1932

Abstract

Humans are remarkably adept at perceiving and understanding complex real-world scenes. Uncovering the neural basis of this ability is an important goal of vision science. Neuroimaging studies have identified three cortical regions that respond selectively to scenes: parahippocampal place area, retrosplenial complex/medial place area, and occipital place area. Here, we review what is known about the visual and functional properties of these brain areas. Scene-selective regions exhibit retinotopic properties and sensitivity to low-level visual features that are characteristic of scenes. They also mediate higher-level representations of layout, objects, and surface properties that allow individual scenes to be recognized and their spatial structure ascertained. Challenges for the future include developing computational models of information processing in scene regions, investigating how these regions support scene perception under ecologically realistic conditions, and understanding how they operate in the context of larger brain networks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-014809
2019-09-15
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-014809.html?itemId=/content/journals/10.1146/annurev-vision-091718-014809&mimeType=html&fmt=ahah

Literature Cited

  1. Aguirre GK, D'Esposito M. 1999. Topographical disorientation: a synthesis and taxonomy. Brain 122:1613–28
    [Google Scholar]
  2. Aguirre GK, Zarahn E, D'Esposito M 1998. An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21:373–83
    [Google Scholar]
  3. Alexander AS, Nitz DA. 2015. Retrosplenial cortex maps the conjunction of internal and external spaces. Nat. Neurosci. 18:1143–51
    [Google Scholar]
  4. Aminoff EM, Kveraga K, Bar M 2013. The role of the parahippocampal cortex in cognition. Trends Cogn. Sci. 17:379–90
    [Google Scholar]
  5. Amit E, Mehoudar E, Trope Y, Yovel G 2012. Do object-category selective regions in the ventral visual stream represent perceived distance information. ? Brain Cogn 80:201–13
    [Google Scholar]
  6. Arcaro MJ, Livingstone MS. 2017. Retinotopic organization of scene areas in macaque inferior temporal cortex. J. Neurosci. 37:7373–89
    [Google Scholar]
  7. Arcaro MJ, McMains SA, Singer BD, Kastner S 2009. Retinotopic organization of human ventral visual cortex. J. Neurosci. 29:10638–52
    [Google Scholar]
  8. Auger SD, Zeidman P, Maguire EA 2015. A central role for the retrosplenial cortex in de novo environmental learning. eLife 4:e09031
    [Google Scholar]
  9. Bainbridge WA, Oliva A. 2015. Interaction envelope: local spatial representations of objects at all scales in scene-selective regions. NeuroImage 122:408–16
    [Google Scholar]
  10. Baldassano C, Esteva A, Fei-Fei L, Beck DM 2016a. Two distinct scene-processing networks connecting vision and memory. eNeuro 3:0178–16.2016
    [Google Scholar]
  11. Baldassano C, Fei-Fei L, Beck DM 2016b. Pinpointing the peripheral bias in neural scene-processing networks during natural viewing. J. Vis. 16:29
    [Google Scholar]
  12. Bar M. 2004. Visual objects in context. Nat. Rev. Neurosci. 5:617–29
    [Google Scholar]
  13. Bar M, Aminoff E. 2003. Cortical analysis of visual context. Neuron 38:347–58
    [Google Scholar]
  14. Bastin J, Vidal JR, Bouvier S, Perrone-Bertolotti M, Benis D et al. 2013. Temporal components in the parahippocampal place area revealed by human intracerebral recordings. J. Neurosci. 33:10123–31
    [Google Scholar]
  15. Baumann O, Mattingley JB. 2010. Medial parietal cortex encodes perceived heading direction in humans. J. Neurosci. 30:12897–901
