1932

Abstract

Sentiment analysis is a growing field at the intersection of linguistics and computer science that attempts to automatically determine the sentiment contained in text. Sentiment can be characterized as positive or negative evaluation expressed through language. Common applications of sentiment analysis include the automatic determination of whether a review posted online (of a movie, a book, or a consumer product) is positive or negative toward the item being reviewed. Sentiment analysis is now a common tool in the repertoire of social media analysis carried out by companies, marketers, and political analysts. Research on sentiment analysis extracts information from positive and negative words in text, from the context of those words, and from the linguistic structure of the text. This brief review examines in particular the contributions that linguistic knowledge can make to the task of automatically determining sentiment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-linguistics-011415-040518
2016-01-14
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/linguistics/2/1/annurev-linguistics-011415-040518.html?itemId=/content/journals/10.1146/annurev-linguistics-011415-040518&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmad K, Gillam L, Cheng D. 2006. Sentiments on a grid: analysis of streaming news and views. Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 5) N Calzolari, K Choukri, A Gangemi, B Maegaard, J Mariani, et al. 2517–20 Genoa, Italy: Eur. Lang. Resour. Assoc. [Google Scholar]
  2. Aikhenvald A. 2004. Evidentiality Oxford, UK: Oxford Univ. Press [Google Scholar]
  3. Allan J. 2002. Topic Detection and Tracking: Event-Based Information Organization New York: Springer [Google Scholar]
  4. Andersen G, Fretheim T. 2000. Introduction. Pragmatic Markers and Propositional Attitude G Andersen, T Fretheim 1–16 Amsterdam/Philadelphia: Benjamins [Google Scholar]
  5. Andreevskaia A, Bergler S. 2008. When specialists and generalists work together: domain dependence in sentiment tagging. Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics290–98 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  6. Baccianella S, Esuli A, Sebastiani F. 2010. SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. Proceedings of the 7th Conference on International Language Resources and Evaluation (LREC 10) N Calzolari, K Choukri, B Maegaard, J Mariani, J Odijk, et al. 2200–4 Valletta, Malta: Eur. Lang. Resour. Assoc. [Google Scholar]
  7. Bakliwal A, Foster J, van der Puil J, O'Brien R, Tounsi L, Hughes M. 2013. Sentiment analysis of political tweets: towards an accurate classifier. Proceedings of the Workshop on Language Analysis in Social Media (LASM 2013)49–58 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  8. Bamman D, Smith NA. 2015. Contextualized sarcasm detection on Twitter. Proceedings of the 9th International Conference on Web and Social Media574–77 Menlo Park, CA: AAAI [Google Scholar]
  9. Banea C, Mihalcea R, Wiebe J. 2014. Sense-level subjectivity in a multilingual setting. Comput. Speech Lang. 28:7–19 [Google Scholar]
  10. Banea C, Mihalcea R, Wiebe J, Hassan S. 2008. Multilingual subjectivity analysis using machine translation. Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing (EMNLP-2008)127–35 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  11. Banfield A. 1982. Unspeakable Sentences: Narration and Representation in the Language of Fiction Boston: Routledge/Kegan Paul [Google Scholar]
  12. Batson CD, Shaw LL, Oleson KC. 1992. Differentiating affect, mood, and emotion: toward functionally based conceptual distinctions. Emotion: Review of Personality and Social Psychology MS Clark 294–326 Newbury Park, CA: Sage [Google Scholar]
  13. Benamara F, Cesarano C, Picariello A, Reforgiato D, Subrahmanian V. 2007. Sentiment analysis: Adjectives and adverbs are better than adjectives alone. Proceedings of the 1st International Conference on Weblogs and Social Media (ICWSM) http://www.icwsm.org/papers/paper31.html [Google Scholar]
