1932

Abstract

This review presents a highly selective survey of connections between music and language. I begin by considering some fundamental differences between music and language and some nonspecific similarities that may arise out of more general characteristics of human cognition and communication. I then discuss an important, specific interaction between music and language: the connection between linguistic stress and musical meter. Next, I consider several possible connections that have been widely studied but remain controversial: cross-cultural correlations between linguistic and musical rhythm, effects of musical training on linguistic abilities, and connections in cognitive processing between music and linguistic syntax. Finally, I discuss some parallels regarding the use of repetition in music and language, which until now has been a little-explored topic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-linguistics-031220-121126
2022-01-14
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/linguistics/8/1/annurev-linguistics-031220-121126.html?itemId=/content/journals/10.1146/annurev-linguistics-031220-121126&mimeType=html&fmt=ahah

Literature Cited

  1. Acevedo S, Temperley D, Pfordresher P. 2014.. Effects of metrical encoding on melody recognition. . Music Percept. 31::37286
    [Google Scholar]
  2. Bernstein L. 1976.. The Unanswered Question: Six Talks at Harvard. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  3. Besson M, Barbaroux M, Dittinger E. 2017.. Music in the brain: music and language processing. . In The Routledge Companion to Music Cognition, ed. R Ashley, R Timmers , pp. 3748. Abingdon, UK:: Taylor & Francis
    [Google Scholar]
  4. Bidelman GM, Hutka S, Moreno S. 2013.. Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: evidence for bidirectionality between the domains of language and music. . PLOS ONE 8::e60676
    [Google Scholar]
  5. Bigand E, Parncutt R. 1999.. Perceiving musical tension in long chord sequences. . Psychol. Res. 62::23754
    [Google Scholar]
  6. Bregman AS. 1990.. Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA:: MIT Press
    [Google Scholar]
  7. Briefer EF. 2012.. Vocal expression of emotions in mammals: mechanisms of production and evidence. . J. Zool. 288::120
    [Google Scholar]
  8. Brown DE. 1991.. Human Universals. Philadelphia:: Temple Univ. Press
    [Google Scholar]
  9. Cauldwell R, Hewings M. 1996.. Intonation rules in ELT textbooks. . ELT J. 50::32734
    [Google Scholar]
  10. Conklin D, Anagnostopoulou C. 2001.. Representation and discovery of multiple viewpoint patterns. . In Proceedings of the 2001 International Computer Music Conference, pp. 47985. Ann Arbor:: Michigan Publ.
    [Google Scholar]
  11. Cox A. 2016.. Music and Embodied Cognition: Listening, Moving, Feeling, and Thinking. Bloomington:: Indiana Univ. Press
    [Google Scholar]
  12. Cutler A, Foss DJ. 1977.. On the role of sentence stress in sentence processing. . Lang. Speech 20::110
    [Google Scholar]
  13. Daniele JR, Patel AD. 2013.. An empirical study of historical patterns in musical rhythm: analysis of German & Italian classical music using the nPVI equation. . Music Percept. 31::1018
    [Google Scholar]
  14. Dauer RM. 1983.. Stress-timing and syllable-timing reanalyzed. . J. Phon. 11::5162
    [Google Scholar]
  15. Deutsch D. 2006.. The enigma of absolute pitch. . Acoust. Today 2::1119
    [Google Scholar]
  16. Dilley LC, McAuley JD. 2008.. Distal prosodic context affects word segmentation and lexical processing. . J. Mem. Lang. 59::294311
    [Google Scholar]
  17. Dingemanse M, Blasi DE, Lupyan G, Christiansen MH, Monaghan P. 2015.. Arbitrariness, iconicity, and systematicity in language. . Trends Cogn. Sci. 19::60315
    [Google Scholar]
