Face perception relies on computations carried out in face-selective cortical areas. These areas have been intensively investigated for two decades, and this work has been guided by an influential neural model suggested by Haxby and colleagues in 2000. Here, we review new findings about face-selective areas that suggest the need for modifications and additions to the Haxby model. We suggest a revised framework based on () evidence for multiple routes from early visual areas into the face-processing system, () information about the temporal characteristics of these areas, () indications that the fusiform face area contributes to the perception of changeable aspects of faces, () the greatly elevated responses to dynamic compared with static faces in dorsal face-selective brain areas, and () the identification of three new anterior face-selective areas. Together, these findings lead us to suggest that face perception depends on two separate pathways: a ventral stream that represents form information and a dorsal stream driven by motion and form information.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anzellotti S, Fairhall SL, Caramazza A. 2013. Decoding representations of face identity that are tolerant to rotation. Cereb. Cortex 24:1988–95 [Google Scholar]
  2. Afraz A, Boyden ES, DiCarlo JJ. 2015. Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination. PNAS 112:6730–35 [Google Scholar]
  3. Afraz S-R, Kiani R, Esteky H. 2006. Microstimulation of inferotemporal cortex influences face categorization. Nature 442:692–95 [Google Scholar]
  4. Assal G, Favre C, Anderes JP. 1984. Nonrecognition of familiar animals by a farmer. Zooagnosia or prosopagnosia for animals?. Rev. Neurol. 140:580–84 [Google Scholar]
  5. Avidan G, Tanzer M, Hadj-Bouziane F, Liu N, Ungerleider LG, Behrmann M. 2014. Selective dissociation between core and extended regions of the face processing network in congenital prosopagnosia. Cereb. Cortex 24:1565–78 [Google Scholar]
  6. Axelrod A, Yovel G. 2010. External facial features modify the representation of internal facial features in the fusiform face area. NeuroImage 52:720–25 [Google Scholar]
  7. Axelrod V, Yovel G. 2012. Hierarchical processing of face viewpoint in human visual cortex. J. Neurosci. 32:2442–52 [Google Scholar]
  8. Axelrod V, Yovel G. 2013. The challenge of localizing the anterior temporal face area: a possible solution. NeuroImage 81:371–80 [Google Scholar]
  9. Axelrod V, Yovel G. 2015. Successful decoding of famous faces in the fusiform face area. PLOS ONE 10:2e0117126 [Google Scholar]
  10. Baker CI, Hutchison TL, Kanwisher N. 2007a. Does the fusiform face area contain subregions highly selective for nonfaces?. Nat. Neurosci. 10:3–4 [Google Scholar]
  11. Baker CI, Liu J, Wald LL, Kwong KK, Benner T, Kanwisher N. 2007b. Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. PNAS 104:9087–92 [Google Scholar]
  12. Barton JJS. 2008. Prosopagnosia associated with a left occipitotemporal lesion. Neuropsychologia 46:2214–24 [Google Scholar]
  13. Barton JJS, Cherkasova M. 2003. Face imagery and its relation to perception and covert recognition in prosopagnosia. Neurology 61:220–25 [Google Scholar]
  14. Barton JJS, Press DZ, Keenan JP, O’Connor M. 2002. Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia. Neurology 58:71–78 [Google Scholar]
  15. Bell AH, Malecek NJ, Morin EL, Hadj-Bouziane F, Tootell RBH, Ungerleider LG. 2011. Relationship between functional magnetic resonance imaging-identified regions and neuronal category selectivity. J. Neurosci. 31:12229–40 [Google Scholar]