  14. Benamara F, Chardon B, Mathieu YY, Popescu V, Asher N. 2012. How do negation and modality impact opinions?. Proceedings of the ACL-2012 Workshop on Extra-Propositional Aspects of Meaning in Computational Linguistics (ExProM-2012)10–18 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  15. Benamara F, Popescu V, Chardon B, Asher N, Mathieu Y. 2013. Assessing opinions in texts: Does discourse really matter?. Nonveridicality and Evaluation: Theoretical, Computational and Corpus Approaches M Taboada, R Trnavac 127–50 Leiden, Neth.: Brill [Google Scholar]
  16. Biber D, Finegan E. 1988. Adverbial stance types in English. Discourse Process. 11:1–34 [Google Scholar]
  17. Biber D, Finegan E. 1989. Styles of stance in English: lexical and grammatical marking of evidentiality and affect. Text 9:93–124 [Google Scholar]
  18. Blanco E, Moldovan D. 2013. Retrieving implicit positive meaning from negated statements. Nat. Lang. Eng. 20:501–35 [Google Scholar]
  19. Bloom K, Garg N, Argamon S. 2007. Extracting appraisal expressions. Proceedings of the 2007 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics (HLT/NAACL)308–15 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  20. Bobicev V, Sokolova M, Oakes M. 2015. What goes around comes around: learning sentiments in online medical forums. Cogn. Comput. 7609–21 [Google Scholar]
  21. Bollen J, Mao H, Zeng X. 2013. Twitter mood predicts the stock market. J. Comput. Sci. 2:1–8 [Google Scholar]
  22. Borth D, Ji R, Chen T, Breuel T, Chang S-F. 2013. Large-scale visual sentiment ontology and detectors using adjective noun pairs. Proceedings of the 21st ACM International Conference on Multimedia223–32 New York: ACM [Google Scholar]
  23. Boucher JD, Osgood CE. 1969. The Pollyanna hypothesis. J. Verbal Learn. Verbal Behav. 8:1–8 [Google Scholar]
  24. Brooke J, Tofiloski M, Taboada M. 2009. Cross-linguistic sentiment analysis: from English to Spanish. Proceedings of the 7th International Conference on Recent Advances in Natural Language Processing G Angelova, K Bontcheva, R Mitkov, N Nicolov 50–54 Shoumen, Bulg.: Incoma [Google Scholar]
  25. Bybee J, Fleischman S. 1995. Modality in Grammar and Discourse Amsterdam/Philadelphia: Benjamins [Google Scholar]
  26. Caffi C, Janney RW. 1994. Towards a pragmatics of emotive communication. J. Pragmat. 22:325–73 [Google Scholar]
  27. Carrillo de Albornoz J, Plaza L. 2013. An emotion-based model of negation, intensifiers, and modality for polarity and intensity classification. J. Am. Soc. Inf. Sci. Technol. 64:1618–33 [Google Scholar]
  28. Carvalho P, Sarmento L, Silva MJ, Oliveira Ed. 2009. Clues for detecting irony in user-generated contents: Oh..!! It's “so easy”;-). Proceedings of the 1st International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion Measurement53 New York: ACM [Google Scholar]
  29. Ceron A, Curini L, Iacus SM. 2015. Using sentiment analysis to monitor electoral campaigns: Method matters—evidence from the United States and Italy. Soc. Sci. Comput. Rev. 33:3–20 [Google Scholar]
  30. Chafe W, Nichols J. 1986. Evidentiality: The Linguistic Coding of Epistemology Norwood, NJ: Ablex [Google Scholar]
  31. Chardon B, Benamara F, Mathieu YY, Popescu V, Asher N. 2013. Measuring the effect of discourse structure on sentiment analysis. Proceedings of the 14th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing 2013)25–37 Berlin: Springer [Google Scholar]
  32. Clematide S, Klenner M. 2010. Evaluation and extension of a polarity lexicon for German. Proceedings of the 1st Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA)7–14 Lisbon: Univ. Alicante [Google Scholar]
  33. Das SR, Chen MY. 2007. Yahoo! for Amazon: opinion extraction from small talk on the web. J. Manag. Sci. 53:1375–88 [Google Scholar]
  34. Dave K, Lawrence S, Pennock DM. 2003. Mining the peanut gallery: opinion extraction and semantic classification of product reviews. Proceedings of the 12th International World Wide Web Conference (WWW 2003)519–28 New York: ACM [Google Scholar]
