroenterol. Clin. N. Am. 46:121–41
    [Google Scholar]
  62. Hussain M, Bonilla-Rosso G, Kwong Chung CK, Bäriswyl L, Pena Rodriguez M et al. 2019. High dietary fat intake induces a microbiota signature that promotes food allergy. J. Allergy Clin. Immunol. 144:157–70.e8
    [Google Scholar]
  63. Ikehata N, Takanashi M, Satomi T, Watanabe M, Hasegawa O et al. 2018. Toll-like receptor 2 activation implicated in oral squamous cell carcinoma development. Biochem. Biophys. Res. Commun. 495:2227–34
    [Google Scholar]
  64. Iovine B, Oliviero G, Garofalo M, Orefice M, Nocella F et al. 2014. The anti-proliferative effect of l-carnosine correlates with a decreased expression of hypoxia inducible factor 1α in human colon cancer cells. PLOS ONE 9:e96755
    [Google Scholar]
  65. Jacob C, Yang PC, Darmoul D, Amadesi S, Saito T et al. 2005. Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and β-arrestins. J. Biol. Chem. 280:31936–48
    [Google Scholar]
  66. Katada C, Yokoyama T, Yano T, Kaneko K, Oda I et al. 2016. Alcohol consumption and multiple dysplastic lesions increase risk of squamous cell carcinoma in the esophagus, head, and neck. Gastroenterology 151:860–69.e7
    [Google Scholar]
  67. Keane TJ, Dziki J, Sobieski E, Smoulder A, Castleton A et al. 2017. Restoring mucosal barrier function and modifying macrophage phenotype with an extracellular matrix hydrogel: potential therapy for ulcerative colitis. J. Crohn's Colitis 11:360–68
    [Google Scholar]
  68. Kempuraj D, Castellani ML, Petrarca C, Frydas S, Conti P et al. 2006. Inhibitory effect of quercetin on tryptase and interleukin-6 release, and histidine decarboxylase mRNA transcription by human mast cell 1 cell line. Clin. Exp. Med. 6:150–56
    [Google Scholar]
  69. Kennel KB, Burmeister J, Schneider M, Taylor CT. 2018. The PHD1 oxygen sensor in health and disease. J. Physiol. 596:3899–913
    [Google Scholar]
  70. Kim SR, Kim K, Lee SA, Kwon SO, Lee JK et al. 2019. Effect of red, processed, and white meat consumption on the risk of gastric cancer: an overall and dose–response meta-analysis. Nutrients 11:826
    [Google Scholar]
  71. Krystel-Whittemore M, Dileepan KN, Wood JG. 2015. Mast cell: a multi-functional master cell. Front. Immunol. 6:620
    [Google Scholar]
  72. Kumar J, Kumar M, Pandey R, Chauhan NS. 2017. Physiopathology and management of gluten-induced celiac disease. J. Food Sci. 82:270–77
    [Google Scholar]
  73. Laudisi F, Stolfi C, Monteleone G. 2019. Impact of food additives on gut homeostasis. Nutrients 11:2334
    [Google Scholar]
  74. Laurans L, Venteclef N, Haddad Y, Chajadine M, Alzaid F et al. 2018. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat. Med. 24:1113–20
    [Google Scholar]
  75. Li L, Krause L, Somerset S. 2017. Associations between micronutrient intakes and gut microbiota in a group of adults with cystic fibrosis. Clin. Nutr. 36:1097–104
    [Google Scholar]
  76. Li S, Li J, Mao G, Wu T, Hu Y et al. 2018. A fucoidan from sea cucumber Pearsonothuria graeffei with well-repeated structure alleviates gut microbiota dysbiosis and metabolic syndromes in HFD-fed mice. Food Funct 9:5371–80
    [Google Scholar]
  77. Li W, Sun K, Ji Y, Wu Z, Wang W et al. 2016. Glycine regulates expression and distribution of claudin-7 and ZO-3 proteins in intestinal porcine epithelial cells. J. Nutr. 146:964–69
