1932

Abstract

Voltage-gated Ca2+ (Ca) channels play pivotal roles in regulating gene transcription, neuronal excitability, and neurotransmitter release. To meet the spatial and temporal demands of visual signaling, Ca channels exhibit unusual properties in the retina compared to their counterparts in other areas of the nervous system. In this article, we review current concepts regarding the specific subtypes of Ca channels expressed in the retina, their intrinsic properties and forms of modulation, and how their dysregulation could lead to retinal disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-012121-111325
2022-09-15
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/vision/8/1/annurev-vision-012121-111325.html?itemId=/content/journals/10.1146/annurev-vision-012121-111325&mimeType=html&fmt=ahah

Literature Cited

  1. Altier C, Garcia-Caballero A, Simms B, You H, Chen L et al. 2011. The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat. Neurosci. 14:173–80
    [Google Scholar]
  2. Ba-Abbad R, Arno G, Carss K, Stirrups K, Penkett CJ et al. 2015. Mutations in CACNA2D4 cause distinctive retinal dysfunction in humans. Ophthalmology 123:668–71
    [Google Scholar]
  3. Bacchi N, Messina A, Burtscher V, Dassi E, Provenzano G et al. 2015. A new splicing isoform of Cacna2d4 mimicking the effects of c. 2451insC mutation in the retina: novel molecular and electrophysiological insights. Investig. Ophthalmol. Vis. Sci. 56:4846–56
    [Google Scholar]
  4. Balakrishnan V, Puthussery T, Kim MH, Taylor WR, von Gersdorff H 2015. Synaptic vesicle exocytosis at the dendritic lobules of an inhibitory interneuron in the mammalian retina. Neuron 87:563–75
    [Google Scholar]
  5. Ball SL, Powers PA, Shin HS, Morgans CW, Peachey NS, Gregg RG. 2002. Role of the β2 subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Investig. Ophthalmol. Vis. Sci. 43:1595–603
    [Google Scholar]
  6. Barnes S, Bui Q. 1991. Modulation of calcium-activated chloride current via pH-induced changes of calcium channel properties in cone photoreceptors. J. Neurosci. 11:4015–23
    [Google Scholar]
  7. Barnes S, Hille B. 1989. Ionic channels of the inner segment of tiger salamander cone photoreceptors. J. Gen. Physiol. 94:719–43
    [Google Scholar]
  8. Barnes S, Merchant V, Mahmud F 1993. Modulation of transmission gain by protons at the photoreceptor output synapse. PNAS 90:10081–85
    [Google Scholar]
  9. Baylor DA, Fuortes MG, O'Bryan PM. 1971. Receptive fields of cones in the retina of the turtle. J. Physiol. 214:265–94
    [Google Scholar]
  10. Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B et al. 1998. Loss-of-function mutations in a calcium-channel a1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat. Genet. 19:264–67
    [Google Scholar]
  11. Ben-Johny M, Yue DT 2014. Calmodulin regulation (calmodulation) of voltage-gated calcium channels. J. Gen. Physiol. 143:679–92
    [Google Scholar]
  12. Bijveld MM, Florijn RJ, Bergen AA, van den Born LI, Kamermans M et al. 2013. Genotype and phenotype of 101 Dutch patients with congenital stationary night blindness. Ophthalmology 120:2072–81
    [Google Scholar]
  13. Blanks JC, Adinolfi AM, Lolley RN. 1974. Synaptogenesis in the photoreceptor terminal of the mouse retina. J. Comp. Neurol. 156:81–93
    [Google Scholar]
  14. Brecha N, Johnson D, Peichl L, Wassle H. 1988. Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and gamma-aminobutyrate immunoreactivity. PNAS 85:6187–91
    [Google Scholar]
  15. Brockhaus J, Schreitmuller M, Repetto D, Klatt O, Reissner C et al. 2018. α-Neurexins together with α2δ-1 auxiliary subunits regulate Ca2+ influx through Cav2.1 channels. J. Neurosci. 38:8277–94
    [Google Scholar]
  16. Buraei Z, Yang J 2013. Structure and function of the beta subunit of voltage-gated Ca2+ channels. Biochim. Biophys. Acta 1828:1530–40
    [Google Scholar]