  18. Dubey A, Keller F, Sturt P. 2008.. A probabilistic corpus-based model of syntactic parallelism. . Cognition 109::32644
    [Google Scholar]
  19. Fedorenko E, Behr M, Kanwisher N. 2011.. Functional specificity for high-level linguistic processing in the human brain. . PNAS 108::1642833
    [Google Scholar]
  20. Fenk-Oczlon G. 1989.. Word order and frequency in freezes. . Linguistics 27::51756
    [Google Scholar]
  21. Filippi P. 2016.. Emotional and interactional prosody across animal communication systems: a comparative approach to the emergence of language. . Front. Psychol. 7::1393
    [Google Scholar]
  22. Finkbeiner R, Freywald U. 2018.. Exact Repetition in Grammar and Discourse. Berlin:: Walter de Gruyter
    [Google Scholar]
  23. Fischer A, ed. 1994.. SPELL: Swiss Papers in English Language and Literature, Vol. 7: Repetition. Tübingen, Ger:.: Gunter Narr
    [Google Scholar]
  24. Fitch W. 2006.. The biology and evolution of music: a comparative perspective. . Cognition 100::173215
    [Google Scholar]
  25. Frazier L, Munn A, Clifton C. 2000.. Processing coordinate structures. . J. Psycholinguist. Res. 29::34370
    [Google Scholar]
  26. Gabrielsson A, Lindström E. 2001.. The influence of musical structure on emotional expression. . In Music and Emotion: Theory and Research, ed. P Juslin, J Sloboda , pp. 22348. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  27. Gingold H, Abravanel E. 1987.. Music as a mnemonic: the effects of good- and bad-music settings on verbatim recall of short passages by young children. . Psychomusicology 7::2539
    [Google Scholar]
  28. Gjerdingen R. 2007.. Music in the Galant Style. New York:: Oxford Univ. Press
    [Google Scholar]
  29. Gordon RL, Fehd HM, McCandliss BD. 2015.. Does music training enhance literacy skills? A meta-analysis. . Front. Psychol. 6::1777
    [Google Scholar]
  30. Grabe E, Low E. 2002.. Durational variability in speech and the rhythm class hypothesis. . In Laboratory Phonology 7, ed. C Gussenhoven, N Warner , pp. 51546. Berlin:: De Gruyter Mouton
    [Google Scholar]
  31. Granroth-Wilding M, Steedman M. 2014.. A robust parser-interpreter for jazz chord sequences. . J. Music Res. 43::35574
    [Google Scholar]
  32. Halle J, Lerdahl F. 1993.. A generative textsetting model. . Curr. Musicol. 55::323
    [Google Scholar]
  33. Hannon E. 2009.. Perceiving speech rhythm in music: Listeners classify instrumental songs according to language of origin. . Cognition 111::4039
    [Google Scholar]
  34. Hanslick E. 1986 (1891.). On the Musically Beautiful: A Contribution Towards the Revision of the Aesthetics of Music, trans. G Payzant. Indianapolis:: Hackett
    [Google Scholar]
  35. Hayes B. 1995.. Metrical Stress Theory: Principles and Case Studies. Chicago:: Univ. Chicago Press
    [Google Scholar]
  36. Hayes B, Kaun A. 1996.. The role of phonological phrasing in sung and chanted verse. . Linguist. Rev. 13::243304
    [Google Scholar]
  37. Heffner CC, Slevc LR. 2015.. Prosodic structure as a parallel to musical structure. . Front. Psychol. 6::1962
    [Google Scholar]
  38. Hockett CF. 1960.. The origin of speech. . Sci. Am. 203::512
    [Google Scholar]
  39. Huron D. 2006.. Sweet Anticipation. Cambridge, MA:: MIT Press
    [Google Scholar]
  40. Huron D. 2016.. Voice Leading: The Science Behind a Musical Art. Cambridge, MA:: MIT Press
    [Google Scholar]
  41. Huron D, Royal M. 1996.. What is melodic accent? Converging evidence from musical practice. . Music Percept. 13::489516
    [Google Scholar]
  42. Johnstone B, ed. 1994.. Repetition in Discourse: Interdisciplinary Perspectives. Norwood, NJ:: Ablex
    [Google Scholar]
  43. Jones MR, Moynihan H, MacKenzie N, Puente J. 2002.. Temporal aspects of stimulus-driven attending in dynamic arrays. . Psychol. Sci. 13::31319
    [Google Scholar]