  16. Bentin S, Allison T, Puce A, Perez E, McCarthy G. 1996. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8:551–65 [Google Scholar]
  17. Bernstein M, Yovel G. 2015. Two neural pathways of face processing: a critical evaluation of current models. Neurosci. Biobehav. Rev. 55:536–46 [Google Scholar]
  18. Brants M, Wagemans J, Op de Beeck HP. 2011. Activation of fusiform face area by Greebles is related to face similarity but not expertise. J. Cogn. Neurosci. 23:3949–58 [Google Scholar]
  19. Bruce V, Young AW. 1986. Understanding face recognition. Br. J. Psychol. 81:305–27 [Google Scholar]
  20. Burton AM. 2013. Why has research in face recognition progressed so slowly? The importance of variability. Q. J. Expl. Psychol. 66:1467–85 [Google Scholar]
  21. Bukowski H, Dricot L, Hanseeuw B, Rossion B. 2013. Cerebral lateralization of face-sensitive areas in left-handers: Only the FFA does not get it right. Cortex 49:2583–89 [Google Scholar]
  22. Busigny T, Graf M, Mayer E, Rossion B. 2010. Acquired prosopagnosia as a face-specific disorder: ruling out the general visual similarity account. Neuropsychologia 48:2051–67 [Google Scholar]
  23. Busigny T, Van Belle G, Jemel B, Hosein A, Joubert S, Rossion B. 2014. Face-specific impairment in holistic perception following focal lesion of the right anterior temporal lobe. Neuropsychologia 56:312–33 [Google Scholar]
  24. Calder AJ. 2011. Does facial identity and facial expression recognition involve separate visual routes?. See Calder et al. 2011 427–48
  25. Calder AJ, Beaver JD, Winston JS, Dolan RJ, Jenkins R. et al. 2007. Separate coding of different gaze directions in the superior temporal sulcus and inferior parietal lobule. Curr. Biol. 17:20–25 [Google Scholar]
  26. Calder AJ, Rhodes G, Johnson MH, Haxby JV. 2011. The Oxford Handbook of Face Perception Oxford, UK: Oxford Univ. Press
  27. Calder AJ, Young AW. 2005. Understanding the recognition of facial identity and facial expression. Nat. Rev. Neurosci. 6:641–51 [Google Scholar]
  28. Carlin JD, Calder AJ, Kriegeskorte N, Nili H, Rowe JB. 2011. A head view-invariant representation of gaze direction in anterior superior temporal sulcus. Curr. Biol. 21:1817–21 [Google Scholar]
  29. Chan AW. 2013. Functional organization and visual representations of human ventral lateral prefrontal cortex. Front. Psychol. 4:371 [Google Scholar]
  30. Chan AW, Downing PE. 2011. Faces and eyes in human lateral prefrontal cortex. Front. Hum. Neurosci. 5:51 [Google Scholar]
  31. Cohen L, Dehaene S. 2004. Specialization within the ventral stream: the case for the visual word form area. Neuroimage 22:466–76 [Google Scholar]
  32. Cohen L, Dehaene S, Naccache L, Lehéricy S, Dehaene-Lambertz G. et al. 2000. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123:291–307 [Google Scholar]
  33. Collins JA, Olson IR. 2014. Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61:65–79 [Google Scholar]
  34. Dalrymple KA, Oruç I, Duchaine B, Pancaroglu R, Fox CJ. et al. 2011. The neuroanatomic basis of the right face-selective N170 IN acquired prosopagnosia: a combined ERP/fMRI study. Neuropsychologia 49:2553–63 [Google Scholar]
  35. Davies-Thompson J, Andrews TJ. 2012. Intra- and interhemispheric connectivity between face-selective regions in the human brain. J. Neurophysiol. 108:3087–95 [Google Scholar]
  36. Davies-Thompson J, Gouws A, Andrews TJ. 2009. An image-dependent representation of familiar and unfamilar faces in the human ventral stream. Neuropsychologia 47:1627–35 [Google Scholar]
  37. De Renzi E, Perani D, Carlesimo GA, Silveri MC, Fazio F. 1994. Prosopagnosia can be associated with damage confined to the right hemisphere—an MRI and PET study and a review of the literature. Neuropsychologia 32:893–902 [Google Scholar]