    [Google Scholar]
  78. Lin J, Bierhaus A, Bugert P, Dietrich N, Feng Y et al. 2006. Effect of R-(+)-α-lipoic acid on experimental diabetic retinopathy. Diabetologia 49:1089–96
    [Google Scholar]
  79. Lin JA, Wu CH, Lu CC, Hsia SM, Yen GC. 2016. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: an emerging biological factor in cancer onset and progression. Mol. Nutr. Food Res. 60:1850–64
    [Google Scholar]
  80. Löb S, Königsrainer A, Zieker D, Brücher BL, Rammensee HG et al. 2009. IDO1 and IDO2 are expressed in human tumors: Levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol. Immunother. 58:153–57
    [Google Scholar]
  81. Losso JN. 2008. The biochemical and functional food properties of the Bowman-Birk inhibitor. Crit. Rev. Food Sci. Nutr. 48:94–118
    [Google Scholar]
  82. Losso JN. 2016. The Maillard Reaction Reconsidered: Cooking and Eating for Health Boca Raton, FL: CRC
    [Google Scholar]
  83. Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A et al. 2013. The Oslo definitions for coeliac disease and related terms. Gut 62:43–52
    [Google Scholar]
  84. Lv J, Guo L, Liu JJ, Zhao HP, Zhang J, Wang JH. 2019. Alteration of the esophageal microbiota in Barrett's esophagus and esophageal adenocarcinoma. World J. Gastroenterol. 25:2149–61
    [Google Scholar]
  85. Ma J, Li J, Wang KS, Mi C, Piao LX et al. 2016. Perillyl alcohol efficiently scavenges activity of cellular ROS and inhibits the translational expression of hypoxia-inducible factor 1α via mTOR/4E-BP1 signaling pathways. Int. Immunopharmacol. 39:1–9
    [Google Scholar]
  86. Mafra D, Borges N, Alvarenga L, Esgalhado M, Cardozo L et al. 2019. Dietary components that may influence the disturbed gut microbiota in chronic kidney disease. Nutrients 11:496
    [Google Scholar]
  87. Manresa MC, Taylor CT. 2017. Hypoxia inducible factor (HIF) hydroxylases as regulators of intestinal epithelial barrier function. Cell Mol. Gastroenterol. Hepatol. 3:303–15
    [Google Scholar]
  88. Mazière C, Conte MA, Mazière JC. 2001. Activation of JAK2 by the oxidative stress generated with oxidized low-density lipoprotein. Free Radic. Biol. Med. 31:1334–40
    [Google Scholar]
  89. Miyoshi N, Ishii H, Mimori K, Tanaka F, Hitora T et al. 2010. TGM2 is a novel marker for prognosis and therapeutic target in colorectal cancer. Ann. Surg. Oncol. 17:967–72
    [Google Scholar]
  90. Na HK, Lee JY. 2017. Molecular basis of alcohol-related gastric and colon cancer. Int. J. Mol. Sci. 18:1116
    [Google Scholar]
  91. Nan HM, Park JW, Song YJ, Yun HY, Park JS et al. 2005. Kimchi and soybean pastes are risk factors of gastric cancer. World J. Gastroenterol. 11:3175–81
    [Google Scholar]
  92. Navarro SL, White E, Kantor ED, Zhang Y, Rho J et al. 2015. Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans. PLOS ONE 10:e0117534
    [Google Scholar]
  93. Németh H, Toldi J, Vécsei L. 2006. Kynurenines, Parkinson's disease and other neurodegenerative disorders: preclinical and clinical studies. J. Neural Transm. Suppl. 70:285–304
    [Google Scholar]
  94. Nikolaus S, Schulte B, Al-Massad N, Thieme F, Schulte DM et al. 2017. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology 153:1504–16.e2
