I analyze the biological underpinnings of human speech from a comparative perspective. By first identifying mechanisms that are evolutionarily derived relative to other primates, we obtain members of the faculty of language, derived components (FLD). Understanding when and why these evolved is central to understanding the evolution of speech. There is little evidence for human-specific mechanisms in auditory perception, and the hypothesis that speech perception is “special” is poorly supported by comparative data. Regarding speech production, human peripheral vocal anatomy includes several derived characteristics (permanently descended larynx, loss of air sacs), but their importance has been overestimated. In contrast, the central neural mechanisms underlying speech production involve crucial derived characteristics (direct monosynaptic connections from motor cortex to laryngeal motor neurons, derived intracortical dorsal circuitry between auditory and motor regions). Paleo-DNA from fossil hominins provides an exciting new opportunity to determine when these derived speech production mechanisms arose during evolution.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adret P. 1992. Vocal learning induced with operant techniques: an overview. Neth. J. Zool. 43:125–42 [Google Scholar]
  2. Alcock KJ, Passingham RE, Watkins KE, Vargha-Khadem F. 2000. Pitch and timing abilities in inherited speech and language impairment. Brain Lang 75:34–46 [Google Scholar]
  3. Alemseged Z, Spoor F, Kimbel WH, Bobe R, Geraads D. et al. 2006. A juvenile early hominin skeleton from Dikika, Ethiopia. Nature 443:296–301 [Google Scholar]
  4. Andics A, Gábor A, Gácsi M, Faragó T, Szabó D, Miklósi Á. 2016. Neural mechanisms for lexical processing in dogs. Science 353:1030–32 [Google Scholar]
  5. Andics A, Gácsi M, Faragó T, Kis A, Miklósi Á. 2014. Voice-sensitive regions in the dog and human brain are revealed by comparative fMRI. Curr. Biol. 24:574–78 [Google Scholar]
  6. Arensburg B, Schepartz LA, Tillier AM, Vandermeersch B, Rak Y. 1990. A reappraisal of the anatomical basis for speech in middle Paleolithic hominids. Am. J. Phys. Anthropol. 83:137–46 [Google Scholar]
  7. Baru AV. 1975. Discrimination of synthesized vowels [a] and [i] with varying parameters (fundamental frequency, intensity, duration and number of formants) in dog. Auditory Analysis and Perception of Speech G Fant, MAA Tatham 91–101 New York: Academic [Google Scholar]
  8. Belin P. 2006. Voice processing in human and non-human primates. Philos. Trans. R. Soc. Lond. 361:2091–107 [Google Scholar]
  9. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B. 2000. Voice-selective areas in human auditory cortex. Nature 403:309–12 [Google Scholar]
  10. Belyk M, Brown S. 2017. The origins of the vocal brain in humans. Neurosci. Biobehav. Rev. 77:177–93 [Google Scholar]
  11. Bräuer J, Anwander A, Friederici AD. 2011. Neuroanatomical prerequisites for language functions in the maturing brain. Cereb. Cortex 21:459–66 [Google Scholar]
  12. Carstairs-McCarthy A. 1999. The Origins of Complex Language Oxford, UK: Oxford Univ. Press
  13. Castellucci GA, McGinley MJ, McCormick DA. 2016. Knockout of Foxp2 disrupts vocal development in mice. Sci. Rep. 6:23305 [Google Scholar]
  14. Charlton BD, Ellis WAH, Larkin R, Fitch WT. 2012. Perception of size-related information in male koalas (Phascolarctos cinereus). Anim. Cogn. 15:999–1006 [Google Scholar]
  15. Charlton BD, Ellis WAH, McKinnon AJ, Cowin GJ, Brumm J. et al. 2011. Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: honesty in an exaggerated trait. J. Exp. Biol. 214:3414–22 [Google Scholar]