  38. Delvenne J-F, Seron X, Coyette F, Rossion B. 2004. Evidence for perceptual deficits in associative visual (prosop)agnosia: a single-case study. Neuropsychologia 42:597–612 [Google Scholar]
  39. Desimone R, Albright TD, Gross CG, Bruce C. 1984. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4:2051–62 [Google Scholar]
  40. Downing PE, Jiang Y, Shuman M, Kanwisher N. 2001. A cortical area selective for visual processing of the human body. Science 293:2470–73 [Google Scholar]
  41. Dricot L, Sorger B, Schiltz C, Goebel R, Rossion B. 2008. The roles of “face” and “non-face” areas during individual face perception: evidence by fMRI adaptation in a brain-damaged prosopagnosic patient. Neuroimage 40:318–32 [Google Scholar]
  42. Dubois J, de Berker AO, Tsao DY. 2015. Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA. J. Neurosci. 35:2791–802 [Google Scholar]
  43. Duchaine B, Yovel G. 2008. Face recognition. The Senses: A Comprehensive Reference 2 AI Basbaum, A Kaneko, GM Shepherd, G Westheimer, TD Albright 329–57 Amsterdam: Elsevier [Google Scholar]
  44. Duchaine BC, Yovel G, Butterworth EJ, Nakayama K. 2006. Prosopagnosia as an impairment to face-specific mechanisms: elimination of the alternative explanations in a developmental case. Cogn. Neuropsychol. 23:714–47 [Google Scholar]
  45. Eimer M. 2011. The face-sensitive N170 component of the event-related brain potential. See Calder et al. 2011 329–44
  46. Eimer M, McCarthy RA. 1999. Prosopagnosia and structural encoding of faces: evidence from event related potentials. Neuroreport 10:255–59 [Google Scholar]
  47. Ellis HD, Florence M. 1990. Bodamer's 1947 paper on prosopagnosia. Cogn. Neuropsychol. 7:81–105 [Google Scholar]
  48. Engell AD, McCarthy G. 2013. Probabilistic atlases for face and biological motion perception: An analysis of their reliability and overlap. NeuroImage 74:140–51 [Google Scholar]
  49. Epstein R, Kanwisher N. 1998. A cortical representation of the local visual environment. Nature 392:598–601 [Google Scholar]
  50. Ethofer T, Gschwind M, Vuilleumier P. 2011. Processing social aspects of human gaze: a combined fMRI-DTI study. NeuroImage 55:411–19 [Google Scholar]
  51. Ewbank MP, Andrews T. 2008. Differential sensitivity for viewpoint between familiar and unfamiliar faces in human visual cortex. NeuroImage 40:1857–70 [Google Scholar]
  52. Fairhall SL, Ishai A. 2007. Effective connectivity within the distributed cortical network for face perception. Cereb. Cortex 17:2400–6 [Google Scholar]
  53. Fox CJ, Iaria G, Barton JJS. 2009. Defining the face-processing network: optimization of the functional localizer in fMRI. Hum. Brain Mapp. 30:1637–51 [Google Scholar]
  54. Fox CJ, Moon SY, Iaria G, Barton JJS. 2009. The correlates of subjective perception of identity and expression in the face network: an fMRI adaptation study. NeuroImage 44:569–80 [Google Scholar]
  55. Freiwald WA, Tsao DY. 2010. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845–51 [Google Scholar]
  56. Furl N, van Rijsbergen NJ, Treves A, Friston KJ, Dolan RJ. 2007. Experience-dependent coding of facial expression in superior temporal sulcus. PNAS 104:13485–89 [Google Scholar]
  57. Ganel T, Valyear KF, Goshen-Gottstein Y, Goodale MA. 2005. The involvement of the “fusiform face area” in processing facial expression. Neuropsychologia 43:1646–54 [Google Scholar]
  58. Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC. 1999. Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects. Nat. Neurosci. 2:568–73 [Google Scholar]