  17. Busquet P, Nguyen NK, Schmid E, Tanimoto N, Seeliger MW et al. 2010. CaV1.3 L-type Ca2+ channels modulate depression-like behaviour in mice independent of deaf phenotype. Int. J. Neuropsychopharmacol. 13:499–513
    [Google Scholar]
  18. Cao Y, Sarria I, Fehlhaber KE, Kamasawa N, Orlandi C et al. 2015. Mechanism for selective synaptic wiring of rod photoreceptors into the retinal circuitry and its role in vision. Neuron 87:1248–60
    [Google Scholar]
  19. Cassidy JS, Ferron L, Kadurin I, Pratt WS, Dolphin AC. 2014. Functional exofacially tagged N-type calcium channels elucidate the interaction with auxiliary α2δ-1 subunits. PNAS 111:8979–84
    [Google Scholar]
  20. Chang B, Heckenlively JR, Bayley PR, Brecha NC, Davisson MT et al. 2006. The nob2 mouse, a null mutation in Cacna1f: anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Vis. Neurosci. 23:11–24
    [Google Scholar]
  21. Chavez AE, Singer JH, Diamond JS. 2006. Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors. Nature 443:705–8
    [Google Scholar]
  22. Chen XH, Bezprozvanny I, Tsien RW. 1996. Molecular basis of proton block of L-type Ca2+ channels. J. Gen. Physiol. 108:363–74
    [Google Scholar]
  23. Cheong E, Shin HS. 2014. T-type Ca2+ channels in absence epilepsy. Pflugers Arch. 466:719–34
    [Google Scholar]
  24. Choi SY, Jackman S, Thoreson WB, Kramer RH. 2008. Light regulation of Ca2+ in the cone photoreceptor synaptic terminal. Vis. Neurosci. 25:693–700
    [Google Scholar]
  25. Connaughton V 1995. Glutamate and glutamate receptors in the vertebrate retina. Webvision: The Organization of the Retina and Visual System H Kolb, E Fernandez, R Nelson Salt Lake City: Univ. Utah Health Sci. Cent https://webvision.med.utah.edu/book/part-v-phototransduction-in-rods-and-cones/glutamate-and-glutamate-receptors-in-the-vertebrate-retina/
    [Google Scholar]
  26. Copenhagen DR, Jahr CE. 1989. Release of endogenous excitatory amino acids from turtle photoreceptors. Nature 341:536–39
    [Google Scholar]
  27. Corey DP, Dubinsky JM, Schwartz EA. 1984. The calcium current in inner segments of rods from the salamander (Ambystoma tigrinum) retina. J. Physiol. 354:557–75
    [Google Scholar]
  28. Country MW, Campbell BFN, Jonz MG. 2019. Spontaneous action potentials in retinal horizontal cells of goldfish (Carassius auratus) are dependent upon L-type Ca2+ channels and ryanodine receptors. J. Neurophysiol. 122:2284–93
    [Google Scholar]
  29. Cui J, Ivanova E, Qi L, Pan ZH. 2012. Expression of CaV3.2 T-type Ca2+ channels in a subpopulation of retinal type-3 cone bipolar cells. Neuroscience 224:63–69
    [Google Scholar]
  30. Dembla E, Dembla M, Maxeiner S, Schmitz F. 2020. Synaptic ribbons foster active zone stability and illumination-dependent active zone enrichment of RIM2 and Cav1.4 in photoreceptor synapses. Sci. Rep. 10:5957
    [Google Scholar]
  31. DeVries SH. 2001. Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32:1107–17
    [Google Scholar]
  32. Diamond JS. 2017. Inhibitory interneurons in the retina: types, circuitry, and function. Annu. Rev. Vis. Sci. 3:1–24
    [Google Scholar]
  33. Dolphin AC. 2013. The α2δ subunits of voltage-gated calcium channels. Biochim. Biophys. Acta 1828:1541–49
    [Google Scholar]
  34. Dolphin AC. 2016. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J. Physiol. 594:5369–90
    [Google Scholar]
  35. Dolphin AC, Lee A. 2020. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat. Rev. Neurosci. 21:213–29
    [Google Scholar]
  36. Eggers ED, Lukasiewicz PD. 2011. Multiple pathways of inhibition shape bipolar cell responses in the retina. Vis. Neurosci. 28:95–108
    [Google Scholar]
  37. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y et al. 2000. Nomenclature of voltage-gated calcium channels. Neuron 25:533–35
    [Google Scholar]
  38. Euler T, Detwiler PB, Denk W. 2002. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418:845–52
    [Google Scholar]