  35. Denis A, Cruz-Lara S, Bellalem N, Bellalem L. 2014. Synalp-Emphatic: a valence shifting hybrid system for sentiment analysis. Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014)605–9 http://alt.qcri.org/semeval2014/cdrom/pdf/SemEval106.pdf [Google Scholar]
  36. Dinu LP, Iuga I. 2012. The Naive Bayes Classifier in opinion mining: in search of the best feature set. Computational Linguistics and Intelligent Text Processing A Gelbukh 556–67 Berlin: Springer [Google Scholar]
  37. Dodds PS, Clark EM, Desu S, Frank MR, Reagan AJ. et al. 2015. Human language reveals a positivity bias. PNAS 112:2389–94 [Google Scholar]
  38. Durant KT, Smith MD. 2006. Mining sentiment classification from political web logs. Proceedings of the Workshop on Web Mining and Web Usage Analysis of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining New York: ACM http://webmining.spd.louisville.edu/webkdd06/papers/paper-17-Mining%20Sentiment%20Classification%20from%20Political%20Web%20Logs-WM_1069%5b1%5d.pdf [Google Scholar]
  39. El-Beltagy SR, Ali A. 2013. Open issues in the sentiment analysis of Arabic social media: a case study. Proceedings of the 9th International Conference on Innovations in Information Technology215–20 Piscataway, NJ: IEEE [Google Scholar]
  40. Esuli A, Sebastiani F. 2006. SentiWordNet: a publicly available lexical resource for opinion mining. Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 5) N Calzolari, K Choukri, A Gangemi, B Maegaard, J Mariani, et al. 417–22 Genoa, Italy: Eur. Lang. Resour. Assoc. [Google Scholar]
  41. Farkas R, Vincze V, Móra G, Csirik J, Szarvas G. 2010. The CoNLL-2010 shared task: learning to detect hedges and their scope in natural language text. Proceedings of the 14th Conference on Computational Natural Language Learning: Shared Task1–12 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  42. Feldman R. 2013. Techniques and applications for sentiment analysis: the main applications and challenges of one of the hottest research areas in computer science. Commun. ACM 56:82–89 [Google Scholar]
  43. Feng S, Banerjee R, Choi Y. 2012. Syntactic stylometry for deception detection. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics171–75 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  44. Feng VW. 2015. RST-style discourse parsing and its applications in discourse analysis PhD thesis, Grad. Dep. Comput. Sci., Univ. Toronto, Can. [Google Scholar]
  45. Feng VW, Hirst G. 2014. A linear-time bottom-up discourse parser with constraints and post-editing. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics 1511–21 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  46. Ghorbel H. 2012. Experiments in cross-lingual sentiment analysis in discussion forums. Proceedings of the 4th International Conference on Social Informatics K Aberer, A Flache, W Jager, L Liu, J Tang, C Guéret 138–51 Berlin: Springer [Google Scholar]
  47. Giannakidou A. 1995. On the semantic licensing of polarity items. Studies in Greek Linguistics 15: Proceedings of the 15th Annual Meeting of the Department of Linguistics A-P Christidis, M Margariti-Roga, A Arhakis 406–18 Thessaloniki, Greece: Univ. Thessaloniki [Google Scholar]
  48. Greenberg JH. 1966. Language Universals, with Special Reference to Feature Hierarchies The Hague: Mouton [Google Scholar]
  49. Haas M, Versley Y. 2015. Subsentential sentiment on a shoestring: a crosslingual analysis of compositional classification. Proceedings of the 2015 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics (HLT/NAACL)694–704 Red Hook, NY: Curran [Google Scholar]
  50. Hatzivassiloglou V, McKeown K. 1997. Predicting the semantic orientation of adjectives. Proceedings of the 35th Meeting of the Association for Computational Linguistics174–81 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  51. Hernault H, Prendinger H, duVerle DA, Ishizuka M. 2010. HILDA: a discourse parser using Support Vector Machine classification. Dialogue Discourse 1:1–33 [Google Scholar]