  16. Charlton BD, Reby D. 2016. The evolution of acoustic size exaggeration in terrestrial mammals. Nat. Commun. 7:e12739 [Google Scholar]
  17. Clarey JC, Barone P, Imig TJ. 1992. Physiology of thalamus and cortex. The Mammalian Auditory Pathway: Neurophysiology AN Popper, RR Fay 232–334 Berlin: Springer [Google Scholar]
  18. Clegg M, Aiello LC. 2000. Paying the price for speech? An analysis of mortality statistics for choking on food. Am. J. Phys. Anthropol. 126:Suppl. 309482–83 [Google Scholar]
  19. Crystal D. 2003. The Cambridge Encyclopedia of Language Cambridge, UK: Cambridge Univ. Press
  20. Cutting JE. 1982. Plucks and bows are categorically perceived, sometimes. Percept. Psychophys. 31:462–76 [Google Scholar]
  21. Cutting JE, Rosner BS. 1974. Category boundaries in speech and music. Percept. Psychophys. 16:564–70 [Google Scholar]
  22. de Boer B. 2009. Acoustic analysis of primate air sacs and their effect on vocalization. J. Acoust. Soc. Am. 126:3329–43 [Google Scholar]
  23. de Boer B. 2010. Investigating the acoustic effect of the descended larynx with articulatory models. J. Phon. 38:679–86 [Google Scholar]
  24. Dooling RJ. 1992. Perception of speech sounds by birds. Adv. Biosci. 83:407–13 [Google Scholar]
  25. Elder JH. 1934. Auditory acuity of the chimpanzee. J. Comp. Physiol. Psychol. 17:157–83 [Google Scholar]
  26. Elemans CPH, Rasmussen JH, Herbst CT, Düring DN, Zollinger SA. et al. 2014. Universal mechanisms of sound production and control in birds and mammals. Nat. Commun. 6:8978 [Google Scholar]
  27. Eliades SJ, Wang X. 2008. Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature 453:1102–6 [Google Scholar]
  28. Enard W, Gehre S, Hammerschmidt K, Holter SM, Blass T. et al. 2009. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–71 [Google Scholar]
  29. Enard W, Przeworski M, Fisher SE, Lai CSL, Wiebe V. et al. 2002. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418:869–72 [Google Scholar]
  30. Fant G. 1960. Acoustic Theory of Speech Production The Hague: Mouton
  31. Fecteau S, Armony JL, Joanette Y, Belin P. 2004. Is voice processing species-specific in human auditory cortex? An fMRI study. NeuroImage 23:840–48 [Google Scholar]
  32. Fischer J. 2006. Categorical perception in animals. Encyclopedia of Language and Linguistics K Brown 248–51 Oxford, UK: Elsevier, 2nd ed.. [Google Scholar]
  33. Fischer J, Teufel C, Drolet M, Patzelt A, Rübsamen R. et al. 2009. Orienting asymmetries and lateralized processing of sounds in humans. BMC Neurosci 10:1–9 [Google Scholar]
  34. Fisher SE. 2017. Evolution of language: lessons from the genome. Psychon. Bull. Rev. 24:34–40 [Google Scholar]
  35. Fisher SE, Vargha-Khadem F, Watkins KE, Monaco AP, Pembrey ME. 1998. Localisation of a gene implicated in a severe speech and language disorder. Nat. Genet. 18:168–70 [Google Scholar]
  36. Fisher SE, Vernes SC. 2015. Genetics and the language sciences. Annu. Rev. Linguist. 1:289–310 [Google Scholar]
  37. Fitch WT. 2000a. The evolution of speech: a comparative review. Trends Cogn. Sci. 4:258–67 [Google Scholar]
  38. Fitch WT. 2000b. The phonetic potential of nonhuman vocal tracts: comparative cineradiographic observations of vocalizing animals. Phonetica 57:205–18 [Google Scholar]
  39. Fitch WT. 2009a. The biology and evolution of language: “deep homology” and the evolution of innovation. The Cognitive Neurosciences IV MS Gazzaniga 873–83 Cambridge, MA: MIT Press [Google Scholar]
  40. Fitch WT. 2009b. Fossil cues to the evolution of speech. The Cradle of Language RP Botha, C Knight 112–34 Oxford, UK: Oxford Univ. Press [Google Scholar]
  41. Fitch WT. 2010. The Evolution of Language Cambridge, UK: Cambridge Univ. Press