  39. Euler T, Haverkamp S, Schubert T, Baden T. 2014. Retinal bipolar cells: elementary building blocks of vision. Nat. Rev. Neurosci. 15:507–19
    [Google Scholar]
  40. Euler T, Masland RH. 2000. Light-evoked responses of bipolar cells in a mammalian retina. J. Neurophysiol. 83:1817–29
    [Google Scholar]
  41. Famiglietti EV Jr., Kolb H. 1975. A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina. Brain Res. 84:293–300
    [Google Scholar]
  42. Feigenspan A, Ohs A, von Wittgenstein J, Brandstatter JH, Babai N. 2020. Analysis of tetrodotoxin-sensitive sodium and low voltage-activated calcium channels in developing mouse retinal horizontal cells. Exp. Eye Res. 195:108028
    [Google Scholar]
  43. Fell B, Eckrich S, Blum K, Eckrich T, Hecker D et al. 2016. α2δ−2 controls the function and trans-synaptic coupling of Cav1.3 channels in mouse inner hair cells and is essential for normal hearing. J. Neurosci. 36:11024–36
    [Google Scholar]
  44. Geisler S, Schopf CL, Stanika R, Kalb M, Campiglio M et al. 2019. Presynaptic α2δ-2 calcium channel subunits regulate postsynaptic GABAA receptor abundance and axonal wiring. J. Neurosci. 39:2581–605
    [Google Scholar]
  45. Gregory FD, Bryan KE, Pangrsic T, Calin-Jageman IE, Moser T, Lee A. 2011. Harmonin inhibits presynaptic Cav1.3 Ca2+ channels in mouse inner hair cells. Nat. Neurosci. 14:1109–11
    [Google Scholar]
  46. Grimes WN, Li W, Chavez AE, Diamond JS. 2009. BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina. Nat. Neurosci. 12:585–92
    [Google Scholar]
  47. Grimes WN, Zhang J, Graydon CW, Kachar B, Diamond JS. 2010. Retinal parallel processors: More than 100 independent microcircuits operate within a single interneuron. Neuron 65:873–85
    [Google Scholar]
  48. Grimes WN, Zhang J, Tian H, Graydon CW, Hoon M et al. 2015. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold. J. Neurophysiol. 114:341–53
    [Google Scholar]
  49. Grove JCR, Hirano AA, de Los Santos J, McHugh CF, Purohit S et al. 2019. Novel hybrid action of GABA mediates inhibitory feedback in the mammalian retina. Plos Biol. 17:e3000200
    [Google Scholar]
  50. Habermann CJ, O'Brien BJ, Wassle H, Protti DA. 2003. AII amacrine cells express L-type calcium channels at their output synapses. J. Neurosci. 23:6904–13
    [Google Scholar]
  51. Haeseleer F, Imanishi Y, Maeda T, Possin DE, Maeda A et al. 2004. Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat. Neurosci. 7:1079–87
    [Google Scholar]
  52. Haeseleer F, Williams B, Lee A 2016. Characterization of C-terminal splice variants of Cav1.4 Ca2+ channels in human retina. J. Biol. Chem. 291:15663–73
    [Google Scholar]
  53. Haq W, Arango-Gonzalez B, Zrenner E, Euler T, Schubert T. 2014. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina. Front. Neural Circuits 8:108
    [Google Scholar]
  54. Hardie J, Lee A. 2016. Decalmodulation of Cav1 channels by CaBPs. Channels 10:33–37
    [Google Scholar]
  55. Hartveit E. 1999. Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. J. Neurophysiol. 81:2923–36
    [Google Scholar]
  56. Hemara-Wahanui A, Berjukow S, Hope CI, Dearden PK, Wu SB et al. 2005. A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. PNAS 102:7553–58
    [Google Scholar]
  57. Hoda JC, Zaghetto F, Koschak A, Striessnig J. 2005. Congenital stationary night blindness type 2 mutations S229P, G369D, L1068P, and W1440X alter channel gating or functional expression of Cav1.4 L-type Ca2+ channels. J. Neurosci. 25:252–59
    [Google Scholar]
  58. Hope CI, Sharp DM, Hemara-Wahanui A, Sissingh JI, Lundon P et al. 2005. Clinical manifestations of a unique X-linked retinal disorder in a large New Zealand family with a novel mutation in CACNA1F, the gene responsible for CSNB2. Clin. Exp. Ophthalmol. 33:129–36
    [Google Scholar]
  59. Hove MN, Kilic-Biyik KZ, Trotter A, Gronskov K, Sander B et al. 2016. Clinical characteristics, mutation spectrum, and prevalence of Aland eye disease/incomplete congenital stationary night blindness in Denmark. Investig. Ophthalmol. Vis. Sci. 57:6861–69