    [Google Scholar]
  16. Berman D, Golomb JD, Walther DB 2017. Scene content is predominantly conveyed by high spatial frequencies in scene-selective visual cortex. PLOS ONE 12:e0189828
    [Google Scholar]
  17. Bettencourt KC, Xu YD. 2013. The role of transverse occipital sulcus in scene perception and its relationship to object individuation in inferior intraparietal sulcus. J. Cogn. Neurosci. 25:1711–22
    [Google Scholar]
  18. Biederman I. 1972. Perceiving real-world scenes. Science 177:77–80
    [Google Scholar]
  19. Biederman I, Mezzanotte RJ, Rabinowitz JC 1982. Scene perception: detecting and judging objects undergoing relational violations. Cogn. Psychol. 14:143–77
    [Google Scholar]
  20. Bonner MF, Epstein RA. 2017. Coding of navigational affordances in the human visual system. PNAS 114:4793–98
    [Google Scholar]
  21. Bonner MF, Epstein RA. 2018. Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLOS Comput. Biol. 14:e1006111
    [Google Scholar]
  22. Boucart M, Moroni C, Thibaut M, Szaffarczyk S, Greene M 2013. Scene categorization at large visual eccentricities. Vis. Res. 86:35–42
    [Google Scholar]
  23. Brandman T, Peelen XV. 2017. Interaction between scene and object processing revealed by human fMRI and MEG decoding. J. Neurosci. 37:7700–10
    [Google Scholar]
  24. Bryan PB, Julian JB, Epstein RA 2016. Rectilinear edge selectivity is insufficient to explain the category selectivity of the parahippocampal place area. Front. Hum. Neurosci. 10:137
    [Google Scholar]
  25. Burwell RD, Witter MP, Amaral DG 1995. Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus 5:390–408
    [Google Scholar]
  26. Byrne P, Becker S, Burgess N 2007. Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114:340–75
    [Google Scholar]
  27. Cant JS, Xu Y. 2012. Object ensemble processing in human anterior-medial ventral visual cortex. J. Neurosci. 32:7685–700
    [Google Scholar]
  28. Cate AD, Goodale MA, Kohler S 2011. The role of apparent size in building- and object-specific regions of ventral visual cortex. Brain Res 1388:109–22
    [Google Scholar]
  29. Cheng K, Newcombe NS. 2005. Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychon. Bull. Rev. 12:1–23
    [Google Scholar]
  30. Chersi F, Burgess N. 2015. The cognitive architecture of spatial navigation: hippocampal and striatal contributions. Neuron 88:64–77
    [Google Scholar]
  31. Choo H, Walther DB. 2016. Contour junctions underlie neural representations of scene categories in high-level human visual cortex. NeuroImage 135:32–44
    [Google Scholar]
  32. Chun MM, Phelps EA. 1999. Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nat. Neurosci. 2:844–47
    [Google Scholar]
  33. Cichy RM, Khosla A, Pantazis D, Oliva A 2017. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. NeuroImage 153:346–58
    [Google Scholar]
  34. Dalton MA, Zeidman P, McCormick C, Maguire EA 2018. Differentiable processing of objects, associations, and scenes within the hippocampus. J. Neurosci. 38:8146–59
    [Google Scholar]
  35. Davenport JL, Potter MC. 2004. Scene consistency in object and background perception. Psychol. Sci. 15:559–64
    [Google Scholar]
  36. Dilks DD, Julian JB, Kubilius J, Spelke ES, Kanwisher N 2011. Mirror-image sensitivity and invariance in object and scene processing pathways. J. Neurosci. 31:11305–12
    [Google Scholar]
  37. Dilks DD, Julian JB, Paunov AM, Kanwisher N 2013. The occipital place area (OPA) is causally and selectively involved in scene perception. J. Neurosci. 33:1331–36