  44. Juslin PN, Laukka P. 2003.. Communication of emotions in vocal expression and music performance: different channels, same code?. Psychol. Bull. 129::770814
    [Google Scholar]
  45. Kamalski J, Sanders T, Lentz L. 2008.. Coherence marking, prior knowledge, and comprehension of informative and persuasive texts: sorting things out. . Discourse Process. 45::32345
    [Google Scholar]
  46. Kelly MH, Bock JK. 1988.. Stress in time. . J. Exp. Psychol.: Hum. Percept. Perform. 14::389403
    [Google Scholar]
  47. Kirkham NZ, Slemmer JA, Johnson SP. 2002.. Visual statistical learning in infancy: evidence for a domain general learning mechanism. . Cognition 83::B3542
    [Google Scholar]
  48. Kivy P. 1980.. The Corded Shell. Philadelphia:: Temple Univ. Press
    [Google Scholar]
  49. Koelsch S, Rohrmeier M, Torrecuso R, Jentschke S. 2013.. Processing of hierarchical syntactic structure in music. . PNAS 110::1544348
    [Google Scholar]
  50. Lee C, Brown L, Müllensiefen D. 2017.. The musical impact of Multicultural London English (MLE) speech rhythm. . Music Percept. 34::45281
    [Google Scholar]
  51. Lerdahl F. 2001a.. The sounds of poetry viewed as music. . Ann. N.Y. Acad. Sci. 930::33754
    [Google Scholar]
  52. Lerdahl F. 2001b.. Tonal Pitch Space. New York:: Oxford Univ. Press
    [Google Scholar]
  53. Lerdahl F, Jackendoff R. 1983.. A Generative Theory of Tonal Music. Cambridge, MA:: MIT Press
    [Google Scholar]
  54. Lerdahl F, Krumhansl CL. 2007.. Modeling tonal tension. . Music Percept. 24::32966
    [Google Scholar]
  55. Levy R, Jaeger F. 2007.. Speakers optimize information density through syntactic reduction. . In Advances in Neural Information Processing Systems, ed. B Schölhopf, J Platt, T Hofmann , pp. 84956. Cambridge, MA:: MIT Press
    [Google Scholar]
  56. Liberman M. 1975.. The intonational system of English. PhD Thesis, MIT, Cambridge, MA:
    [Google Scholar]
  57. Liberman M, Prince A. 1977.. On stress and linguistic rhythm. . Linguist. Inq. 8::249336
    [Google Scholar]
  58. Lipiczky T. 1985.. Tihai formulas and the fusion of ‘composition’ and ‘improvisation’ in North Indian music. . Music. Q. 71::15771
    [Google Scholar]
  59. Madsen SM, Marschall M, Dau T, Oxenham AJ. 2019.. Speech perception is similar for musicians and non-musicians across a wide range of conditions. . Sci. Rep. 9::10404
    [Google Scholar]
  60. Margulis EH. 2014.. On Repeat: How Music Plays the Mind. New York:: Oxford Univ. Press
    [Google Scholar]
  61. Mattheson J. 1739.. Der vollkommene Kapellmeister. Hamburg, Ger:.: C. Herold
    [Google Scholar]
  62. McGowan RW, Levitt AG. 2011.. A comparison of rhythm in English dialects and music. . Music Percept. 28::30714
    [Google Scholar]
  63. Mendelssohn F. 1878 (1842.). Briefe aus den Jahren 1830 bis 1847 von Felix Mendelssohn Bartholdy, ed. C. Mendelssohn . Leipzig, Ger:.: Hermann Mendelssohn
    [Google Scholar]
  64. Meyer L. 1956.. Emotion and Meaning in Music. Chicago:: Chicago Univ. Press
    [Google Scholar]
  65. Monahan S. 2013.. Action and agency revisited. . J. Music Theory 57::32171
    [Google Scholar]
  66. Palmer C, Kelly MH. 1992.. Linguistic prosody and musical meter in song. . J. Mem. Lang. 31::52542
    [Google Scholar]
  67. Parbery-Clark A, Skoe E, Lam C, Kraus N. 2009.. Musician enhancement for speech-in-noise. . Ear Hear. 30::65361
    [Google Scholar]
  68. Parncutt R. 1989.. Harmony: A Psychoacoustical Approach. Berlin:: Springer
    [Google Scholar]
  69. Patel AD. 2003.. Language, music, syntax and the brain. . Nat. Neurosci. 6::67481
    [Google Scholar]
  70. Patel AD. 2005.. The relationship of music to the melody of speech and to syntactic processing disorders in aphasia. . In The Neurosciences and Music II: From Perception to Performance, ed. G Avanzini, L Lopez, S Koelsch, M Manjno , pp. 5970. New York:: N.Y. Acad. Sci.