  59. Gauthier I, Tarr MJ, Moylan J, Skudlarski P, Gore JC, Anderson AW. 2000. The fusiform “face area” is part of a network that processes faces at the individual level. J. Cogn. Neurosci. 12:495–504 [Google Scholar]
  60. Gauthier I, Skudlarski P, Gore JC, Anderson AW. 2000. Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3:191–97 [Google Scholar]
  61. Gilaie-Dotan S, Malach R. 2007. Sub-exemplar shape tuning in human face-related areas. Cereb. Cortex 17:325–38 [Google Scholar]
  62. Gobbini MI, Haxby JV. 2007. Neural systems for recognition of familiar faces. Neuropsychologia 45:32–41 [Google Scholar]
  63. Goesaert E, Op de Beeck HP. 2013. Representations of facial identity information in the ventral visual stream investigated with multivoxel pattern analyses. J. Neurosci. 33:8549–58 [Google Scholar]
  64. Grill-Spector K, Knouf N, Kanwisher N. 2004. The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7:555–62 [Google Scholar]
  65. Grill-Spector K, Malach R. 2001. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. 107:293–321 [Google Scholar]
  66. Gross CG, Rocha-Miranda CE, Bender DB. 1972. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol. 35:96–111 [Google Scholar]
  67. Grossman ED, Battelli L, Pascual-Leone A. 2005. Repetitive TMS over posterior STS disrupts perception of biological motion. Vis. Res. 45:2847–53 [Google Scholar]
  68. Grossman ED, Donnelly M, Price P, Morgan V, Pickens D, Neighbor G, Blake R. 2000. Brain areas involved in perception of biological motion. J. Cogn. Neurosci. 12:711–20 [Google Scholar]
  69. Gschwind M, Pourtois G, Schwartz S, Van De Ville D, Vuilleumier P. 2012. White-matter connectivity between face-responsive regions in the human brain. Cereb. Cortex 22:1564–76 [Google Scholar]
  70. Harel A, Gilaie-Dotan S, Malach R, Bentin S. 2010. Top-down engagement modulates the neural expressions of visual expertise. Cereb. Cortex 20:2304–18 [Google Scholar]
  71. Harris A, Aguirre GK. 2008. The representation of parts and wholes in face-selective cortex. J. Cogn. Neurosci. 20:863–78 [Google Scholar]
  72. Harris A, Aguirre GK. 2010. Neural tuning for face wholes and parts in human fusiform gyrus revealed by fMRI adaptation. J. Neurophys. 104:336–45 [Google Scholar]
  73. Haxby JV, Hoffman EA, Gobbini MI. 2000. The distributed human neural system for face perception. Trends Cogn. Sci. 4:223–33 [Google Scholar]
  74. Haxby JV, Gobbini MI. 2011. Distributed neural systems for face perception. See Calder et al. 2011 93–110
  75. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. 2001. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–30 [Google Scholar]
  76. Haxby JV, Ungerleider LG, Clark VP, Schouten JL, Hoffman EA, Martin A. 1999. The effect of face inversion on activity in human neural systems for face and object perception. Neuron 22:189–99 [Google Scholar]
  77. Heller R, Golland Y, Malach R, Benjamini Y. 2007. Conjunction group analysis: An alternative to mixed/random effect analysis. NeuroImage 37:1178–85 [Google Scholar]
  78. Hemond CC, Kanwisher NG, Op de Beeck HP. 2007. A preference for contralateral stimuli in human object- and face-selective cortex. PLOS ONE 2:e574 [Google Scholar]
  79. Hoff H, Pötzl O. 1973. Über eine optisch-agnostische Störung des “Physiognomie-Gedächtnisses”. Z. Ges Neurol. Psychiatry 54:55–88 [Google Scholar]
  80. Hoffman EA, Haxby JV. 2000. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat. Neurosci. 3:80–84 [Google Scholar]
  81. Ishai A, Pessoa L, Bikle PC, Ungerleider LG. 2004. Repetition suppression of faces is modulated by emotion. PNAS 101:9827–32 [Google Scholar]