    [Google Scholar]
  38. Dillon MR, Persichetti AS, Spelke ES, Dilks DD 2018. Places in the brain: bridging layout and object geometry in scene-selective cortex. Cereb. Cortex 28:2365–74
    [Google Scholar]
  39. Drucker DM, Aguirre GK. 2009. Different spatial scales of shape similarity representation in lateral and ventral LOC. Cereb. Cortex 19:2269–80
    [Google Scholar]
  40. Elshout JA, van den Berg AV, Haak KV 2018. Human V2A: a map of the peripheral visual hemifield with functional connections to scene-selective cortex. J. Vis. 18:922
    [Google Scholar]
  41. Epstein R, Graham KS, Downing PE 2003. Viewpoint-specific scene representations in human parahippocampal cortex. Neuron 37:865–76
    [Google Scholar]
  42. Epstein R, Harris A, Stanley D, Kanwisher N 1999. The parahippocampal place area: recognition, navigation, or encoding. ? Neuron 23:115–25
    [Google Scholar]
  43. Epstein R, Kanwisher N. 1998. A cortical representation of the local visual environment. Nature 392:598–601
    [Google Scholar]
  44. Epstein RA. 2005. The cortical basis of visual scene processing. Vis. Cogn. 12:954–78
    [Google Scholar]
  45. Epstein RA. 2008. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn. Sci. 12:388–96
    [Google Scholar]
  46. Epstein RA, Higgins JS, Jablonski K, Feiler AM 2007a. Visual scene processing in familiar and unfamiliar environments. J. Neurophysiol. 97:3670–83
    [Google Scholar]
  47. Epstein RA, Morgan LK. 2012. Neural responses to visual scenes reveal inconsistencies between fMRI adaptation and multivoxel pattern analysis. Neuropsychologia 50:530–43
    [Google Scholar]
  48. Epstein RA, Parker WE, Feiler AM 2007b. Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J. Neurosci. 27:6141–49
    [Google Scholar]
  49. Epstein RA, Parker WE, Feiler AM 2008. Two kinds of FMRI repetition suppression? Evidence for dissociable neural mechanisms. J. Neurophysiol. 99:2877–86
    [Google Scholar]
  50. Epstein RA, Patai EZ, Julian JB, Spiers HJ 2017. The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20:1504–13
    [Google Scholar]
  51. Epstein RA, Vass LK. 2014. Neural systems for landmark-based wayfinding in humans. Philos. Trans. R. Soc. B 369:20120533
    [Google Scholar]
  52. Ferrara K, Park S. 2016. Neural representation of scene boundaries. Neuropsychologia 89:180–90
    [Google Scholar]
  53. Furtak SC, Wei S, Agster KL, Burwell RD 2007. Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices. Hippocampus 17:709–22
    [Google Scholar]
  54. Gallistel CR. 1990. The Organization of Learning Cambridge, MA: MIT Press
  55. Ganaden RE, Mullin CR, Steeves JK 2013. Transcranial magnetic stimulation to the transverse occipital sulcus affects scene but not object processing. J. Cogn. Neurosci. 25:961–68
    [Google Scholar]
  56. Graham KS, Barense MD, Lee AC 2010. Going beyond LTM in the MTL: a synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception. Neuropsychologia 48:831–53
    [Google Scholar]
  57. Greene AJ, Gross WL, Elsinger CL, Rao SM 2007. Hippocampal differentiation without recognition: an fMRI analysis of the contextual cueing task. Learn. Mem. 14:548–53
    [Google Scholar]
  58. Greene MR, Baldassano C, Esteva A, Beck DM, Fei-Fei L 2016. Visual scenes are categorized by function. J. Exp. Psychol. Gen. 145:82–94
    [Google Scholar]
  59. Greene MR, Oliva A. 2009. Recognition of natural scenes from global properties: seeing the forest without representing the trees. Cogn. Psychol. 58:137–76
    [Google Scholar]