    [Google Scholar]
  71. Patel AD. 2008.. Music, Language, and the Brain. New York:: Oxford Univ. Press
    [Google Scholar]
  72. Patel AD, Daniele JR. 2003.. An empirical comparison of rhythm in language and music. . Cognition 87::B3545
    [Google Scholar]
  73. Pearce M, Wiggins G. 2004.. Improved methods for statistical modelling of monophonic music. . J. New Music Res. 33::36785
    [Google Scholar]
  74. Perruchet P, Poulin-Charronnat B. 2013.. Challenging prior evidence for a shared syntactic processor for language and music. . Psychon. Bull. Rev. 20::31017
    [Google Scholar]
  75. Pfordresher PQ, Brown S. 2009.. Enhanced production and perception of musical pitch in tone language speakers. . Atten. Percept. Psychophys. 71::138598
    [Google Scholar]
  76. Pickering MJ, Ferreira VS. 2008.. Structural priming: a critical review. . Psychol. Bull. 134::42759
    [Google Scholar]
  77. Povel D, Essens P. 1985.. Perception of temporal patterns. . Music Percept. 2::41140
    [Google Scholar]
  78. Ramus F. 2002.. Acoustic correlates of linguistic rhythm: perspectives. . In Proceedings of Speech Prosody, ed. B Bell, I Marlien , pp. 11520. Aix-en-Provence, Fr:.: Lab. Parole Lang.
    [Google Scholar]
  79. Roach P. 1982.. On the distinction between ‘stress-timed’ and ‘syllable-timed’ languages. . In Linguistic Controversies, ed. D Crystal , pp. 7379. London:: Edward Arnold
    [Google Scholar]
  80. Rohrmeier M. 2011.. Towards a generative syntax of tonal harmony. . J. Math. Music 5::3553
    [Google Scholar]
  81. Rolland P. 1999.. Discovering patterns in musical sequences. . J. New Music Res. 28::33450
    [Google Scholar]
  82. Russell JA. 1980.. A circumplex model of affect. . J. Pers. Soc. Psychol. 39::116178
    [Google Scholar]
  83. Saffran JR, Aslin RN, Newport EL. 1996.. Statistical learning by 8-month-old infants. . Science 274::192628
    [Google Scholar]
  84. Saffran JR, Johnson E, Aslin RN, Newport EL. 1999.. Statistical learning of tone sequences by human infants and adults. . Cognition 70::2752
    [Google Scholar]
  85. Savage PE, Brown S, Sakai E, Currie TE. 2015.. Statistical universals reveal the structures and functions of human music. . PNAS 112::898792
    [Google Scholar]
  86. Schellenberg EG, Trehub SE. 2008.. Is there an Asian advantage for pitch memory?. Music Percept. 25::24152
    [Google Scholar]
  87. Schenker H. 1979 (1935.). Free Composition, trans. E Oster . New York:: Longman
    [Google Scholar]
  88. Schubert P, Cumming J. 2015.. Another lesson from Lassus: using computers to analyse counterpoint. . Early Music 43::57786
    [Google Scholar]
  89. Serafine ML, Glassman N, Overbeeke C. 1989.. The cognitive reality of hierarchic structure in music. . Music Percept. 6::397430
    [Google Scholar]
  90. Shattuck-Hufnagel S, Turk AE. 1996.. A prosody tutorial for investigators of auditory sentence processing. . J. Psycholinguist. Res. 25::193247
    [Google Scholar]
  91. Slevc LR, Reitman J, Okada B. 2013.. Syntax in music and language: the role of cognitive control. . Proc. Annu. Meet. Cogn. Sci. Soc. 35::341419
    [Google Scholar]
  92. Slevc LR, Rosenberg JC, Patel AD. 2009.. Making psycholinguistics musical: self-paced reading time evidence for shared processing of linguistic and musical syntax. . Psychon. Bull. Rev. 16::37481