    [Google Scholar]
  60. Huang H, Tan BZ, Shen Y, Tao J, Jiang F et al. 2012. RNA editing of the IQ domain in Cav1.3 channels modulates their Ca2+-dependent inactivation. Neuron 73:304–16
    [Google Scholar]
  61. Huang Z, Lujan R, Kadurin I, Uebele VN, Renger JJ et al. 2011. Presynaptic HCN1 channels regulate Cav3.2 activity and neurotransmission at select cortical synapses. Nat. Neurosci. 14:478–86
    [Google Scholar]
  62. Jalkanen R, Bech-Hansen NT, Tobias R, Sankila EM, Mantyjarvi M et al. 2007. A novel CACNA1F gene mutation causes Aland Island eye disease. Investig. Ophthalmol. Vis. Sci. 48:2498–502
    [Google Scholar]
  63. Jalkanen R, Mantyjarvi M, Tobias R, Isosomppi J, Sankila EM et al. 2006. X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J. Med. Genet. 43:699–704
    [Google Scholar]
  64. Jenkins MA, Christel CJ, Jiao Y, Abiria S, Kim KY et al. 2010. Ca2+-dependent facilitation of Cav1.3 Ca2+ channels by densin and Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. 30:5125–35
    [Google Scholar]
  65. Jia S, Muto A, Orisme W, Henson HE, Parupalli C et al. 2014. Zebrafish Cacna1fa is required for cone photoreceptor function and synaptic ribbon formation. Hum. Mol. Genet. 23:2981–94
    [Google Scholar]
  66. Johnson JE Jr., Perkins GA, Giddabasappa A, Chaney S, Xiao W et al. 2007. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses. Mol. Vis. 13:887–919
    [Google Scholar]
  67. Jouhou H, Yamamoto K, Homma A, Hara M, Kaneko A, Yamada M. 2007. Depolarization of isolated horizontal cells of fish acidifies their immediate surrounding by activating V-ATPase. J. Physiol. 585:401–12
    [Google Scholar]
  68. Kaneda M, Ito K, Morishima Y, Shigematsu Y, Shimoda Y. 2007. Characterization of voltage-gated ionic channels in cholinergic amacrine cells in the mouse retina. J. Neurophysiol. 97:4225–34
    [Google Scholar]
  69. Katiyar R, Weissgerber P, Roth E, Dorr J, Sothilingam V et al. 2015. Influence of the β2 subunit of L-type voltage-gated Cav channels on the structural and functional development of photoreceptor ribbon synapses. Investig. Ophthalmol. Vis. Sci. 56:2312–24
    [Google Scholar]
  70. Kerov V, Laird JG, Joiner ML, Knecht S, Soh D et al. 2018. α2δ-4 is required for the molecular and structural organization of rod and cone photoreceptor synapses. J. Neurosci. 38:6145–60
    [Google Scholar]
  71. Kersten FF, van Wijk E, van Reeuwijk J, van der Zwaag B, Märker T et al. 2010. Association of whirlin with Cav1.3 (α1D) channels in photoreceptors, defining a novel member of the usher protein network. Investig. Ophthalmol. Vis. Sci. 51:2338–46
    [Google Scholar]
  72. Kim D, Song I, Keum S, Lee T, Jeong MJ et al. 2001. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking α1G T-type Ca2+ channels. Neuron 31:35–45
    [Google Scholar]
  73. Klockner U, Isenberg G. 1994. Calcium channel current of vascular smooth muscle cells: Extracellular protons modulate gating and single channel conductance. J. Gen. Physiol. 103:665–78
    [Google Scholar]
  74. Knoflach D, Kerov V, Sartori SB, Obermair GJ, Schmuckermair C et al. 2013. Cav1.4 IT mouse as model for vision impairment in human congenital stationary night blindness type 2. Channels 7:503–13
    [Google Scholar]
  75. Knoflach D, Schicker K, Glosmann M, Koschak A. 2015. Gain-of-function nature of Cav1.4 liters-type calcium channels alters firing properties of mouse retinal ganglion cells. Channels 9:298–306
    [Google Scholar]
  76. Koizumi A, Jakobs TC, Masland RH. 2004. Inward rectifying currents stabilize the membrane potential in dendrites of mouse amacrine cells: patch-clamp recordings and single-cell RT-PCR. Mol. Vis. 10:328–40
    [Google Scholar]
  77. Kolb H. 1995a. Outer plexiform layer. Webvision: The Organization of the Retina and Visual System H Kolb, E Fernandez, R Nelson Salt Lake City: Univ. Utah Health Sci. Cent.