  60. Grill-Spector K. 2003. The neural basis of object perception. Curr. Opin. Neurobiol. 13:159–66
    [Google Scholar]
  61. Grill-Spector K, Weiner KS, Kay K, Gomez J 2017. The functional neuroanatomy of human face perception. Annu. Rev. Vis. Sci. 3:167–96
    [Google Scholar]
  62. Groen IIA, Ghebreab S, Lamme VAF, Scholte HS 2016. The time course of natural scene perception with reduced attention. J. Neurophysiol. 115:931–46
    [Google Scholar]
  63. Groen IIA, Ghebreab S, Prins H, Lamme VAF, Scholte HS 2013. From image statistics to scene gist: Evoked neural activity reveals transition from low-level natural image structure to scene category. J. Neurosci. 33:18814–24
    [Google Scholar]
  64. Groen IIA, Greene MR, Baldassano C, Li FF, Beck DM, Baker CI 2018. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior. eLife 7:e32962
    [Google Scholar]
  65. Groen IIA, Silson EH, Baker CI 2017. Contributions of low- and high-level properties to neural processing of visual scenes in the human brain. Philos. Trans. R. Soc. B 372:20160102
    [Google Scholar]
  66. Harel A, Groen IIA, Kravitz DJ, Deouell LY, Baker CI 2016. The temporal dynamics of scene processing: a multifaceted EEG investigation. eNeuro 3:e0139–16.2016
    [Google Scholar]
  67. Harel A, Kravitz DJ, Baker CI 2012. Deconstructing visual scenes in cortex: gradients of object and spatial layout information. Cereb. Cortex 23:947–57
    [Google Scholar]
  68. Hartley T, Maguire EA, Spiers HJ, Burgess N 2003. The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37:877–88
    [Google Scholar]
  69. Hasson U, Harel M, Levy I, Malach R 2003. Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37:1027–41
    [Google Scholar]
  70. Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R 2004. Intersubject synchronization of cortical activity during natural vision. Science 303:1634–40
    [Google Scholar]
  71. Hatfield M, McCloskey M, Park S 2016. Neural representation of object orientation: a dissociation between MVPA and repetition suppression. NeuroImage 139:136–48
    [Google Scholar]
  72. He C, Peelen MV, Han Z, Lin N, Caramazza A, Bi Y 2013. Selectivity for large nonmanipulable objects in scene-selective visual cortex does not require visual experience. NeuroImage 79:1–9
    [Google Scholar]
  73. Henderson JM, Hollingworth A. 1999. High-level scene perception. Annu. Rev. Psychol. 50:243–71
    [Google Scholar]
  74. Henderson JM, Larson CL, Zhu DC 2008. Full scenes produce more activation than close-up scenes and scene-diagnostic objects in parahippocampal and retrosplenial cortex: an fMRI study. Brain Cogn 66:40–49
    [Google Scholar]
  75. Henderson JM, Zhu DC, Larson CL 2011. Functions of parahippocampal place area and retrosplenial cortex in real-world scene analysis: an fMRI study. Vis. Cogn. 19:910–27
    [Google Scholar]
  76. Henriksson L, Mur M, Kriegeskorte N 2019. Rapid invariant encoding of scene layout in human OPA. Neuron In press
    [Google Scholar]
  77. Hodgetts CJ, Shine JP, Lawrence AD, Downing PE, Graham KS 2016. Evidencing a place for the hippocampus within the core scene processing network. Hum. Brain Mapp. 37:3779–94
    [Google Scholar]
  78. Hodgetts CJ, Voets NL, Thomas AG, Clare S, Lawrence AD, Graham KS 2017. Ultra-high-field fMRI reveals a role for the subiculum in scene perceptual discrimination. J. Neurosci. 37:3150–59
    [Google Scholar]
  79. Ishai A, Ungerleider LG, Martin A, Schouten HL, Haxby JV 1999. Distributed representation of objects in the human ventral visual pathway. PNAS 96:9379–84
    [Google Scholar]