  82. Issa EB, DiCarlo JJ. 2012. Precedence of the eye region in neural processing of faces. J. Neurosci. 32:16666–82 [Google Scholar]
  83. Issa EB, Papanastassiou AM, DiCarlo JJ. 2013. Large-scale, high-resolution neurophysiological maps underlying fMRI of macaque temporal lobe. J. Neurosci. 33:15207–19 [Google Scholar]
  84. Jonas J, Rossion B, Brissart H, Frismand S, Jacques C. et al. 2015. Beyond the core face-processing network: Intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex In press. doi:10.1016/j.cortex.2015.05.026
  85. Jonas J, Rossion B, Krieg J, Koessler L, Colnat-Coulbois S. et al. 2014. Intracerebral electrical stimulation of a face-selective area in the right inferior occipital cortex impairs individual face discrimination. NeuroImage 99:487–97 [Google Scholar]
  86. Kadosh KC, Henson R, Kadosh RC, Johnson MH, Dick F. 2010. Task-dependent activation of face-sensitive cortex: an fMRI adaptation study. J. Cogn. Neurosci. 22:903–17 [Google Scholar]
  87. Kanwisher N. 2010. Functional specificity in the human brain: a window into the functional architecture of the mind. PNAS 107:11163–70 [Google Scholar]
  88. Kanwisher N, Barton J. 2011. The functional architecture of the face system: integrating evidence from fMRI and patient studies. See Calder et al. 2011 111–30
  89. Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurophys. 17:4302–11 [Google Scholar]
  90. Kietzmann TC, Swisher JD, König P, Tong F. 2012. Prevalence of selectivity for mirror-symmetric views of faces in ventral and dorsal visual pathways. J. Neurosci. 32:11763–72 [Google Scholar]
  91. Kriegeskorte N, Formisano E, Sorger B, Goebel R. 2007. Individual faces elicit distinct response patterns in human anterior temporal cortex. PNAS 104:20600–5 [Google Scholar]
  92. Levine SC, Banich MT, Koch-Weser MP. 1988. Face recognition: a general or specific right hemisphere capacity?. Brain Cogn. 8:303–25 [Google Scholar]
  93. Marinkovic K, Trebon P, Chauvel P, Halgren E. 2000. Localised face processing by the human prefrontal cortex: face-selective intracerebral potentials and post-lesion deficits. Cogn. Neuropsychol. 17:187–99 [Google Scholar]
  94. Mattson AJ, Levin HS, Grafman J. 2000. A case of prosopagnosia following moderate closed head injury with left hemisphere focal lesion. Cortex 36:125–37 [Google Scholar]
  95. Mazard A, Schiltz C, Rossion B. 2006. Recovery from adaptation to facial identity is larger for upright than inverted faces in the human occipito-temporal cortex. Neuropsychologia 44:912–22 [Google Scholar]
  96. McCarthy G, Puce A, Gore JC, Allison T. 1997. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9:605–10 [Google Scholar]
  97. McKone E, Kanwisher N, Duchaine BC. 2007. Can generic expertise explain special processing for faces?. Trends Cogn. Sci. 11:8–15 [Google Scholar]
  98. Milner AD, Goodale MA. 1995. The Visual Brain in Action Oxford: Oxford Univ. Press
  99. Moscovitch M, Winocur G, Behrmann M. 1997. What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. J. Cogn. Neurosci. 9:555–604 [Google Scholar]
  100. Nasr S, Tootell RBH. 2012. Role of fusiform and anterior temporal cortical areas in facial recognition. NeuroImage 63:1743–53 [Google Scholar]
  101. Nestor A, Plaut DC, Behrmann M. 2011. Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. PNAS 108:9998–10003 [Google Scholar]
  102. Op de Beeck HP, Baker CI, DiCarlo JJ, Kanwisher NG. 2006. Discrimination training alters object representations in human extrastriate cortex. J. Neurosci. 26:13025–36 [Google Scholar]
  103. Ó Scalaidhe SP, Wilson FAW, Goldman-Rakic PS. 1997. Areal segregation of face-processing neurons in prefrontal cortex. Science 278:1135–38 [Google Scholar]