    [Google Scholar]
  78. Kolb H. 1995b. Photoreceptors. Webvision: The Organization of the Retina and Visual System H Kolb, E Fernandez, R Nelson Salt Lake City: Univ. Utah Health Sci. Cent.
    [Google Scholar]
  79. Kolb H. 1995c. Roles of amacrine cells. Webvision: The Organization of the Retina and Visual System H Kolb, E Fernandez, R Nelson Salt Lake City: Univ. Utah Health Sci. Cent.
    [Google Scholar]
  80. Kramer RH, Davenport CM. 2015. Lateral inhibition in the vertebrate retina: the case of the missing neurotransmitter. PLOS Biol 13:e1002322
    [Google Scholar]
  81. Lana B, Page KM, Kadurin I, Ho S, Nieto-Rostro M, Dolphin AC. 2016. Thrombospondin-4 reduces binding affinity of [3H]-gabapentin to calcium-channel α2δ-1-subunit but does not interact with α2δ-1 on the cell-surface when co-expressed. Sci. Rep. 6:24531
    [Google Scholar]
  82. Lee A, Wang S, Williams B, Hagen J, Scheetz TE, Haeseleer F. 2015. Characterization of Cav1.4 complexes (α11.4, β2, and α2δ−4) in HEK293T cells and in the retina. J. Biol. Chem. 290:1505–21
    [Google Scholar]
  83. Lee S, Kim K, Zhou ZJ. 2010. Role of ACh-GABA cotransmission in detecting image motion and motion direction. Neuron 68:1159–72
    [Google Scholar]
  84. Lee S, Zhou ZJ. 2006. The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 51:787–99
    [Google Scholar]
  85. Liu H, Li L, Wang W, Gong J, Yang X, Hu Z 2018. Spontaneous vesicle fusion is differentially regulated at cholinergic and GABAergic synapses. Cell Rep. 22:2334–45
    [Google Scholar]
  86. Liu X, Hirano AA, Sun X, Brecha NC, Barnes S. 2013a. Calcium channels in rat horizontal cells regulate feedback inhibition of photoreceptors through an unconventional GABA- and pH-sensitive mechanism. J. Physiol. 591:3309–24
    [Google Scholar]
  87. Liu X, Kerov V, Haeseleer F, Majumder A, Artemyev N et al. 2013b. Dysregulation of Cav1.4 channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2. Channels 7:514–23
    [Google Scholar]
  88. Lu Q, Ivanova E, Ganjawala TH, Pan ZH. 2013. Cre-mediated recombination efficiency and transgene expression patterns of three retinal bipolar cell-expressing Cre transgenic mouse lines. Mol. Vis. 19:1310–20
    [Google Scholar]
  89. Lubbert M, Goral RO, Satterfield R, Putzke T, van den Maagdenberg AM et al. 2017. A novel region in the CaV2.1 α1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone. eLife 6:e28412
    [Google Scholar]
  90. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–14
    [Google Scholar]
  91. Maddox JW, Randall KL, Yadav RP, Williams B, Hagen J et al. 2020. A dual role for Cav1.4 Ca2+ channels in the molecular and structural organization of the rod photoreceptor synapse. eLife 9:e62184
    [Google Scholar]
  92. Maeda T, Lem J, Palczewski K, Haeseleer F. 2005. A critical role of CaBP4 in the cone synapse. Investig. Ophthalmol. Vis. Sci. 46:4320–27
    [Google Scholar]
  93. Mansergh F, Orton NC, Vessey JP, Lalonde MR, Stell WK et al. 2005. Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum. Mol. Genet. 14:3035–46
    [Google Scholar]
  94. Marc RE, Jones BW, Anderson JR, Kinard K, Marshak DW et al. 2007. Neural reprogramming in retinal degeneration. Investig. Ophthalmol. Vis. Sci. 48:3364–71
    [Google Scholar]
  95. Matthews G, Fuchs P. 2010. The diverse roles of ribbon synapses in sensory neurotransmission. Nat. Rev. Neurosci. 11:812–22
    [Google Scholar]
  96. Maximov A, Bezprozvanny I. 2002. Synaptic targeting of N-type calcium channels in hippocampal neurons. J. Neurosci. 22:6939–52
    [Google Scholar]
  97. Mills SL, Massey SC. 1991. Labeling and distribution of AII amacrine cells in the rabbit retina. J. Comp. Neurol. 304:491–501
    [Google Scholar]
  98. Morgans CW. 2001. Localization of the α1F calcium channel subunit in the rat retina. Investig. Ophthalmol. Vis. Sci. 42:2414–18
    [Google Scholar]