  52. Horn LR. 1989. A Natural History of Negation Chicago: Univ. Chicago Press [Google Scholar]
  53. Hu M, Liu B. 2004. Mining and summarizing customer reviews. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2004)168–77 New York: ACM [Google Scholar]
  54. Huang T-H, Yu H-C, Chen H-H. 2012. Modeling Polyanna phenomena in Chinese sentiment analysis. Proceedings of the 12th Annual Conference on Computational Linguistics (COLING 2012): Demonstration Papers231–38 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  55. Hunston S. 2011. Corpus Approaches to Evaluation: Phraseology and Evaluative Language New York: Routledge [Google Scholar]
  56. Hunston S, Francis G. 2000. Pattern Grammar: A Corpus-Driven Approach to the Lexical Grammar of English Amsterdam/Philadelphia: Benjamins [Google Scholar]
  57. Hunston S, Thompson G. 2000. Evaluation: an introduction. Evaluation in Text: Authorial Distance and the Construction of Discourse S Hunston, G Thompson 1–27 Oxford, UK: Oxford Univ. Press [Google Scholar]
  58. Jing-Schmidt Z. 2007. Negativity bias in language: a cognitive-affective model of emotive intensifiers. Cogn. Linguist. 18:417–43 [Google Scholar]
  59. Joty S, Carenini G, Ng R. 2015. CODRA: a novel discriminative framework for rhetorical analysis. Comput. Linguist. 41:385–435 [Google Scholar]
  60. Jungherr A, Jürgens P, Schoen H. 2012. Why the Pirate Party won the German election of 2009, or the trouble with predictions: a response to Tumasjan, A., Sprenger, T.O., Sander, P.G., & Welpe, I.M. “Predicting elections with Twitter: What 140 characters reveal about political sentiment”. Soc. Sci. Comput. Rev. 30:229–34 [Google Scholar]
  61. Kennedy A, Inkpen D. 2006. Sentiment classification of movie and product reviews using contextual valence shifters. Comput. Intell. 22:110–25 [Google Scholar]
  62. Kim S-M, Hovy E. 2004. Determining the sentiment of opinions. Proceedings of the 20th Annual Conference on Computational Linguistics (COLING 2004) artic. number 1367 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  63. Kiritchenko S, Zhu X, Mohammad S. 2014. Sentiment analysis of short informal texts. J. Artif. Intell. Res. 50:723–62 [Google Scholar]
  64. Krippendorf K. 2004. Content Analysis: An Introduction to Its Methodology Thousand Oaks, CA: Sage [Google Scholar]
  65. Langacker RW. 1990. Subjectification. Cogn. Linguist. 1:5–38 [Google Scholar]
  66. Li H, Mukherjee D, Liu B, Kornfield R, Emery S. 2014. Detecting campaign promoters on Twitter using Markov Random Fields. Proceedings of the IEEE International Conference on Data Mining (ICDM-2014)290–99 Piscataway, NJ: IEEE [Google Scholar]
  67. Liu B. 2012. Sentiment Analysis and Opinion Mining San Rafael, CA: Morgan & Claypool [Google Scholar]
  68. Liu B. 2015. Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge, UK: Cambridge Univ. Press. [Google Scholar]
  69. Liu J, Seneff S. 2009. Review sentiment scoring via a parse-and-paraphrase paradigm. Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP-2009)161–69 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  70. López R, Tejada J, Thelwall M. 2012. Spanish SentiStrength as a tool for opinion mining Peruvian Facebook and Twitter. Artificial Intelligence Driven Solutions to Business and Engineering Problems G Setlak, M Alexandrov, K Markov 82–85 Sofia, Bulg.: Ithea [Google Scholar]
  71. Louw B. 1993. Irony in the text or insincerity in the writer? The diagnostic potential of semantic prosodies. Text and Technology: In Honour of John Sinclair M Baker, G Francis, E Tognini-Bonelli 157–76 Amsterdam: Benjamins [Google Scholar]
  72. Mann WC, Thompson SA. 1988. Rhetorical Structure Theory: toward a functional theory of text organization. Text 8:243–81 [Google Scholar]
  73. Marchand M. 2012. État de l'art: l'influence du domaine sur la classification de l'opinion. Proceedings of the Joint Conference JEP-TALN-RECITAL L Basacier, B Lecouteux, G Sérasset 1177–90 Grenoble, France: AFCP/ATALA [Google Scholar]