  42. Fitch WT. 2011. The evolution of syntax: an exaptationist perspective. Front. Evol. Neurosci. 3:1–12 [Google Scholar]
  43. Fitch WT. 2017. Empirical approaches to the study of language evolution. Psychon. Bull. Rev. 24:3–33 [Google Scholar]
  44. Fitch WT, Fritz JB. 2006. Rhesus macaques spontaneously perceive formants in conspecific vocalizations. J. Acoust. Soc. Am. 120:2132–41 [Google Scholar]
  45. Fitch WT, Giedd J. 1999. Morphology and development of the human vocal tract: a study using magnetic resonance imaging. J. Acoust. Soc. Am. 106:1511–22 [Google Scholar]
  46. Fitch WT, Hauser MD, Chomsky N. 2005. The evolution of the language faculty: clarifications and implications. Cognition 97:179–210 [Google Scholar]
  47. Fitch WT, Huber L, Bugnyar T. 2010. Social cognition and the evolution of language: constructing cognitive phylogenies. Neuron 65:795–814 [Google Scholar]
  48. Fitch WT, Jarvis ED. 2013. Birdsong and other animal models for human speech, song, and vocal learning. Language, Music, and the Brain: A Mysterious Relationship MA Arbib 499–539 Cambridge, MA: MIT Press [Google Scholar]
  49. Fitch WT, Mathur N, de Boer B, Ghazanfar AA. 2016. Monkey vocal tracts are speech-ready. Sci. Adv. 2:e1600723 [Google Scholar]
  50. Fitch WT, Reby D. 2001. The descended larynx is not uniquely human. Proc. R. Soc. Lond. B 268:1669–75 [Google Scholar]
  51. Fowler CA, Rosenblum LD. 1990. Duplex perception: a comparison of monosyllables and slamming doors. J. Exp. Psychol. Hum. Percept. Perform. 16:742–54 [Google Scholar]
  52. French CA, Groszer M, Preece C, Coupe A-M, Rajewsky K, Fisher SE. 2007. Generation of mice with a conditional Foxp2 null allele. Genesis 45:440–46 [Google Scholar]
  53. Frey R, Riede T. 2003. Sexual dimorphism of the larynx of the Mongolian gazelle (Procapra gutturosa Pallas, 1777) (Mammalia, Artiodactyla, Bovidae). Zool. Anz. 242:33–62 [Google Scholar]
  54. Friederici AD. 2017. Evolution of the neural language network. Psychon. Bull. Rev. 24:41–47 [Google Scholar]
  55. Fritzsch B, Pauley S, Feng F, Matei V, Nichols DH. 2006. The molecular and developmental basis of the evolution of the vertebrate auditory system. Int. J. Comp. Psychol. 19:1–25 [Google Scholar]
  56. George SL. 1978. A longitudinal and cross-sectional analysis of the growth of the post-natal cranial base angle. Am. J. Phys. Anthropol. 49:171–78 [Google Scholar]
  57. Geschwind N. 1970. The organization of language and the brain. Science 170:940–44 [Google Scholar]
  58. Ghazanfar AA, Maier JX, Hoffman KL, Logothetis NK. 2005. Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. J. Neurosci. 25:5004–12 [Google Scholar]
  59. Ghazanfar AA, Turesson HK, Maier JX, van Dinther R, Patterson RD, Logothetis NK. 2007. Vocal-tract resonances as indexical cues in rhesus monkeys. Curr. Biol. 17:425–30 [Google Scholar]
  60. Gil-da-Costa R, Hauser MD. 2006. Vervet monkeys and humans show brain asymmetries for processing conspecific vocalizations, but with opposite patterns of laterality. Proc. R. Soc. Lond. B 273:2313–18 [Google Scholar]
  61. Goodale MA, Milner AD. 1992. Separate visual pathways for perception and action. Trends Neurosci 15:20–25 [Google Scholar]
  62. Gopnik M. 1990. Feature-blind grammar and dysphasia. Nature 344:715 [Google Scholar]
  63. Groszer M, Keays DA, Deacon RMJ, de Bono JP, Prasad-Mulcare S. et al. 2008. Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr. Biol. 18:354–62 [Google Scholar]
  64. Guilloud NB, McClure HM. 1969. Air sac infection in the orang-utan. Proceedings of the 2nd International Congress of Primatology CR Carpenter 3143–47 Basel, Switz.: Karger [Google Scholar]