  99. Niesen CE, Ge S. 1999. Chronic epilepsy in developing hippocampal neurons: electrophysiologic and morphologic features. Dev. Neurosci. 21:328–38
    [Google Scholar]
  100. Olson PA, Tkatch T, Hernandez-Lopez S, Ulrich S, Ilijic E et al. 2005. G-protein-coupled receptor modulation of striatal Cav1.3 L-type Ca2+ channels is dependent on a Shank-binding domain. J. Neurosci. 25:1050–62
    [Google Scholar]
  101. Palmer MJ, Hull C, Vigh J, von Gersdorff H 2003. Synaptic cleft acidification and modulation of short-term depression by exocytosed protons in retinal bipolar cells. J. Neurosci. 23:11332–41
    [Google Scholar]
  102. Pan ZH. 2000. Differential expression of high- and two types of low-voltage-activated calcium currents in rod and cone bipolar cells of the rat retina. J. Neurophysiol. 83:513–27
    [Google Scholar]
  103. Pan ZH. 2001. Voltage-activated Ca2+ channels and ionotropic GABA receptors localized at axon terminals of mammalian retinal bipolar cells. Vis. Neurosci. 18:279–88
    [Google Scholar]
  104. Pan ZH, Hu HJ, Perring P, Andrade R. 2001. T-type Ca2+ channels mediate neurotransmitter release in retinal bipolar cells. Neuron 32:89–98
    [Google Scholar]
  105. Pangrsic T, Singer JH, Koschak A. 2018. Voltage-gated calcium channels: key players in sensory coding in the retina and the inner ear. Physiol. Rev. 98:2063–96
    [Google Scholar]
  106. Perez-Reyes E 2003. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol. Rev. 83:117–61
    [Google Scholar]
  107. Pfeiffer-Linn CL, Lasater EM 1996. Whole cell and single-channel properties of a unique voltage-activated sustained calcium current identified in teleost retinal horizontal cells. J. Neurophysiol. 75:609–19
    [Google Scholar]
  108. Picaud S, Hicks D, Forster V, Sahel J, Dreyfus H. 1998. Adult human retinal neurons in culture: physiology of horizontal cells. Investig. Ophthalmol. Vis. Sci. 39:2637–48
    [Google Scholar]
  109. Protti DA, Llano I. 1998. Calcium currents and calcium signaling in rod bipolar cells of rat retinal slices. J. Neurosci. 18:3715–24
    [Google Scholar]
  110. Raven MA, Orton NC, Nassar H, Williams GA, Stell WK et al. 2008. Early afferent signaling in the outer plexiform layer regulates development of horizontal cell morphology. J. Comp. Neurol. 506:745–58
    [Google Scholar]
  111. Reese BE, Raven MA, Stagg SB. 2005. Afferents and homotypic neighbors regulate horizontal cell morphology, connectivity, and retinal coverage. J. Neurosci. 25:2167–75
    [Google Scholar]
  112. Regus-Leidig H, Atorf J, Feigenspan A, Kremers J, Maw MA, Brandstatter JH. 2014. Photoreceptor degeneration in two mouse models for congenital stationary night blindness type 2. PLOS ONE 9:e86769
    [Google Scholar]
  113. Regus-Leidig H, Specht D, Tom Dieck S, Brandstatter JH 2010. Stability of active zone components at the photoreceptor ribbon complex. Mol. Vis. 16:2690–700
    [Google Scholar]
  114. Regus-Leidig H, Tom Dieck S, Specht D, Meyer L, Brandstatter JH 2009. Early steps in the assembly of photoreceptor ribbon synapses in the mouse retina: the involvement of precursor spheres. J. Comp. Neurol. 512:814–24
    [Google Scholar]
  115. Rieke F, Lee A, Haeseleer F. 2008. Characterization of Ca2+-binding protein 5 knockout mouse retina. Investig. Ophthalmol. Vis. Sci. 49:5126–35
    [Google Scholar]
  116. Satoh H, Aoki K, Watanabe SI, Kaneko A. 1998. L-type calcium channels in the axon terminal of mouse bipolar cells. Neuroreport 9:2161–65
    [Google Scholar]
  117. Schmitz Y, Witkovsky P. 1997. Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience 78:1209–16
    [Google Scholar]
  118. Schrauwen I, Helfmann S, Inagaki A, Predoehl F, Tabatabaiefar MA et al. 2012. A mutation in CABP2, expressed in cochlear hair cells, causes autosomal-recessive hearing impairment. Am. J. Hum. Genet. 91:636–45