    [Google Scholar]
  93. Sloboda J. 1983.. The communication of musical metre in piano performance. . Q. J. Exp. Psychol. A 35::37796
    [Google Scholar]
  94. Sluijter AM, Van Heuven VJ. 1996.. Spectral balance as an acoustic correlate of linguistic stress. . J. Acoust. Soc. Am. 100::247185
    [Google Scholar]
  95. Spencer H. 1890.. The origin of music. . Mind 15::44968
    [Google Scholar]
  96. Swain J. 1997.. Musical Languages. New York:: W.W. Norton
    [Google Scholar]
  97. Tan I, Lustig E, Temperley D. 2019.. Anticipatory syncopation in rock: a corpus study. . Music Percept. 36::35370
    [Google Scholar]
  98. Tannen D. 1989.. Talking Voices: Repetition, Dialogue, and Imagery in Conversational Discourse. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  99. Temperley D. 1999a.. The question of purpose in music theory: description, suggestion, and explanation. . Curr. Musicol. 66::6685
    [Google Scholar]
  100. Temperley D. 1999b.. Syncopation in rock: a perceptual perspective. . Pop. Music 18::1940
    [Google Scholar]
  101. Temperley D. 2001.. The Cognition of Basic Musical Structures. Cambridge, MA:: MIT Press
    [Google Scholar]
  102. Temperley D. 2004.. Communicative pressure and the evolution of musical styles. . Music Percept. 21::31337
    [Google Scholar]
  103. Temperley D. 2009.. Distributional stress regularity: a corpus study. . J. Psycholinguist. Res. 38::7592
    [Google Scholar]
  104. Temperley D. 2017.. Rhythmic variability in European vocal music. . Music Percept. 35::19399
    [Google Scholar]
  105. Temperley D. 2019.. Uniform information density in music. . Music Theory Online 25:(2):5
    [Google Scholar]
  106. Temperley D, Gildea D. 2015.. Information density and syntactic repetition. . Cogn. Sci. 39::180223
    [Google Scholar]
  107. Temperley N, Temperley D. 2011.. Music-language correlations and the ‘Scotch Snap.. Music Percept. 29::5163
    [Google Scholar]
  108. Temperley N, Temperley D. 2013.. Stress-meter alignment in French vocal music. . J. Acoust. Soc. Am. 134::52027
    [Google Scholar]
  109. Terhardt E. 1974.. Pitch, consonance, and harmony. . J. Acoust. Soc. Am. 55::106169
    [Google Scholar]
  110. Tillmann B, Koelsch S, Escoffier N, Bigand E, Lalitte P, et al. 2006.. Cognitive priming in sung and instrumental music: activation of inferior frontal cortex. . NeuroImage 31::177182
    [Google Scholar]
  111. VanHandel L. 2017.. The war of the Romantics: an alternate hypothesis using nPVI for the quantitative anthropology of music. . Empir. Musicol. Rev. 11::23442
    [Google Scholar]
  112. VanHandel L, Song T. 2010.. The role of meter in compositional style in 19th-century French and German art song. . J. New Music Res. 39::111
    [Google Scholar]
  113. Vickers B. 1994.. Repetition and emphasis in rhetoric: theory and practice. . See Fischer 1994 , pp. 85114
  114. Vukovics K, Shanahan D. 2020.. Rhythmic variability, language, and style: a replication and extension of nPVI findings with the RISM dataset. . J. New Music Res. 49::28597
    [Google Scholar]
/content/journals/10.1146/annurev-linguistics-031220-121126
Loading
/content/journals/10.1146/annurev-linguistics-031220-121126
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error