    [Google Scholar]
  95. Nunes S, Danesi F, Del Rio D, Silva P. 2018. Resveratrol and inflammatory bowel disease: the evidence so far. Nutr. Res. Rev. 31:85–97
    [Google Scholar]
  96. O'Shea JJ, Plenge R 2012. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36:542–50
    [Google Scholar]
  97. Palová-Jelínková L, Dáňová K, Drašarová H, Dvořák M, Funda DP et al. 2013. Pepsin digest of wheat gliadin fraction increases production of IL-1β via TLR4/MyD88/TRIF/MAPK/NF-κB signaling pathway and an NLRP3 inflammasome activation. PLOS ONE 8:e62426
    [Google Scholar]
  98. Panasevich MR, Meers GM, Linden MA, Booth FW, Perfield JW et al. 2018. High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine. Am. J. Physiol. Endocrinol. Metab. 314:E78–92
    [Google Scholar]
  99. Pasqualetti V, Altomare A, Guarino MP, Locato V, Cocca S et al. 2014. Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure. PLOS ONE 9:e98031
    [Google Scholar]
  100. Penumatsa KC, Toksoz D, Warburton RR, Hilmer AJ, Liu T et al. 2014. Role of hypoxia-induced transglutaminase 2 in pulmonary artery smooth muscle cell proliferation. Am. J. Physiol. Lung Cell Mol. Physiol. 307:L576–85
    [Google Scholar]
  101. Persia FA, Mariani ML, Fogal TH, Penissi AB. 2014. Hydroxytyrosol and oleuropein of olive oil inhibit mast cell degranulation induced by immune and non-immune pathways. Phytomedicine 21:1400–5
    [Google Scholar]
  102. Pinget G, Tan J, Janac B, Kaakoush NO, Angelatos AS et al. 2019. Impact of the food additive titanium dioxide (E171) on gut microbiota–host interaction. Front. Nutr. 6:57
    [Google Scholar]
  103. Piperi C, Adamopoulos C, Papavassiliou AG. 2017. Potential of glycative stress targeting for cancer prevention. Cancer Lett 390:153–59
    [Google Scholar]
  104. Ponziani FR, Pompili M, Di Stasio E, Zocco MA, Gasbarrini A, Flore R 2017. Subclinical atherosclerosis is linked to small intestinal bacterial overgrowth via vitamin K2–dependent mechanisms. World J. Gastroenterol. 23:1241–49
    [Google Scholar]
  105. Qiu M, Huang K, Liu Y, Yang Y, Tang H et al. 2019. Modulation of intestinal microbiota by glycyrrhizic acid prevents high-fat diet–enhanced pre-metastatic niche formation and metastasis. Mucosal Immunol 12:945–57
    [Google Scholar]
  106. Ramsay DB, Stephen S, Borum M, Voltaggio L, Doman DB. 2010. Mast cells in gastrointestinal disease. Gastroenterol. Hepatol. 6:772–77
    [Google Scholar]
  107. Reber LL, Sibilano R, Mukai K, Galli SJ. 2015. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 8:444–63
    [Google Scholar]
  108. Rich AM, Hussaini HM, Parachuru VP, Seymour GJ. 2014. Toll-like receptors and cancer, particularly oral squamous cell carcinoma. Front. Immunol. 5:464
    [Google Scholar]
  109. Roy A, Ganesh G, Sippola H, Bolin S, Sawesi O et al. 2014. Mast cell chymase degrades the alarmins heat shock protein 70, biglycan, HMGB1, and interleukin-33 (IL-33) and limits danger-induced inflammation. J. Biol. Chem. 289:237–50
    [Google Scholar]
  110. Rui X, Pan HF, Shao SL, Xu XM. 2017. Anti-tumor and anti-angiogenic effects of fucoidan on prostate cancer: possible JAK-STAT3 pathway. BMC Complement. Altern. Med. 17:378
    [Google Scholar]
  111. Semenza GL. 2003. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3:721–32