  65. Haesler S, Rochefort C, Geogi B, Licznerski P, Osten P, Scharff C. 2007. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLOS Biol 5:e321 [Google Scholar]
  66. Hage SR, Gavrilov N, Nieder A. 2016. Developmental changes of cognitive vocal control in monkeys. J. Exp. Biol. 219:1744–49 [Google Scholar]
  67. Hammerschmidt K, Schreiweis C, Minge C, Paabo S, Fischer J, Enard W. 2015. A humanized version of Foxp2 does not affect ultrasonic vocalization in adult mice. Genes Brain Behav 14:583–90 [Google Scholar]
  68. Harley T. 2014. The Psychology of Language: From Data to Theory Sussex, UK: Psychology
  69. Harnad SR. 1987. Categorical Perception: The Groundwork of Cognition Cambridge, UK: Cambridge Univ. Press
  70. Harris TR, Fitch WT, Goldstein LM, Fashing PJ. 2006. Black and white colobus monkey (Colobus guereza) roars as a source of both honest and exaggerated information about body mass. Ethology 112:911–20 [Google Scholar]
  71. Hauser M, Chomsky N, Fitch WT. 2002. The language faculty: What is it, who has it, and how did it evolve?. Science 298:1569–79 [Google Scholar]
  72. Hayes C. 1951. The Ape in Our House New York: Harper
  73. Heffner HE, Heffner RS. 1986. Effect of unilateral and bilateral auditory cortex lesions on the discrimination of vocalizations by Japanese macaques. J. Neurophysiol. 56:683–701 [Google Scholar]
  74. Heffner RS. 2004. Primate hearing from a mammalian perspective. Anat. Rec. 281:A1111–22 [Google Scholar]
  75. Heimbauer LA, Beran MJ, Owren MJ. 2011. A chimpanzee recognizes synthetic speech with significantly reduced acoustic cues to phonetic content. Curr. Biol. 21:1210–14 [Google Scholar]
  76. Hemilä S, Nummela S, Reuter T. 1995. What middle ear parameters tell about impedance matching and high frequency hearing. Hear. Res. 85:31–44 [Google Scholar]
  77. Herbst CT, Stoeger AS, Frey R, Lohscheller J, Titze IR. et al. 2012. How low can you go? Physical production mechanism of elephant infrasonic vocalizations. Science 337:595–99 [Google Scholar]
  78. Hewitt G, MacLarnon A, Jones KE. 2002. The functions of laryngeal air sacs in primates: a new hypothesis. Folia Primatol 73:70–94 [Google Scholar]
  79. Hienz RD, Jones AM, Weerts EM. 2004. The discrimination of baboon grunt calls and human vowel sounds by baboons. J. Acoust. Soc. Am. 116:1692–97 [Google Scholar]
  80. Holloway RL, Broadfield DC, Yuan MS, Schwartz JH, Tattersall I. 2004. The Human Fossil Record, Brain Endocasts—The Paleoneurological Evidence Hoboken, NJ: Wiley
  81. Iwatsubo T, Kuzuhara S, Kanemitsu A, Shimada H, Toyokura Y. 1990. Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology 40:309–12 [Google Scholar]
  82. Janik VM, Slater PJB. 2000. The different roles of social learning in vocal communication. Anim. Behav. 60:1–11 [Google Scholar]
  83. Jungers WJ, Pokempner AA, Kay RF, Cartmill M. 2003. Hypoglossal canal size in living hominoids and the evolution of human speech. Hum. Biol. 75:473–84 [Google Scholar]
  84. Jürgens U. 1994. The role of the periaqueductal grey in vocal behaviour. Behav. Brain Res. 62:107–17 [Google Scholar]
  85. Jürgens U. 2002. Neural pathways underlying vocal control. Neurosci. Biobehav. Rev. 26:235–58 [Google Scholar]
  86. Jürgens U, Alipour M. 2002. A comparative study on the cortico-hypoglossal connections in primates, using biotin dextranamine. Neurosci. Lett. 328:245–48 [Google Scholar]
  87. Kay RF, Cartmill M, Balow M. 1998. The hypoglossal canal and the origin of human vocal behavior. PNAS 95:5417–19 [Google Scholar]
  88. Kellogg WN. 1968. Communication and language in the home-raised chimpanzee. Science 162:423–27 [Google Scholar]