  80. Janzen G, van Turennout M 2004. Selective neural representation of objects relevant for navigation. Nat. Neurosci. 7:673–77
    [Google Scholar]
  81. Julian JB, Keinath AT, Frazzetta G, Epstein RA 2018a. Human entorhinal cortex represents visual space using a boundary-anchored grid. Nat. Neurosci. 21:191–94
    [Google Scholar]
  82. Julian JB, Keinath AT, Marchette SA, Epstein RA 2018b. The neurocognitive basis of spatial reorientation. Curr. Biol. 28:R1059–73
    [Google Scholar]
  83. Julian JB, Keinath AT, Muzzio IA, Epstein RA 2015. Place recognition and heading retrieval are mediated by dissociable cognitive systems in mice. PNAS 112:6503–8
    [Google Scholar]
  84. Julian JB, Ryan J, Hamilton RH, Epstein RA 2016. The occipital place area is causally involved in representing environmental boundaries during navigation. Curr. Biol. 26:1104–9
    [Google Scholar]
  85. Jung Y, Larsen B, Walther DB 2018. Modality-independent coding of scene categories in prefrontal cortex. J. Neurosci. 38:5969–81
    [Google Scholar]
  86. Kamps FS, Julian JB, Kubilius J, Kanwisher N, Dilks DD 2016. The occipital place area represents the local elements of scenes. NeuroImage 132:417–24
    [Google Scholar]
  87. Killian NJ, Jutras MJ, Buffalo EA 2012. A map of visual space in the primate entorhinal cortex. Nature 491:761–64
    [Google Scholar]
  88. Kim S, Dede AJ, Hopkins RO, Squire LR 2015. Memory, scene construction, and the human hippocampus. PNAS 112:4767–72
    [Google Scholar]
  89. Konkle T, Caramazza A. 2013. Tripartite organization of the ventral stream by animacy and object size. J. Neurosci. 33:10235–42
    [Google Scholar]
  90. Konkle T, Oliva A. 2012. A real-world size organization of object responses in occipitotemporal cortex. Neuron 74:1114–24
    [Google Scholar]
  91. Kornblith S, Cheng XQ, Ohayon S, Tsao DY 2013. A network for scene processing in the macaque temporal lobe. Neuron 79:766–81
    [Google Scholar]
  92. Kravitz DJ, Peng CS, Baker CI 2011. Real-world scene representations in high-level visual cortex: it's the spaces more than the places. J. Neurosci. 31:7322–33
    [Google Scholar]
  93. Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M 2013. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17:26–49
    [Google Scholar]
  94. Kumar M, Federmeier KD, Fei-Fei L, Beck DM 2017. Evidence for similar patterns of neural activity elicited by picture- and word-based representations of natural scenes. NeuroImage 155:422–36
    [Google Scholar]
  95. Larson AM, Loschky LC. 2009. The contributions of central versus peripheral vision to scene gist recognition. J. Vis. 9:106
    [Google Scholar]
  96. Lee AC, Bussey TJ, Murray EA, Saksida LM, Epstein RA et al. 2005. Perceptual deficits in amnesia: challenging the medial temporal lobe ‘mnemonic’ view. Neuropsychologia 43:1–11
    [Google Scholar]
  97. Lee SA. 2017. The boundary-based view of spatial cognition: a synthesis. Curr. Opin. Behav. Sci. 16:58–65
    [Google Scholar]
  98. Lescroart MD, Gallant JL. 2019. Human scene-selective areas represent 3D configurations of surfaces. Neuron 1:178–92.e7
    [Google Scholar]
  99. Lescroart MD, Stansbury DE, Gallant JL 2015. Fourier power, subjective distance, and object categories all provide plausible models of BOLD responses in scene-selective visual areas. Front. Comput. Neurosci. 9:135
    [Google Scholar]
  100. Levy I, Hasson U, Avidan G, Hendler T, Malach R 2001. Center-periphery organization of human object areas. Nat. Neurosci. 4:533–39
    [Google Scholar]