    [Google Scholar]
  112. Serpa J, Caiado F, Carvalho T, Torre C, Goncalves LG. et al. 2010. Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells. J. Biol. Chem. 285:5039211–23
    [Google Scholar]
  113. Seura T, Fukuwatari T. 2019. Japanese diet score is associated with gut microbiota composition in young Japanese adults. J. Nutr. Sci. Vitaminol. 65:414–20
    [Google Scholar]
  114. Shah R, Kolanos R, Dinovi MJ, Mattia A, Kaneko KJ. 2017. Dietary exposures for the safety assessment of seven emulsifiers commonly added to foods in the United States and implications for safety. Food Addit. Contam. A 34:905–17
    [Google Scholar]
  115. Shakiba Y, Mansouri K, Mostafaie A. 2007. Anti-angiogenic effect of soybean kunitz trypsin inhibitor on human umbilical vein endothelial cells. Fitoterapia 78:587–89
    [Google Scholar]
  116. Shang Q, Sun W, Shan X, Jiang H, Cai C et al. 2017. Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicol. Lett. 279:87–95
    [Google Scholar]
  117. Shen Y, Zhang S, Fu L, Hu W, Chen Z 2008. Carnosine attenuates mast cell degranulation and histamine release induced by oxygen-glucose deprivation. Cell Biochem. Funct. 26:334–38
    [Google Scholar]
  118. Soares S, Brandão E, García-Estevez I, Fonseca F, Guerreiro C et al. 2019. Interaction between ellagitannins and salivary proline-rich proteins. J. Agric. Food Chem. 67:9579–90
    [Google Scholar]
  119. Soares S, Mateus N, de Freitas V. 2012. Carbohydrates inhibit salivary proteins precipitation by condensed tannins. J. Agric. Food Chem. 60:3966–72
    [Google Scholar]
  120. Sollid LM, Khosla C. 2011. Novel therapies for coeliac disease. J. Intern. Med. 269:604–13
    [Google Scholar]
  121. Strat KM, Rowley TJ IV, Smithson AT, Tessem JS, Hulver MW et al. 2016. Mechanisms by which cocoa flavanols improve metabolic syndrome and related disorders. J. Nutr. Biochem. 35:1–21
    [Google Scholar]
  122. Sturgeon C, Fasano A. 2016. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 4:e1251384
    [Google Scholar]
  123. Sun K, Wang CS, Guo J, Horie Y, Fang SP et al. 2007. Protective effects of ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1 on lipopolysaccharide-induced microcirculatory disturbance in rat mesentery. Life Sci 81:509–18
    [Google Scholar]
  124. Surdea-Blaga T, Negrutiu DE, Palage M, Dumitrascu DL. 2019. Food and gastroesophageal reflux disease. Curr. Med. Chem. 26:3497–511
    [Google Scholar]
  125. Swaminathan V, Prakasam S, Puri V, Srinivasan M. 2013. Role of salivary epithelial Toll-like receptors 2 and 4 in modulating innate immune responses in chronic periodontitis. J. Periodontal Res. 48:757–65
    [Google Scholar]
  126. Tan D, Wang Y, Lo CY, Sang S, Ho CT 2008. Methylglyoxal: its presence in beverages and potential scavengers. Ann. N. Y. Acad. Sci. 1126:72–75
    [Google Scholar]
  127. Tomás-Barberán FA, González-Sarrías A, García-Villalba R, Núñez-Sánchez MA, Selma MV et al. 2017. Urolithins, the rescue of “old” metabolites to understand a “new” concept: metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol. Nutr. Food Res. https://doi.org/10.1002/mnfr.201500901
    [Crossref] [Google Scholar]
  128. Trivedi PP, Jena GB. 2013. Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis. Food Chem. Toxicol. 59:339–55