  89. Kluender KR, Lotto AJ, Holt LL, Bloedel SL. 1998. Role of experience for language-specific functional mappings of vowel sounds. J. Acoust. Soc. Am. 104:3568–82 [Google Scholar]
  90. Knörnschild M. 2014. Vocal production learning in bats. Curr. Opin. Neurobiol. 28:80–85 [Google Scholar]
  91. Kojima S. 1990. Comparison of auditory functions in the chimpanzee and human. Folia Primatol 55:62–72 [Google Scholar]
  92. Krause J, Lalueza-Fox C, Orlando L, Enard W, Green RE. et al. 2007. The derived FOXP2 variant of modern humans was shared with Neandertals. Curr. Biol. 17:1908–12 [Google Scholar]
  93. Kuhl PK, Meltzoff AN, Williams KA, Lacerda F, Stevens KN, Lindblom B. 1992. Linguistic experience alters phonetic perception in infants by 6 months of age. Science 255:606–8 [Google Scholar]
  94. Kuhl PK, Miller JD. 1975. Speech perception by the chinchilla: voiced–voiceless distinction in alveolar plosive consonants. Science 190:69–72 [Google Scholar]
  95. Kuypers HGJM. 1958a. Corticobulbar connections to the pons and lower brainstem in man: an anatomical study. Brain 81:364–88 [Google Scholar]
  96. Kuypers HGJM. 1958b. Some projections from the pericentral cortex to the pons and lower brain stem in monkey and chimpanzee. J. Comp. Neurol. 110:221–55 [Google Scholar]
  97. Lai CSL, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. 2001. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–23 [Google Scholar]
  98. Larson CR, Sutton D, Taylor EM, Lindeman R. 1973. Sound spectral properties of conditioned vocalizations in monkeys. Phonetica 27:100–12 [Google Scholar]
  99. Lemon RN, Griffiths J. 2005. Comparing the function of the corticospinal system in different species: organizational differences for motor specialization?. Muscle Nerve 32:261–79 [Google Scholar]
  100. Lenneberg EH. 1967. Biological Foundations of Language New York: Wiley
  101. Li G, Wang J, Rossiter SJ, Jones G, Zhang S. 2007. Accelerated FoxP2 evolution in echolocating bats. PLOS ONE 2:e900 [Google Scholar]
  102. Liberman AM. 1957. Some results of research on speech perception. J. Acoust. Soc. Am. 29:117–23 [Google Scholar]
  103. Liberman AM, Isenberg D, Rakerd B. 1981. Duplex perception of cues for stop consonants: evidence for a phonetic mode. Percept. Psychophys. 30:133–43 [Google Scholar]
  104. Liberman AM, Mattingly IG. 1985. The motor theory of speech perception revised. Cognition 21:1–36 [Google Scholar]
  105. Lieberman DE, McCarthy RC, Hiiemae K, Palmer JB. 2001. Ontogeny of postnatal hyoid and larynx descent in humans. Arch. Oral Biol. 46:117–28 [Google Scholar]
  106. Lieberman PH, Crelin ES, Klatt DH. 1972. Phonetic ability and related anatomy of the newborn and adult human, Neanderthal man, and the chimpanzee. Am. Anthropol. 74:287–307 [Google Scholar]
  107. Lieberman PH, Klatt DH, Wilson WH. 1969. Vocal tract limitations on the vowel repertoires of rhesus monkey and other nonhuman primates. Science 164:1185–87 [Google Scholar]
  108. Lombard RE, Bolt J. 1979. Evolution of the tetrapod ear: an analysis and reinterpretation. Biol. J. Linn. Soc. 11:19–76 [Google Scholar]
  109. MacLarnon AM, Hewitt GP. 2004. Increased breathing control: another factor in the evolution of human language. Evol. Anthropol. 13:181–97 [Google Scholar]
  110. Manley GA. 2000. Cochlear mechanisms from a phylogenetic viewpoint. PNAS 97:11736–43 [Google Scholar]
  111. Maricic T, Günther V, Georgiev O, Gehre S, Curlin M. et al. 2013. A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Mol. Biol. Evol. 30:844–52 [Google Scholar]
  112. Marshall AJ, Wrangham RW, Arcadi AC. 1999. Does learning affect the structure of vocalizations in chimpanzees. ? Anim. Behav. 58:825–30 [Google Scholar]