  104. O’Toole AJ, Jiang F, Abdi H, Haxby JV. 2005. Partially distributed representations of objects and faces in ventral temporal cortex. J. Cogn. Neurosci. 17:580–90 [Google Scholar]
  105. O’Toole AJ, Roark DA, Abdi H. 2002. Recognizing moving faces: a psychological and neural synthesis. Trends Cogn. Sci. 6:261–66 [Google Scholar]
  106. Parvizi J, Jacques C, Foster BL, Witthoft N, Rangarajan V. et al. 2012. Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32:14915–20 [Google Scholar]
  107. Perrett DI, Rolls ET, Caan W. 1982. Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47:329–42 [Google Scholar]
  108. Perrett DI, Smith PA, Potter DD, Mistlin AJ, Head AS. et al. 1985. Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc. R. Soc. Lond. B 223:293–317 [Google Scholar]
  109. Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ. et al. 2009. Neural representations of faces and body parts in macaque and human cortex: a comparative fMRI study. J. Neurophysiol. 101:2581–600 [Google Scholar]
  110. Pitcher D. 2014. Discriminating facial expressions takes longer in the posterior superior temporal sulcus than in the occipital face area. J. Neurosci. 34:9173–77 [Google Scholar]
  111. Pitcher D, Charles L, Devlin JT, Walsh V, Duchaine B. 2009. Triple dissociation of faces, bodies, and objects in extrastriate cortex. Curr. Biol. 19:319–24 [Google Scholar]
  112. Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N. 2011. Differential selectivity for dynamic versus static information in face selective cortical regions. NeuroImage 56:2356–63 [Google Scholar]
  113. Pitcher D, Duchaine B, Walsh V. 2014. Combined TMS and fMRI reveal dissociable cortical pathways for dynamic and static face perception. Curr. Biol. 24:2066–70 [Google Scholar]
  114. Pitcher D, Garrido L, Walsh V, Duchaine BC. 2008. TMS disrupts the perception and embodiment of facial expressions. J. Neurosci. 28:8929–33 [Google Scholar]
  115. Pitcher D, Goldhaber T, Duchaine B, Walsh V, Kanwisher N. 2012. Two critical and functionally distinct stages of face and body perception. J. Neurosci. 32:15877–85 [Google Scholar]
  116. Pitcher D, Walsh V, Yovel G, Duchaine B. 2007. TMS evidence for the involvement of the right occipital face area in early face processing. Curr. Biol. 17:1568–73 [Google Scholar]
  117. Puce A, Allison T, Bentin S, Gore JC, McCarthy G. 1998. Temporal cortex activation in humans viewing eye and mouth movements. J. Neurosci. 18:2188–99 [Google Scholar]
  118. Puce A, Allison T, McCarthy G. 1999. Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. Cereb. Cortex 9:445–58 [Google Scholar]
  119. Puce A, Perrett D. 2003. Electrophysiology and brain imaging of biological motion. Philos. Trans. R. Soc. Lond. B 358:435–45 [Google Scholar]
  120. Pyles JA, Verstynen TD, Schneider W, Tarr MJ. 2013. Explicating the face perception network with white matter connectivity. PLOS ONE 8:e61611 [Google Scholar]
  121. Rajimehr R, Young JC, Tootell RBH. 2009. An anterior temporal face patch in human cortex, predicted by macaque maps. PNAS 106:1995–2000 [Google Scholar]
  122. Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C. et al. 2014. Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J. Neurosci. 34:12828–36 [Google Scholar]
  123. Rezlescu C, Barton JJ, Pitcher D, Duchaine B. 2014. Normal acquisition of expertise with greebles in two cases of acquired prosopagnosia. PNAS 111:5123–28 [Google Scholar]
  124. Rezlescu C, Pitcher D, Duchaine B. 2012. Acquired prosopagnosia with spared within-class object recognition but impaired recognition of basic-level objects. Cogn. Neuropsychol. 29:325–47 [Google Scholar]