  74. de Marneffe M-C, Manning C, Potts C. 2012. Did it happen? The pragmatic complexity of veridicality assessment. Comput. Linguist. 38:301–33 [Google Scholar]
  75. Martin JR, White PRR. 2005. The Language of Evaluation New York: Palgrave [Google Scholar]
  76. Mihalcea R, Banea C, Wiebe J. 2007. Learning multilingual subjective language via cross-lingual projections. Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics976–83 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  77. Mohammad S, Dorr B, Dunne C. 2009. Generating high-coverage semantic orientation lexicons from overtly marked words and a thesaurus. Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP-2009)599–608 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  78. Mohammad S, Kiritchenko S, Zhu X. 2013. NRC-Canada: building the state-of-the-art in sentiment analysis of tweets. Proceedings of the 7th International Workshop on Semantic Evaluation Exercises (SemEval 2013)443–47 http://www.aclweb.org/anthology/S14-2077 [Google Scholar]
  79. Molina-González MD, Martínez-Cámara E, Martín-Valdivia M-T, Perea-Ortega JM. 2013. Semantic orientation for polarity classification in Spanish reviews. Expert Syst. Appl. 40:7250–57 [Google Scholar]
  80. Morante R, Sporleder C. 2012. Modality and negation: an introduction to the special issue. Comput. Linguist. 38:223–60 [Google Scholar]
  81. Moreno-Ortiz A, Pérez Hernández L. 2012. Lexicon-based sentiment analysis of Twitter messages in Spanish. Taller de Análisis de Sentimientos en la SEPLN (Sociedad Española para el Procesamiento del Lenguaje Natural)93–100 http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/4664 [Google Scholar]
  82. Morsy SA, Rafea A. 2012. Improving document-level sentiment classification using contextual valence shifters. Natural Language Processing and Information Systems: Proceedings of the 17th International Conference on Applications of Natural Language to Information Systems G Bouma, A Ittoo, E Métais, H Wortmann 253–58 Groningen, Neth.: Springer [Google Scholar]
  83. Mullen T, Malouf R. 2006. A preliminary investigation into sentiment analysis of informal political discourse. Proceedings of the AAAI 2006 Spring Symposium on Computational Approaches to Analyzing Weblogs125–26 Menlo Park, CA: AAAI [Google Scholar]
  84. O'Connor B, Stewart BM, Smith NA. 2013. Learning to extract international relations from political context. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics1094–104 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  85. Ortigosa A, Martín JM, Carro RM. 2014. Sentiment analysis in Facebook and its applications to e-learning. Comput. Hum. Behav. 31:527–41 [Google Scholar]
  86. Osgood CE, Richards MM. 1973. From Yang and Yin to and or but. Language 49:380–412 [Google Scholar]
  87. Ott M, Choi Y, Cardie C, Hancock JT. 2011. Finding deceptive opinion spam by any stretch of the imagination. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics309–19 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  88. Palmer F. 1986. Mood and Modality Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  89. Pang B, Lee L. 2008. Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2:1–135 [Google Scholar]
  90. Pang B, Lee L, Vaithyanathan S. 2002. Thumbs up? Sentiment classification using machine learning techniques. Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP-2002)79–86 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  91. Pestian JP, Matykiewicz P, Linn-Gust M, South B, Uzuner O. et al. 2012. Sentiment analysis of suicide notes: a shared task. Biomed. Inf. Insights 5:3–16 [Google Scholar]
  92. Polanyi L, Zaenen A. 2006. Contextual valence shifters. Computing Attitude and Affect in Text: Theory and Applications JG Shanahan, Y Qu, J Wiebe 1–10 Dordrecht, Neth.: Springer [Google Scholar]
  93. Popat K, Balamurali AR, Battacharyya P, Haffari G. 2013. The haves and the have-nots: leveraging unlabelled corpora for sentiment analysis. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics412–22 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  94. Portner P. 2009. Modality Oxford, UK: Oxford Univ. Press [Google Scholar]