  101. Long B, Yu CP, Konkle T 2018. Mid-level visual features underlie the high-level categorical organization of the ventral stream. PNAS 115:E9015–24
    [Google Scholar]
  102. MacEvoy SP, Epstein RA. 2007. Position selectivity in scene- and object-responsive occipitotemporal regions. J. Neurophysiol. 98:2089–98
    [Google Scholar]
  103. MacEvoy SP, Epstein RA. 2011. Constructing scenes from objects in human occipitotemporal cortex. Nat. Neurosci. 14:1323–29
    [Google Scholar]
  104. Maguire EA. 2001. The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand. J. Psychol. 42:225–38
    [Google Scholar]
  105. Maguire EA, Mullally SL. 2013. The hippocampus: a manifesto for change. J. Exp. Psychol. Gen. 142:1180–89
    [Google Scholar]
  106. Malcolm GL, Groen IIA, Baker CI 2016. Making sense of real-world scenes. Trends Cogn. Sci. 20:843–56
    [Google Scholar]
  107. Malcolm GL, Silson EH, Henry JR, Baker CI 2018. Transcranial magnetic stimulation to the occipital place area biases gaze during scene viewing. Front. Hum. Neurosci. 12:189
    [Google Scholar]
  108. Marchette SA, Vass LK, Ryan J, Epstein RA 2014. Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe. Nat. Neurosci. 17:1598–606
    [Google Scholar]
  109. Marchette SA, Vass LK, Ryan J, Epstein RA 2015. Outside looking in: landmark generalization in the human navigational system. J. Neurosci. 35:14896–908
    [Google Scholar]
  110. Matthis JS, Yates JL, Hayhoe MM 2018. Gaze and the control of foot placement when walking in natural terrain. Curr. Biol. 28:1224–33.e5
    [Google Scholar]
  111. Megevand P, Groppe DM, Goldfinger MS, Hwang ST, Kingsley PB et al. 2014. Seeing scenes: topographic visual hallucinations evoked by direct electrical stimulation of the parahippocampal place area. J. Neurosci. 34:5399–405
    [Google Scholar]
  112. Morgan LK, Macevoy SP, Aguirre GK, Epstein RA 2011. Distances between real-world locations are represented in the human hippocampus. J. Neurosci. 31:1238–45
    [Google Scholar]
  113. Mormann F, Kornblith S, Cerf M, Ison MJ, Kraskov A et al. 2017. Scene-selective coding by single neurons in the human parahippocampal cortex. PNAS 114:1153–58
    [Google Scholar]
  114. Mullally SL, Intraub H, Maguire EA 2012. Attenuated boundary extension produces a paradoxical memory advantage in amnesic patients. Curr. Biol. 22:261–68
    [Google Scholar]
  115. Mullally SL, Maguire EA. 2011. A new role for the parahippocampal cortex in representing space. J. Neurosci. 31:7441–49
    [Google Scholar]
  116. Nakamura K, Kawashima R, Sato N, Nakamura A, Sugiura M et al. 2000. Functional delineation of the human occipito-temporal areas related to face and scene processing—a PET study. Brain 123:1903–12
    [Google Scholar]
  117. Nasr S, Devaney KJ, Tootell RBH 2013. Spatial encoding and underlying circuitry in scene-selective cortex. NeuroImage 83:892–900
    [Google Scholar]
  118. Nasr S, Echavarria CE, Tootell RBH 2014. Thinking outside the box: Rectilinear shapes selectively activate scene-selective cortex. J. Neurosci. 34:6721–35
    [Google Scholar]
  119. Nasr S, Liu N, Devaney KJ, Yue X, Rajimehr R et al. 2011. Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31:13771–85
    [Google Scholar]
  120. Nasr S, Rosas HD. 2016. Impact of visual corticostriatal loop disruption on neural processing within the parahippocampal place area. J. Neurosci. 36:10456–71
    [Google Scholar]
  121. Nasr S, Tootell RB. 2012. A cardinal orientation bias in scene-selective visual cortex. J. Neurosci. 32:14921–26
    [Google Scholar]