  125. Rolls ET. 1984. Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Hum. Neurobiol. 3:209–22 [Google Scholar]
  126. Rossion B. 2008. Clarifying the functional neuro-anatomy of face perception by single-case neuroimaging studies of acquired prosopagnosia. Cortical Mechanims of Vision M Jenkins, LR Harris 179–215 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  127. Rossion B. 2014. Understanding face perception by means of prosopagnosia and neuroimaging. Front. Biosci. 6:258–307 [Google Scholar]
  128. Rossion B, Caldara R, Seghier M, Schuller A-M, Lazeyras F, Mayer E. 2003. A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126:2381–95 [Google Scholar]
  129. Rossion B, Dricot L, Goebel R, Busigny T. 2011. Holistic face categorization in higher order visual areas of the normal and prosopagnosic brain: toward a non-hierarchical view of face perception. Front. Hum. Neurosci. 4:225 [Google Scholar]
  130. Rossion B, Hanseeuw B, Dricot L. 2012. Defining face perception areas in the human brain: a large-scale factorial fMRI face localizer analysis. Brain Cogn. 79:138–157 [Google Scholar]
  131. Rotshtein P, Henson RNA, Treves A, Driver J, Dolan RJ. 2005. Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nat. Neurosci. 8:107–13 [Google Scholar]
  132. Sadeh B, Podlipsky I, Zadanov A, Yovel G. 2010. Event-related potential and functional MRI measures of face-selectivity are highly correlated: a simultaneous ERP-fMRI investigation. Hum. Brain Mapp. 31:1490–501 [Google Scholar]
  133. Said CP, Haxby JV, Todorov A. 2011. Brain systems for assessing the affective value of faces. Philos. Trans. R. Soc. Lond. B 366:1660–70 [Google Scholar]
  134. Schiltz C, Rossion B. 2006. Faces are represented holistically in the human occipito-temporal cortex. NeuroImage 32:1385–94 [Google Scholar]
  135. Schwarzlose RF, Swisher JD, Dang S, Kanwisher N. 2008. The distribution of category and location information across object-selective regions in human visual cortex. PNAS 105:4447–52 [Google Scholar]
  136. Sergent J, Bindra D. 1981. Differential hemispheric processing of faces: methodological considerations and reinterpretation. Psychol. Bull. 89:541–54 [Google Scholar]
  137. Sergent J, Ohta S, MacDonald B. 1992. Functional neuroanatomy of face and object processing. A positon emission tomography study. Brain 115:15–36 [Google Scholar]
  138. Sergent J, Signoret J-L. 1992. Varieties of functional deficits in prosopagnosia. Cereb. Cortex 2:375–88 [Google Scholar]
  139. Sorger B, Goebel R, Schiltz C, Rossion B. 2007. Understanding the functional neuroanatomy of prosopagnosia. NeuroImage 35:836–52 [Google Scholar]
  140. Spiridon M, Kanwisher N. 2002. How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron 35:1157–65 [Google Scholar]
  141. Steeves JKE, Culham JC, Duchaine BC, Cavina Pratesi C, Valyear KF. et al. 2006. The fusiform face area is not sufficient for face recognition: evidence from a patient with dense prosopagnosia and no occipital face area. Neuropsychologia 44:594–609 [Google Scholar]
  142. Susilo T, Yovel G, Barton JJS, Duchaine B. 2013. Face perception is category-specific: evidence from normal body perception in acquired prosopagnosia. Cognition 129:88–94 [Google Scholar]
  143. Surguladze SA, Brammer MJ, Young AW, Andrew C, Travis MJ. et al. 2003. A preferential increase in the extrastriate response to signals of danger. NeuroImage 19:1317–28 [Google Scholar]
  144. Tanaka JW, Farah MJ. 1993. Parts and wholes in face recognition. Q. J. Exp. Psychol. A 46:225–45 [Google Scholar]