  95. Potts C. 2011. On the negativity of negation. Proceedings of the 20th Semantics and Linguistic Theory (SALT 20)636–59 Ithaca, NY: CLC [Google Scholar]
  96. Prabowo R, Thelwall M. 2009. Sentiment analysis: a combined approach. J. Informetr. 3:143–57 [Google Scholar]
  97. Qiu M, Sim Y, Smith NA, Jiang J. 2015. Modeling user arguments, interactions and attributes for stance prediction in online debate forums Presented at SIAM Int. Conf. Data Mining, Vancouver, Can. [Google Scholar]
  98. Quirk R, Greenbaum S, Leech G, Svartvik J. 1985. A Comprehensive Grammar of the English Language London: Longman [Google Scholar]
  99. Riloff E, Qadir A, Surve P, De Silva L, Gilbert N, Huang R. 2013. Sarcasm as contrast between a positive sentiment and negative situation. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP-2013)704–14 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  100. Riloff E, Wiebe J, Wilson T. 2003. Learning subjective nouns using extraction pattern bootstrapping. Proceedings of the 7th Conference on Natural Language Learning (CoNLL 7)25–32 http://aclweb.org/anthology/W/W13/W13-1602.pdf [Google Scholar]
  101. Rozin P, Royzman EB. 2001. Negativity bias, negativity dominance, and contagion. Personal. Soc. Psychol. Rev. 5:296–320 [Google Scholar]
  102. Salameh M, Mohammad S, Kiritchenko S. 2015. Sentiment analysis after translation: a case-study on Arabic social media posts. Proceedings of the 2015 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics (HLT/NAACL)767–77 Red Hook, NY: Curran [Google Scholar]
  103. Saurí R. 2008. A factuality profiler for eventualities in text PhD thesis, Comput. Sci. Dep., Brandeis Univ., Waltham, MA [Google Scholar]
  104. Scheibman J. 2002. Point of View and Grammar: Structural Patterns of Subjectivity in American English Amsterdam/Philadelphia: Benjamins [Google Scholar]
  105. Scott M. 2014. TripAdvisor fined $610,000 in Italy for failing to prevent fake reviews. New York Times Dec. 23 B8 [Google Scholar]
  106. Serrano-Guerrero J, Olivas JA, Romero FP, Herrera-Viedma E. 2015. Sentiment analysis: a review and comparative analysis of web services. Inf. Sci. 311:18–38 [Google Scholar]
  107. Socher R, Pennington J, Huang EH, Ng AY, Manning C. 2011. Semi-supervised recursive autoencoders for predicting sentiment distributions. Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP-2011)151–61 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  108. Socher R, Perelygin A, Wu JY, Chuang J, Manning C. et al. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP-2013)1631–42 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  109. Sonntag J, Stede M. 2014. Sentiment analysis: What's your opinion?. Text Mining: From Ontology Learning to Automated Text Processing Applications C Biemann, A Mehler 177–99 Berlin: Springer [Google Scholar]
  110. Sporleder C, Lascarides A. 2008. Using automatically labelled examples to classify rhetorical relations: an assesment. Nat. Lang. Eng. 14:369–416 [Google Scholar]
  111. Stein D. 1995. Subjective meanings and the history of inversions in English. Subjectivity and Subjectivisation: Linguistic Perspectives D Stein, S Wright 129–50 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  112. Stewart M. 2015. The language of praise and criticism in a student evaluation survey. Stud. Educ. Eval. 45:1–9 [Google Scholar]
  113. Streitfeld D. 2013. Give yourself 5 stars? Online, it might cost you. New York Times Sept. 22 A1 [Google Scholar]
  114. Subrahmanian V, Reforgiato D. 2008. AVA: adjective–verb–adverb combinations for sentiment analysis. Intell. Syst. 23:43–50 [Google Scholar]
  115. Taboada M. 2008. SFU Review Corpus Vancouver, Can.: Simon Fraser Univ http://www.sfu.ca/∼mtaboada/research/SFU_Review_Corpus.html [Google Scholar]