    [Google Scholar]
  129. Ushiroda C, Naito Y, Takagi T, Uchiyama K, Mizushima K et al. 2019. Green tea polyphenol (epigallocatechin-3-gallate) improves gut dysbiosis and serum bile acids dysregulation in high-fat diet–fed mice. J. Clin. Biochem. Nutr. 65:34–46
    [Google Scholar]
  130. van de Lagemaat EE, de Groot LCPGM, van den Heuvel EGHM. 2019. Vitamin B12 in relation to oxidative stress: a systematic review. Nutrients 11:482
    [Google Scholar]
  131. van der Leek AP, Yanishevsky Y, Kozyrskyj AL. 2017. The kynurenine pathway as a novel link between allergy and the gut microbiome. Front. Immunol. 8:1374
    [Google Scholar]
  132. Van Welden S, Laukens D, Ferdinande L, De Vos M, Hindryckx P 2013. Differential expression of prolyl hydroxylase 1 in patients with ulcerative colitis versus patients with Crohn's disease/infectious colitis and healthy controls. J. Inflamm. 10:36
    [Google Scholar]
  133. Verdu EF, Galipeau HJ, Jabri B. 2015. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 12:497–506
    [Google Scholar]
  134. Villarino AV, Kanno Y, Ferdinand JR, O'Shea JJ 2015. Mechanisms of Jak/STAT signaling in immunity and disease. J. Immunol. 194:21–27
    [Google Scholar]
  135. Vinasco K, Mitchell HM, Kaakoush NO, Castaño-Rodríguez N. 2019. Microbial carcinogenesis: lactic acid bacteria in gastric cancer. Biochim. Biophys. Acta Rev. Cancer 1872:188309
    [Google Scholar]
  136. Vitellio P, Celano G, Bonfrate L, Gobbetti M, Portincasa P, De Angelis M. 2019. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on gut microbiota in patients with lactose intolerance and persisting functional gastrointestinal symptoms: a randomised, double-blind, cross-over study. Nutrients 11:886
    [Google Scholar]
  137. Wang C, Lu Y, Huang Q, Zheng T, Sang S, Lv L. 2017. Levels and formation of α-dicarbonyl compounds in beverages and the preventive effects of flavonoids. J. Food Sci. Technol. 54:2030–40
    [Google Scholar]
  138. Wang CC, Wu H, Lin FH, Gong R, Xie F et al. 2018. Sodium butyrate enhances intestinal integrity, inhibits mast cell activation, inflammatory mediator production and JNK signaling pathway in weaned pigs. Innate Immun 24:40–46
    [Google Scholar]
  139. Wang PF, Yao DH, Hu YY, Li Y. 2019. Vitamin D improves intestinal barrier function in cirrhosis rats by upregulating heme oxygenase 1 expression. Biomol. Ther. 27:222–30
    [Google Scholar]
  140. Ware JH, Wan XS, Rubin H, Schechter NM, Kennedy AR. 1997. Soybean Bowman-Birk protease inhibitor is a highly effective inhibitor of human mast cell chymase. Arch. Biochem. Biophys. 344:133–38
    [Google Scholar]
  141. Westerik N, Reid G, Sybesma W, Kort R. 2018. The probiotic Lactobacillus rhamnosus for alleviation of Helicobacter pylori–associated gastric pathology in East Africa. Front. Microbiol. 9:1873
    [Google Scholar]
  142. Wimberly AL, Forsyth CB, Khan MW, Pemberton A, Khazaie K, Keshavarzian A. 2013. Ethanol-induced mast cell–mediated inflammation leads to increased susceptibility of intestinal tumorigenesis in the APCΔ468 min mouse model of colon cancer. Alcohol Clin. Exp. Res. 37:Suppl. 1E199–208
    [Google Scholar]
  143. Wirthgen E, Tuchscherer M, Otten W, Domanska G, Wollenhaupt K et al. 2014. Activation of indoleamine 2,3-dioxygenase by LPS in a porcine model. Innate Immun 20:30–39