    [Google Scholar]
  119. Schubert T, Weiler R, Feigenspan A. 2006. Intracellular calcium is regulated by different pathways in horizontal cells of the mouse retina. J. Neurophysiol. 96:1278–92
    [Google Scholar]
  120. Shaltiel L, Paparizos C, Fenske S, Hassan S, Gruner C et al. 2012. Complex regulation of voltage-dependent activation and inactivation properties of retinal voltage-gated Cav1.4 L-type Ca2+ channels by Ca2+-binding protein 4 (CaBP4). J. Biol. Chem. 287:36312–21
    [Google Scholar]
  121. Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ et al. 2016. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166:1308–23.e30
    [Google Scholar]
  122. Shi L, Chang JY, Yu F, Ko ML, Ko GY. 2017. The contribution of L-type Cav1.3 channels to retinal light responses. Front. Mol. Neurosci. 10:394
    [Google Scholar]
  123. Singer JH, Diamond JS. 2003. Sustained Ca2+ entry elicits transient postsynaptic currents at a retinal ribbon synapse. J. Neurosci. 23:10923–33
    [Google Scholar]
  124. Singh A, Gebhart M, Fritsch R, Sinnegger-Brauns MJ, Poggiani C et al. 2008. Modulation of voltage- and Ca2+-dependent gating of Cav1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain. J. Biol. Chem. 283:20733–44
    [Google Scholar]
  125. Singh A, Hamedinger D, Hoda JC, Gebhart M, Koschak A et al. 2006. C-terminal modulator controls Ca2+-dependent gating of Cav1.4 L-type Ca2+ channels. Nat. Neurosci. 9:1108–16
    [Google Scholar]
  126. Sinha R, Lee A, Rieke F, Haeseleer F. 2016. Lack of CaBP1/caldendrin or CaBP2 leads to altered ganglion cell responses. eNeuro 3:ENEURO.0099-16.2016
  127. Soto F, Watkins KL, Johnson RE, Schottler F, Kerschensteiner D. 2013. NGL-2 regulates pathway-specific neurite growth and lamination, synapse formation, and signal transmission in the retina. J. Neurosci. 33:11949–59
    [Google Scholar]
  128. Specht D, Wu SB, Turner P, Dearden P, Koentgen F et al. 2009. Effects of presynaptic mutations on a postsynaptic Cacna1s calcium channel colocalized with mGluR6 at mouse photoreceptor ribbon synapses. Investig. Ophthalmol. Vis. Sci. 50:505–15
    [Google Scholar]
  129. Spiwoks-Becker I, Glas M, Lasarzik I, Vollrath L. 2004. Mouse photoreceptor synaptic ribbons lose and regain material in response to illumination changes. Eur. J. Neurosci. 19:1559–71
    [Google Scholar]
  130. Strom TM, Nyakatura G, Apfelstedt-Sylla E, Hellebrand H, Lorenz B et al. 1998. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat. Genet. 19:260–63
    [Google Scholar]
  131. Subramanyam P, Obermair GJ, Baumgartner S, Gebhart M, Striessnig J et al. 2009. Activity and calcium regulate nuclear targeting of the calcium channel β4b subunit in nerve and muscle cells. Channels 3:343–55
    [Google Scholar]
  132. Tadmouri A, Kiyonaka S, Barbado M, Rousset M, Fablet K et al. 2012. Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. EMBO J. 31:3730–44
    [Google Scholar]
  133. Tan GM, Yu D, Wang J, Soong TW 2012. Alternative splicing at C terminus of Cav1.4 calcium channel modulates calcium-dependent inactivation, activation potential, and current density. J. Biol. Chem. 287:832–47
    [Google Scholar]
  134. Taylor WR, Morgans C. 1998. Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. Vis. Neurosci. 15:541–52
    [Google Scholar]
  135. Ueda Y, Kaneko A, Kaneda M. 1992. Voltage-dependent ionic currents in solitary horizontal cells isolated from cat retina. J. Neurophysiol. 68:1143–50
    [Google Scholar]
  136. Van Hook MJ, Nawy S, Thoreson WB. 2019. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog. Retin. Eye Res. 72:100760
    [Google Scholar]
  137. Vessey JP, Stratis AK, Daniels BA, Da Silva N, Jonz MG et al. 2005. Proton-mediated feedback inhibition of presynaptic calcium channels at the cone photoreceptor synapse. J. Neurosci. 25:4108–17
    [Google Scholar]