  116. Taboada M, Brooke J, Stede M. 2009. Genre-based paragraph classification for sentiment analysis. Proceedings of the 10th Annual SIGDIAL Meeting on Discourse and Dialogue P. Healey, R Pieraccini, D Byron, S Young, M Purver 62–70 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  117. Taboada M, Brooke J, Tofiloski M, Voll K, Stede M. 2011. Lexicon-based methods for sentiment analysis. Comput. Linguist. 37:267–307 [Google Scholar]
  118. Taboada M, Gillies MA, McFetridge P. 2006. Sentiment classification techniques for tracking literary reputation. Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 5) N Calzolari, K Choukri, A Gangemi, B Maegaard, J Mariani, et al. 36–43 Genoa, Italy: Eur. Lang. Resour. Assoc. [Google Scholar]
  119. Taboada M, Gómez-González M. 2012. Discourse markers and coherence relations: comparison across markers, languages and modalities. Linguist. Hum. Sci. 6:17–41 [Google Scholar]
  120. Taboada M, Grieve J. 2004. Analyzing appraisal automatically. Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect in Text Y Qu, JG Shanahan, J Wiebe 158–61 Menlo Park, CA: AAAI [Google Scholar]
  121. The Last Psychiatrist 2013. How does the shutdown relate to me?. The Last Psychiatrist blog, Sept. 25. http://thelastpsychiatrist.com/2013/09/how_does_the_shutdown_relate_t.html [Google Scholar]
  122. Thelwall M, Buckley K, Paltoglou G, Cai D, Kappas A. 2010. Sentiment strength detection in short informal text. J. Am. Soc. Inf. Sci. Technol. 61:2544–58 [Google Scholar]
  123. Thomas M, Pang B, Lee L. 2006. Get out the vote: determining support or opposition from Congressional floor-debate transcripts. Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP-2006)327–35 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  124. Thompson SA. 2002. “Object complements” and conversation: towards a realistic account. Stud. Lang. 26:125–64 [Google Scholar]
  125. Traugott EC. 1995. Subjectification in grammaticalisation. Subjectivity and Subjectivisation: Linguistic Perspectives D Stein, S Wright 31–54 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  126. Traugott EC. 2010. (Inter)subjectivity and (inter)subjectification: a reassessment. Subjectification, Intersubjectification and Grammaticalization K Davidse, L Vandelanotte, H Cuyckens 29–74 Berlin: de Gruyter [Google Scholar]
  127. Trnavac R, Taboada M. 2012. The contribution of nonveridical rhetorical relations to evaluation in discourse. Lang. Sci. 34:301–18 [Google Scholar]
  128. Tsur O, Davidov D, Rappoport A. 2010. ICWSM—a great catchy name: semi-supervised recognition of sarcastic sentences in online product reviews. Proceedings of the 4th International Conference on Weblogs and Social Media (ICWSM)162–69 Menlo Park, CA: AAAI [Google Scholar]
  129. Tumasjan A, Sprenger TO, Sandner PG, Welpe IM. 2010. Predicting elections with Twitter: what 140 characters reveal about political sentiment. Proceedings of the 4th International Conference on Weblogs and Social Media (ICWSM)178–85 Menlo Park, CA: AAAI [Google Scholar]
  130. Turney P. 2002. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. Proceedings of the 40th Meeting of the Association for Computational Linguistics417–24 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  131. Utsumi A. 2000. Verbal irony as implicit display of ironic environment: distinguishing ironic utterances from nonirony. J. Pragmat. 32:1777–806 [Google Scholar]
  132. Velldall E, Ovrelid L, Read J, Oepen S. 2012. Speculation and negation: rules, rankers, and the role of syntax. Comput. Linguist. 38:369–410 [Google Scholar]
  133. Verhagen A. 2005. Constructions of Intersubjectivity: Discourse, Syntax, and Cognition Oxford, UK: Oxford Univ. Press [Google Scholar]
  134. Vilares D, Alonso MA, Gómez-Rodríguez C. 2015a. A syntactic approach for opinion mining on Spanish reviews. Nat. Lang. Eng. 21:139–63 [Google Scholar]
  135. Vilares D, Alonso MA, Gómez-Rodríguez C. 2015b. On the usefulness of lexical and syntactic processing in polarity classification of Twitter messages. J. Assoc. Inf. Sci. Technol. 66:1799–816 [Google Scholar]