    [Google Scholar]
  144. Witaicenis A, Fruet AC, Salem L, Di Stasi LC. 2010. Dietary polydextrose prevents inflammatory bowel disease in trinitrobenzenesulfonic acid model of rat colitis. J. Med. Food 13:1391–96
    [Google Scholar]
  145. Wong U, Cross RK. 2019. Expert opinion on interleukin-12/23 and interleukin-23 antagonists as potential therapeutic options for the treatment of inflammatory bowel disease. Expert Opin. Investig. Drugs 28:473–79
    [Google Scholar]
  146. Wouters MM, Vicario M, Santos J. 2016. The role of mast cells in functional GI disorders. Gut 65:155–68
    [Google Scholar]
  147. Wu J, Yang C, Liu J, Chen J, Huang C et al. 2019. Betulinic acid attenuates T-2-toxin-induced testis oxidative damage through regulation of the JAK2/STAT3 signaling pathway in mice. Biomolecules 9:787
    [Google Scholar]
  148. Yacoub R, Nugent M, Cai W, Nadkarni GN, Chaves LD et al. 2017. Advanced glycation end products dietary restriction effects on bacterial gut microbiota in peritoneal dialysis patients; a randomized open label controlled trial. PLOS ONE 12:e0184789
    [Google Scholar]
  149. Yang BG, Hur KY, Lee MS. 2017. Alterations in gut microbiota and immunity by dietary fat. Yonsei Med. J. 58:1083–91
    [Google Scholar]
  150. Yang C, Deng Q, Xu J, Wang X, Hu C et al. 2019. Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet–fed rats. Food Res. Int. 116:1202–11
    [Google Scholar]
  151. Yang CL, Liu YY, Ma YG, Xue YX, Liu DG et al. 2012. Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase–STAT3 signalling pathway. PLOS ONE 7:e37960
    [Google Scholar]
  152. Yap YA, Mariño E. 2018. An insight into the intestinal web of mucosal immunity, microbiota, and diet in inflammation. Front. Immunol. 9:2617
    [Google Scholar]
  153. Zhang C, Gao F, Gan S, He Y, Chen Z et al. 2019. Chemical characterization and gastroprotective effect of an isolated polysaccharide fraction from Bletilla striata against ethanol-induced acute gastric ulcer. Food Chem. Toxicol. 131:110539
    [Google Scholar]
  154. Zhang Y, Zhang B, Dong L, Chang P 2019. Potential of Ω-3 polyunsaturated fatty acids in managing chemotherapy- or radiotherapy-related intestinal microbial dysbiosis. Adv. Nutr. 10:133–47
    [Google Scholar]
  155. Zhao L, Zhang Q, Ma W, Tian F, Shen H, Zhou M. 2017. A combination of quercetin and resveratrol reduces obesity in high-fat diet–fed rats by modulation of gut microbiota. Food Funct 8:4644–56
    [Google Scholar]
  156. Zhao W, Huang X, Han X, Hu D, Hu X et al. 2018. Resveratrol suppresses gut-derived NLRP3 inflammasome partly through stabilizing mast cells in a rat model. Mediat. Inflamm. 2018.6158671
    [Google Scholar]
  157. Zheng L, Kelly CJ, Colgan SP. 2015. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. Am. J. Physiol. Cell Physiol. 309:C350–60
    [Google Scholar]
  158. Zhu J, Zhou M, Zhao X, Mu M, Cheng M. 2018. Blueberry, combined with probiotics, alleviates non-alcoholic fatty liver disease via IL-22-mediated JAK1/STAT3/BAX signaling. Food Funct 9:6298–306
    [Google Scholar]
/content/journals/10.1146/annurev-food-062520-090235
Loading
/content/journals/10.1146/annurev-food-062520-090235
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error