  138. Vincent A, Wright T, Day MA, Westall CA, Heon E. 2011. A novel p.Gly603Arg mutation in CACNA1F causes Aland Island eye disease and incomplete congenital stationary night blindness phenotypes in a family. Mol. Vis. 17:3262–70
    [Google Scholar]
  139. von Gersdorff H, Matthews G. 1996. Calcium-dependent inactivation of calcium current in synaptic terminals of retinal bipolar neurons. J. Neurosci. 16:115–22
    [Google Scholar]
  140. Wahl-Schott C, Baumann L, Cuny H, Eckert C, Griessmeier K, Biel M. 2006. Switching off calcium-dependent inactivation in L-type calcium channels by an autoinhibitory domain. PNAS 103:15657–62
    [Google Scholar]
  141. Waithe D, Ferron L, Page KM, Chaggar K, Dolphin AC. 2011. β-Subunits promote the expression of Cav2.2 channels by reducing their proteasomal degradation. J. Biol. Chem. 286:9598–611
    [Google Scholar]
  142. Wang Y, Fehlhaber KE, Sarria I, Cao Y, Ingram NT et al. 2017. The auxiliary calcium channel subunit α2δ4 is required for axonal elaboration, synaptic transmission, and wiring of rod photoreceptors. Neuron 93:1359–74.e6
    [Google Scholar]
  143. Warren TJ, Van Hook MJ, Supuran CT, Thoreson WB. 2016. Sources of protons and a role for bicarbonate in inhibitory feedback from horizontal cells to cones in Ambystoma tigrinum retina. J. Physiol. 594:6661–77
    [Google Scholar]
  144. Wei W. 2018. Neural mechanisms of motion processing in the mammalian retina. Annu. Rev. Vis. Sci. 4:165–92
    [Google Scholar]
  145. Williams B, Haeseleer F, Lee A. 2018. Splicing of an automodulatory domain in Cav1.4 Ca2+ channels confers distinct regulation by calmodulin. J. Gen. Physiol. 150:1676–87
    [Google Scholar]
  146. Williams B, Lopez JA, Maddox JW, Lee A. 2020. Functional impact of a congenital stationary night blindness type 2 mutation depends on subunit composition of Cav1.4 Ca2+ channels. J. Biol. Chem. 295:17215–26
    [Google Scholar]
  147. Wu J, Marmorstein AD, Striessnig J, Peachey NS. 2007. Voltage-dependent calcium channel Cav1.3 subunits regulate the light peak of the electroretinogram. J. Neurophysiol. 97:3731–35
    [Google Scholar]
  148. Wycisk KA, Budde B, Feil S, Skosyrski S, Buzzi F et al. 2006a. Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. Investig. Ophthalmol. Vis. Sci. 47:3523–30
    [Google Scholar]
  149. Wycisk KA, Zeitz C, Feil S, Wittmer M, Forster U et al. 2006b. Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am. J. Hum. Genet. 79:973–77
    [Google Scholar]
  150. Xiao H, Chen X, Steele EC Jr. 2007. Abundant L-type calcium channel Cav1.3 (α1D) subunit mRNA is detected in rod photoreceptors of the mouse retina via in situ hybridization. Mol. Vis. 13:764–71
    [Google Scholar]
  151. Yamamoto K, Kobayashi M. 2018. Opposite roles in short-term plasticity for N-type and P/Q-type voltage-dependent calcium channels in GABAergic neuronal connections in the rat cerebral cortex. J. Neurosci. 38:9814–28
    [Google Scholar]
  152. Yan W, Mallory A, Laboulaye NM, Tran IE, Benhar I, Sanes JR. 2020. Molecular identification of sixty-three amacrine cell types completes a mouse retinal cell atlas. bioRxiv 2020.03.10.985770. https://doi.org/10.1101/2020.03.10.985770
    [Crossref]
  153. Zabouri N, Haverkamp S. 2013. Calcium channel-dependent molecular maturation of photoreceptor synapses. PLOS ONE 8:e63853
    [Google Scholar]
  154. Zeitz C, Robson AG, Audo I. 2015. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog. Retin. Eye Res. 45:58–110
    [Google Scholar]
  155. Zhou H, Kim SA, Kirk EA, Tippens AL, Sun H et al. 2004. Ca2+-binding protein-1 facilitates and forms a postsynaptic complex with Cav1.2 (L-type) Ca2+ channels. J. Neurosci. 24:4698–708
    [Google Scholar]
/content/journals/10.1146/annurev-vision-012121-111325
Loading
/content/journals/10.1146/annurev-vision-012121-111325
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error