  136. Vincze V, Szarvas G, Farkas R, Móra G, Csirik J. 2008. The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinform. 9:Suppl. 11S9 [Google Scholar]
  137. Waltinger U. 2010. GermanPolarityClues: a lexical resource for German sentiment analysis. Proceedings of the 7th Conference on International Language Resources and Evaluation (LREC 10) N Calzolari, K Choukri, B Maegaard, J Mariani, J Odijk, et al. 1638–42 Valletta, Malta: Eur. Lang. Resour. Assoc. [Google Scholar]
  138. Wan X. 2008. Using bilingual knowledge and ensemble techniques for unsupervised Chinese sentiment analysis. Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing (EMNLP-2008)553–61 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  139. Wang F, Wu Y, Qiu L. 2012. Exploiting discourse relations for sentiment analysis. Proceedings of the 24th International Conference on Computational Linguistics (COLING 2012)1311–20 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  140. Wang Y, Hu Y, Kambhampati S, Li B. 2015. Inferring sentiment from web images with joint inference on visual and social cues: a regulated matrix factorization approach. Proceedings of the 9th International Conference on Web and Social Media473–82 Menlo Park, CA: AAAI [Google Scholar]
  141. Wiebe J. 1994. Tracking point of view in narrative. Comput. Linguist. 20:233–87 [Google Scholar]
  142. Wiebe J, Breck E, Buckley C, Cardie C, Davis P. et al. 2003. Recognizing and organizing opinions expressed in the world press. Working Notes of the AAAI Spring Symposium in New Directions in Question Answering12–19 Menlo Park, CA: AAAI [Google Scholar]
  143. Wiebe J, Riloff E. 2005. Creating subjective and objective sentence classifiers from unannotated texts. Proceedings of the 6th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing 2005)486–97 Berlin: Springer [Google Scholar]
  144. Wiebe J, Wilson T, Bruce R, Bell M, Martin M. 2004. Learning subjective language. Comput. Linguist. 30:277–308 [Google Scholar]
  145. Wiebe J, Wilson T, Cardie C. 2005. Annotating expressions of opinions and emotions in language. Lang. Resour. Eval. 39:165–210 [Google Scholar]
  146. Wilson T, Wiebe J, Hoffmann P. 2005. Recognizing contextual polarity in phrase-level sentiment analysis. Proceedings of the 2005 Human Language Technology Conference and the Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP-05)347–54 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  147. Wilson T, Wiebe J, Hoffmann P. 2009. Recognizing contextual polarity: an exploration of features for phrase-level sentiment analysis. Comput. Linguist. 35:399–433 [Google Scholar]
  148. Wilson T, Wiebe J, Hwa R. 2006. Recognizing strong and weak opinion clauses. Comput. Intell. 22:73–99 [Google Scholar]
  149. Witten IH, Frank E. 2005. Data Mining: Practical Machine Learning Tools and Techniques San Francisco: Morgan Kaufmann [Google Scholar]
  150. Yano T, Yogatama D, Smith NA. 2013. A penny for your tweets: campaign contributions and Capitol Hill microblogging. Proceedings of the 7th International AAAI Conference on Weblogs and Social Media737–40 Menlo Park, CA: AAAI [Google Scholar]
  151. Yessenalina A, Choi Y, Cardie C. 2010. Automatically generating annotator rationales to improve sentiment classification. Proceedings of the Association for Computational Linguistics 2010: Conference Short Papers336–41 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  152. Zaenen A, Polanyi L. 2004. Contextual valence shifters. Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect in Text Y Qu, JG Shanahan, J Wiebe 106–11 Menlo Park, CA: AAAI [Google Scholar]
  153. Ziyan C, Huang Y, Tian J, Liu X, Fu K, Huang T. 2015. Joint model for subsentence-level sentiment analysis with Markov logic. J. Assoc. Inf. Sci. Technol. 66:1913–22 [Google Scholar]
  154. Zwarts F. 1995. Nonveridical contexts. Linguist. Anal. 25:286–312 [Google Scholar]
/content/journals/10.1146/annurev-linguistics-011415-040518
Loading
/content/journals/10.1146/annurev-linguistics-011415-040518
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error