  113. Martínez I, Rosa M, Arsuaga J-L, Jarabo P, Quam R. et al. 2004. Auditory capacities in Middle Pleistocene humans from the Sierra de Atapuerca in Spain. PNAS 101:9976–81 [Google Scholar]
  114. Martínez I, Rosa M, Quam R, Jarabo P, Lorenzo C. et al. 2013. Communicative capacities in Middle Pleistocene humans from the Sierra de Atapuerca in Spain. Quat. Int. 295:94–101 [Google Scholar]
  115. McGurk H, MacDonald J. 1976. Hearing lips and seeing voices. Nature 264:746–48 [Google Scholar]
  116. Nelson DA, Marler P. 1989. Categorical perception of a natural stimulus continuum: birdsong. Science 244:976–78 [Google Scholar]
  117. Nishimura T, Mikami A, Suzuki J, Matsuzawa T. 2006. Descent of the hyoid in chimpanzees: evolution of face flattening and speech. J. Hum. Evol. 51:244–54 [Google Scholar]
  118. Nottebohm F. 1971. Neural lateralization of vocal control in a passerine bird. I. Song. J. Exp. Zool. 177:229–62 [Google Scholar]
  119. Ohms VR, Gill A, van Heijningen C, Beckers GJL, ten Cate C. 2009. Zebra finches exhibit speaker-independent phonetic perception of human speech. Proc. R. Soc. Lond. B. https:/doi.org/10.1098/rspb.2009.1788 [Crossref]
  120. Pääbo S. 2014. The human condition—a molecular approach. Cell 157:216–26 [Google Scholar]
  121. Paracchini S, Scerri T, Monaco AP. 2007. The genetic lexicon of dyslexia. Annu. Rev. Genom. Hum. Genet. 8:57–79 [Google Scholar]
  122. Pastore RE, Schmuckler MA, Rosenblum L, Szczesiul R. 1983. Duplex perception with musical stimuli. Percept. Psychophys. 33:469–74 [Google Scholar]
  123. Perrodin C, Kayser C, Logothetis NK, Petkov CI. 2011. Voice cells in the primate temporal lobe. Curr. Biol. 21:1408–15 [Google Scholar]
  124. Petersen MR, Beecher MD, Zoloth SR, Green S, Marler P. et al. 1984. Neural lateralization of vocalizations by Japanese macaques: Communicative significance is more important than acoustic structure. Behav. Neurosci. 98:779–90 [Google Scholar]
  125. Petkov CI, Kayser C, Steudel T, Whittingstall K, Augath M, Logothetis NK. 2008. A voice region in the monkey brain. Nat. Neurosci. 11:367–74 [Google Scholar]
  126. Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R. et al. 2014. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:1256846 [Google Scholar]
  127. Pisanski K, Mora EC, Pisanski A, Reby D, Sorokowski P. et al. 2016. Volitional exaggeration of body size through fundamental and formant frequency modulation in humans. Sci. Rep. 6:34389 [Google Scholar]
  128. Ploog DW. 1988. Neurobiology and pathology of subhuman vocal communication and human speech. Primate Vocal Communication D Todt, P Goedeking, D Symmes 195–212 Berlin: Springer [Google Scholar]
  129. Poremba A, Malloy M, Saunders RC, Carson RE, Herscovitch P, Mishkin M. 2004. Species-specific calls evoke asymmetric activity in the monkey's temporal poles. Nature 427:448–51 [Google Scholar]
  130. Rao MRKM, Choudhary C, Ali S. 1984. Case of sudden death in a panther (Panthera pardus) with choke. Indian Vet. J. 61:618–19 [Google Scholar]
  131. Rauschecker JP, Scott SK. 2009. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12:718–24 [Google Scholar]
  132. Rauschecker JP, Tian B. 2000. Mechanisms and streams for processing of “what” and “where” in auditory cortex. PNAS 97:11800–6 [Google Scholar]
  133. Reby D, McComb K, Cargnelutti B, Darwin C, Fitch WT, Clutton-Brock T. 2005. Red deer stags use formants as assessment cues during intrasexual agonistic interactions. Proc. R. Soc. Lond. B 272:941–47 [Google Scholar]
  134. Reichmuth CJ, Casey C. 2014. Vocal learning in seals, sea lions, and walruses. Curr. Opin. Neurobiol. 28:66–71 [Google Scholar]