  122. Nau M, Navarro Schroder T, Bellmund JLS, Doeller CF 2018. Hexadirectional coding of visual space in human entorhinal cortex. Nat. Neurosci. 21:188–90
    [Google Scholar]
  123. O'Craven KM, Kanwisher N. 2000. Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci. 12:1013–23
    [Google Scholar]
  124. Oliva A, Torralba A. 2001. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42:145–75
    [Google Scholar]
  125. Oliva A, Torralba A. 2007. The role of context in object recognition. Trends Cogn. Sci. 11:520–27
    [Google Scholar]
  126. Park J, Park S. 2017. Conjoint representation of texture ensemble and location in the parahippocampal place area. J. Neurophysiol. 117:1595–607
    [Google Scholar]
  127. Park S, Brady TF, Greene MR, Oliva A 2011. Disentangling scene content from spatial boundary: complementary roles for the parahippocampal place area and lateral occipital complex in representing real-world scenes. J. Neurosci. 31:1333–40
    [Google Scholar]
  128. Park S, Chun MM. 2009. Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. NeuroImage 47:1747–56
    [Google Scholar]
  129. Park S, Konkle T, Oliva A 2015. Parametric coding of the size and clutter of natural scenes in the human brain. Cereb. Cortex 25:1792–805
    [Google Scholar]
  130. Persichetti AS, Dilks DD. 2016. Perceived egocentric distance sensitivity and invariance across scene-selective cortex. Cortex 77:155–63
    [Google Scholar]
  131. Persichetti AS, Dilks DD. 2018. Dissociable neural systems for recognizing places and navigating through them. J. Neurosci. 38:10295–304
    [Google Scholar]
  132. Potter MC. 1975. Meaning in visual search. Science 187:965–66
    [Google Scholar]
  133. Preston TJ, Guo F, Das K, Giesbrecht B, Eckstein MP 2013. Neural representations of contextual guidance in visual search of real-world scenes. J. Neurosci. 33:7846–55
    [Google Scholar]
  134. Rajimehr R, Devaney KJ, Bilenko NY, Young JC, Tootell RB 2011. The “parahippocampal place area” responds preferentially to high spatial frequencies in humans and monkeys. PLOS Biol 9:e1000608
    [Google Scholar]
  135. Ranganath C, Ritchey M. 2012. Two cortical systems for memory-guided behavior. Nat. Rev. Neurosci. 13:713–26
    [Google Scholar]
  136. Robertson CE, Hermann KL, Mynick A, Kravitz DJ, Kanwisher N 2016. Neural representations integrate the current field of view with the remembered 360 panorama in scene-selective cortex. Curr. Biol. 26:2463–68
    [Google Scholar]
  137. Rolls ET, Wirth S. 2018. Spatial representations in the primate hippocampus, and their functions in memory and navigation. Prog. Neurobiol. 171:90–113
    [Google Scholar]
  138. Schinazi VR, Epstein RA. 2010. Neural correlates of real-world route learning. NeuroImage 53:725–35
    [Google Scholar]
  139. Schindler A, Bartels A. 2016. Visual high-level regions respond to high-level stimulus content in the absence of low-level confounds. NeuroImage 132:520–25
    [Google Scholar]
  140. Shine JP, Valdés-Herrera JP, Hegarty M, Wolbers T 2016. The human retrosplenial cortex and thalamus code head direction in a global reference frame. J. Neurosci. 36:6371–81
    [Google Scholar]
  141. Silson EH, Chan AW-Y, Reynolds RC, Kravitz DJ, Baker CI 2015. A retinotopic basis for the division of high-level scene processing between lateral and ventral human occipitotemporal cortex. J. Neurosci. 35:11921–35
    [Google Scholar]
  142. Silson EH, Groen IIA, Kravitz DJ, Baker CI 2016a. Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex. J. Vis. 16:614
    [Google Scholar]