  145. Tarr MJ, Gauthier I. 2000. FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nat. Neurosci. 3:764–69 [Google Scholar]
  146. Tsao DY, Moeller S, Freiwald WA. 2008. Comparing face patch systems in macaques and humans. PNAS 105:19514–19 [Google Scholar]
  147. Tsao DY, Schweers N, Moeller S, Freiwald WA. 2008. Patches of face-selective cortex in the macaque frontal lobe. Nat. Neurosci. 11:877–79 [Google Scholar]
  148. Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RBH. 2003. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 6:989–95 [Google Scholar]
  149. Tsao DY, Freiwald WA, Tootell RBH, Livingstone MS. 2006. A cortical region consisting entirely of face-selective cells. Science 311:670–74 [Google Scholar]
  150. Turk-Browne NB, Norman-Haignere SV, McCarthy G. 2010. Face-specific resting functional connectivity between the fusiform gyrus and posterior superior temporal sulcus. Front. Hum. Neurosci. 4:176 [Google Scholar]
  151. Tzavaras A, Merienne L, Masure MC. 1973. Prosopagnosia, amnesia and language disorders caused by left temporal lobe injury in a left-handed man. Encephale 62:382–94 [Google Scholar]
  152. Vaina LM, Lemay M, Bienfang DC, Choi AY, Nakayama K. 1990. Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms: a case study. Vis. Neurosci. 5:353–69 [Google Scholar]
  153. Vignal JP, Chauvel P, Halgren E. 2000. Localised face processing by the human prefrontal cortex: stimulation-evoked hallucinations of faces. Cogn. Neuropsychol. 17:281–91 [Google Scholar]
  154. Vuilleumier P, Armony JL, Driver J, Dolan RJ. 2001. Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron 30:829–41 [Google Scholar]
  155. Wada Y, Yamamoto T. 2001. Selective impairment of facial recognition due to a haematoma restricted to the right fusiform and lateral occipital region. J. Neurol. Neurosurg. Psychiatry 71:254–57 [Google Scholar]
  156. Watson R, Latinus M, Charest I, Crabbe F, Belin P. 2014. People-selectivity, audiovisual integration and heteromodality in the superior temporal sulcus. Cortex 50:125–36 [Google Scholar]
  157. Weiner KS, Grill-Spector K. 2012. The improbable simplicity of the fusiform face area. Trends Cogn. Sci. 16:251–54 [Google Scholar]
  158. Winston JS, O’Doherty J, Dolan RJ. 2003. Common and distinct neural responses during direct and incidental processing of multiple facial emotions. NeuroImage 20:84–97 [Google Scholar]
  159. Xu X, Biederman I. 2010. Loci of the release from fMRI adaptation for changes in facial expression, identity, and viewpoint. J. Vis. 10:1436 [Google Scholar]
  160. Xu Y. 2005. Revisiting the role of the fusiform face area in visual expertise. Cereb. Cortex 15:1234–42 [Google Scholar]
  161. Yang H, Susilo T, Duchaine B. 2015. The anterior temporal face area contains invariant representations of identity that can persist despite the loss of right FFA and OFA. Cereb. Cortex In press [Google Scholar]
  162. Yin RK. 1969. Looking at upside-down faces. J. Exp. Psychol. 81:141–45 [Google Scholar]
  163. Young AW, Bruce V. 2011. Understanding person perception. Br. J. Psychol. 102:959–74 [Google Scholar]
  164. Young AW, Hellawell D, Hay DC. 1987. Configurational information in face perception. Perception 16:747–59 [Google Scholar]
  165. Yovel G, Freiwald WA. 2013. Face recognition systems in monkey and human: are they the same thing?. F1000 Prime Rep. 5:10 [Google Scholar]
  166. Yovel G, Kanwisher N. 2005. The neural basis of the behavioral face-inversion effect. Curr. Biol. 15:2256–62 [Google Scholar]
  167. Yue X, Tjan BS, Biederman I. 2006. What makes faces special?. Vis. Res. 46:3802–11 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error