  135. Remez RE, Rubin PE, Pisoni DB, Carrell TD. 1981. Speech perception without traditional speech cues. Science 212:947–50 [Google Scholar]
  136. Repp BH. 1982. Phonetic trading relations and context effects: new experimental evidence for a speech mode of perception. Psychol. Bull. 92:81–110 [Google Scholar]
  137. Reynolds Losin EA, Russell JL, Freeman H, Meguerditchian A, Hopkins WD. 2008. Left hemisphere specialization for oro-facial movements of learned vocal signals by captive chimpanzees. PLOS ONE 3:e2529 [Google Scholar]
  138. Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T. et al. 2008. The evolution of the arcuate fasciculus revealed with comparative DTI. Nat. Neurosci. 11:426–28 [Google Scholar]
  139. Rödel RMW, Laskawi R, Markus H. 2003. Tongue representation in the lateral cortical motor region of the human brain as assessed by transcranial magnetic stimulation. Ann. Otol. Rhinol. Laryngol. 112:71–76 [Google Scholar]
  140. Rödel RMW, Olthoff A, Tergau F, Simonyan K, Kraemer D. et al. 2004. Human cortical motor representation of the larynx as assessed by transcranial magnetic stimulation (TMS). Laryngoscope 114:918–22 [Google Scholar]
  141. Rogers LJ, Andrew JR. 2002. Comparative Vertebrate Lateralization Cambridge, UK: Cambridge Univ. Press
  142. Rosen SM, Howell P. 1981. Plucks and bows are not categorically perceived. Percept. Psychophys. 30:156–68 [Google Scholar]
  143. Sasaki CT, Levine PA, Laitman JT, Crelin ES. 1977. Postnatal descent of the epiglottis in man: a preliminary report. Arch. Otolaryngol. 103:169–71 [Google Scholar]
  144. Savage-Rumbaugh ES, Murphy J, Sevcik RA, Brakke KE, Williams SL, Rumbaugh DM. 1993. Language comprehension in ape and child. Monogr. Soc. Res. Child Dev. 58:1–221 [Google Scholar]
  145. Scharff C, Petri J. 2011. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philos. Trans. R. Soc. Lond. B 366:2124–40 [Google Scholar]
  146. Schenker NM, Hopkins WD, Spocter MA, Garrison AR, Stimpson CD. et al. 2010. Broca's area homologue in chimpanzees (Pan troglodytes): probabilistic mapping, asymmetry and comparison to humans. Cereb. Cortex 20:730–42 [Google Scholar]
  147. Schreiweis C, Bornschein U, Burguière E, Kerimoglu C, Schreiter S. et al. 2014. Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. PNAS 111:14253–58 [Google Scholar]
  148. Shubin N, Tabin C, Carroll S. 2009. Deep homology and the origins of evolutionary novelty. Nature 457:818–23 [Google Scholar]
  149. Simonyan K. 2014. The laryngeal motor cortex: its organization and connectivity. Curr. Opin. Neurobiol. 28:15–21 [Google Scholar]
  150. Simonyan K, Horwitz B. 2011. Laryngeal motor cortex and control of speech in humans. Neuroscientist 17:197–208 [Google Scholar]
  151. Simonyan K, Jürgens U. 2003. Efferent subcortical projections of the laryngeal motorcortex in the rhesus monkey. Brain Res 974:43–59 [Google Scholar]
  152. Sinnott JM, Adams FS. 1987. Differences in human and monkey sensitivity to acoustic cues underlying voicing contrasts. J. Acoust. Soc. Am. 82:1539–47 [Google Scholar]
  153. Sinnott JM, Williamson TL. 1999. Can macaques perceive place of articulation from formant transition information. ? J. Acoust. Soc. Am. 106:929–37 [Google Scholar]
  154. Skead DM. 1980. Whitebreasted cormorant Phalacrocorax carbo chokes on fish. Cormorant 8:27 [Google Scholar]
  155. Striedter GF. 1994. The vocal control pathways in budgerigars differ from those of songbirds. J. Comp. Neurol. 343:35–56 [Google Scholar]
  156. Suga N. 1990. Cortical computational maps for auditory imaging. Neural Netw 3:3–21 [Google Scholar]
  157. Suthers RA, Fitch WT, Popper AN, Fay RR. 2016. Vertebrate Sound Production and Acoustic Communication. New York: Springer