  143. Silson EH, Steel AD, Baker CI 2016b. Scene-selectivity and retinotopy in medial parietal cortex. Front. Hum. Neurosci. 10:412
    [Google Scholar]
  144. Stansbury DE, Naselaris T, Gallant JL 2013. Natural scene statistics account for the representation of scene categories in human visual cortex. Neuron 79:1025–34
    [Google Scholar]
  145. Steeves JKE, Humphrey GK, Culham JC, Menon RS, Milner AD, Goodale MA 2004. Behavioral and neuroimaging evidence for a contribution of color and texture information to scene classification in a patient with visual form agnosia. J. Cogn. Neurosci. 16:955–65
    [Google Scholar]
  146. Torralba A, Oliva A, Castelhano MS, Henderson JM 2006. Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol. Rev. 113:766–86
    [Google Scholar]
  147. Treisman A. 2006. How the deployment of attention determines what we see. Vis. Cogn. 14:411–43
    [Google Scholar]
  148. Troiani V, Stigliani A, Smith ME, Epstein RA 2014. Multiple object properties drive scene-selective regions. Cereb. Cortex 24:883–97
    [Google Scholar]
  149. Vann SD, Aggleton JP, Maguire EA 2009. What does the retrosplenial cortex do. ? Nat. Rev. Neurosci. 10:792–802
    [Google Scholar]
  150. Vass LK, Epstein RA. 2013. Abstract representations of location and facing direction in the human brain. J. Neurosci. 33:6133–42
    [Google Scholar]
  151. Vass LK, Epstein RA. 2017. Common neural representations for visually guided reorientation and spatial imagery. Cereb. Cortex 27:1457–71
    [Google Scholar]
  152. Walther DB, Caddigan E, Fei-Fei L, Beck DM 2009. Natural scene categories revealed in distributed patterns of activity in the human brain. J. Neurosci. 29:10573–81
    [Google Scholar]
  153. Ward EJ, MacEvoy SP, Epstein RA 2010. Eye-centered encoding of visual space in scene-selective regions. J. Vis. 10:146
    [Google Scholar]
  154. Watson DM, Hymers M, Hartley T, Andrews TJ 2016. Patterns of neural response in scene-selective regions of the human brain are affected by low-level manipulations of spatial frequency. NeuroImage 124:107–17
    [Google Scholar]
  155. Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A et al. 2017. The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb. Cortex 27:146–61
    [Google Scholar]
  156. Weiner KS, Barnett MA, Witthoft N, Golarai G, Stigliani A et al. 2018. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. NeuroImage 170:373–84
    [Google Scholar]
  157. Wolbers T, Buchel C. 2005. Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. J. Neurosci. 25:3333–40
    [Google Scholar]
  158. Wolbers T, Klatzky RL, Loomis JM, Wutte MG, Giudice NA 2011. Modality-independent coding of spatial layout in the human brain. Curr. Biol. 21:984–89
    [Google Scholar]
  159. Xu Y, Chun MM. 2009. Selecting and perceiving multiple visual objects. Trends Cogn. Sci. 13:167–74
    [Google Scholar]
  160. Yoder RM, Clark BJ, Taube JS 2011. Origins of landmark encoding in the brain. Trends Neurosci 34:561–71
    [Google Scholar]
  161. Zeidman P, Mullally SL, Maguire EA 2015. Constructing, perceiving, and maintaining scenes: hippocampal activity and connectivity. Cereb. Cortex 25:3836–55
    [Google Scholar]
  162. Zhou B, Lapedriza A, Xiao J, Torralba A, Oliva A 2014. Learning deep features for scene recognition using places database. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, Dec. 8–13487–95 Cambridge, MA: MIT Press
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-014809
Loading
/content/journals/10.1146/annurev-vision-091718-014809
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error