  158. Taylor A, Reby D. 2010. The contribution of source-filter theory to mammal vocal communication research. J. Zool. 280:221–36 [Google Scholar]
  159. Thexton AJ, Crompton AW. 1998. The control of swallowing. The Scientific Basis of Eating: Taste and Smell, Salivation, Mastication and Swallowing, and Their Dysfunctions RWA Linden 168–222 London: Karger [Google Scholar]
  160. Tian B, Reser D, Durham A, Kustov A, Rauschecker JP. 2001. Functional specialization in rhesus monkey auditory cortex. Science 292:290–93 [Google Scholar]
  161. Titze IR. 2006. The Myoelastic Aerodynamic Theory of Phonation Denver, CO: Natl. Cent. Voice Speech
  162. Trout JD. 2003. Biological specializations for speech: What can the animals tell us?. Curr. Dir. Psychol. Sci. 12:155–59 [Google Scholar]
  163. Tucker AS. 2017. Major evolutionary transitions and innovations: the tympanic middle ear. Philos. Trans. R. Soc. Lond. B 372:20150483 [Google Scholar]
  164. Vallortigara G, Rogers LJ. 2005. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 28:575–633 [Google Scholar]
  165. van den Berg J. 1958. Myoelastic-aerodynamic theory of voice production. J. Speech Hear. Res. 1:227–44 [Google Scholar]
  166. Vargha-Khadem F, Gadian DG, Copp A, Mishkin M. 2005. FOXP2 and the neuroanatomy of speech and language. Nat. Rev. Neurosci. 6:131–38 [Google Scholar]
  167. Vernes SC. 2017. What bats have to say about speech and language. Psychon. Bull. Rev. 24:111–17 [Google Scholar]
  168. Wall CE, Smith KE. 2001. Ingestion in mammals. Encyclopedia of Life Sciences1–6 London: Macmillan [Google Scholar]
  169. Wang R, Chen C-C, Hara E, Rivas MV, Roulhac PL. et al. 2015. Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners. J. Comp. Neurol. 523:892–906 [Google Scholar]
  170. Wang VY, Hassan BA, Bellen HJ, Zoghbi HY. 2002. Drosophila atonal fully rescues the phenotype of Math1 null mice: new functions evolve in new cellular contexts. Curr. Biol. 12:1611–16 [Google Scholar]
  171. Wang X, Kadia SC. 2001. Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J. Neurophysiol. 86:2616–20 [Google Scholar]
  172. Watkins KE, Dronkers NF, Vargha-Khadem F. 2002a. Behavioural analysis of an inherited speech and language disorder: comparison with acquired aphasia. Brain 125:452–64 [Google Scholar]
  173. Watkins KE, Vargha-Khadem F, Ashburner J, Passingham RE, Connelly A, Friston KJ. 2002b. MRI analysis of an inherited speech and language disorder: structural brain abnormalities. Brain 125:465–78 [Google Scholar]
  174. Weissengruber GE, Forstenpointner G, Peters G, Kübber-Heiss A, Fitch WT. 2002. Hyoid apparatus and pharynx in the lion (Panthera leo), jaguar (Panthera onca), tiger (Panthera tigris), cheetah (Acinonyx jubatus), and domestic cat (Felis silvestris f. catus). J. Anat. 201:195–209 [Google Scholar]
  175. Wich SA, Swartz KB, Hardus ME, Lameira AR, Stromberg E, Shumaker RW. 2009. A case of spontaneous acquisition of a human sound by an orangutan. Primates 50:56–64 [Google Scholar]
  176. Wild JM. 1997. Neural pathways for the control of birdsong production. J. Neurobiol. 33:653–70 [Google Scholar]
  177. Wohlgemuth S, Adam I, Scharff C. 2014. FoxP2 in songbirds. Curr. Opin. Neurobiol. 28:86–93 [Google Scholar]
  178. Yerkes RM, Yerkes AW. 1929. The Great Apes New Haven, CT: Yale Univ. Press
  179. Zatorre RJ, Evans AC, Meyer E, Gjedde A. 1992. Lateralization of phonetic and pitch discrimination in speech processing. Science 256:846–49 [Google Scholar]
  180. Zoloth SR, Petersen MR, Beecher MD, Green S, Marler P. et al. 1979. Species-specific perceptual processing of vocal sounds by monkeys. Science 204:870–72 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error