Face perception is critical for normal social functioning and is mediated by a network of regions in the ventral visual stream. In this review, we describe recent neuroimaging findings regarding the macro- and microscopic anatomical features of the ventral face network, the characteristics of white matter connections, and basic computations performed by population receptive fields within face-selective regions composing this network. We emphasize the importance of the neural tissue properties and white matter connections of each region, as these anatomical properties may be tightly linked to the functional characteristics of the ventral face network. We end by considering how empirical investigations of the neural architecture of the face network may inform the development of computational models and shed light on how computations in the face network enable efficient face perception.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allison T, Ginter H, McCarthy G, Nobre AC, Puce A. et al. 1994a. Face recognition in human extrastriate cortex. J. Neurophysiol. 71:821–25 [Google Scholar]
  2. Allison T, McCarthy G, Nobre A, Puce A, Belger A. 1994b. Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cereb. Cortex 4:544–54 [Google Scholar]
  3. Allison T, Puce A, Spencer DD, McCarthy G. 1999. Electrophysiological studies of human face perception. I: potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb. Cortex 9:415–30 [Google Scholar]
  4. Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K. 2000. Brodmann's areas 17 and 18 brought into stereotaxic space—where and how variable. ? NeuroImage 11:66–84 [Google Scholar]
  5. Amunts K, Zilles K. 2015. Architectonic mapping of the human brain beyond Brodmann. Neuron 88:1086–107 [Google Scholar]
  6. Andrews TJ, Ewbank MP. 2004. Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. NeuroImage 23:905–13 [Google Scholar]
  7. Anzellotti S, Fairhall SL, Caramazza A. 2014. Decoding representations of face identity that are tolerant to rotation. Cereb. Cortex 24:1988–95 [Google Scholar]
  8. Avidan G, Behrmann M. 2009. Functional MRI reveals compromised neural integrity of the face processing network in congenital prosopagnosia. Curr. Biol. 19:1146–50 [Google Scholar]
  9. Avidan G, Hasson U, Malach R, Behrmann M. 2005. Detailed exploration of face-related processing in congenital prosopagnosia: 2. Functional neuroimaging findings. J. Cogn. Neurosci. 17:1150–67 [Google Scholar]
  10. Avidan G, Levy I, Hendler T, Zohary E, Malach R. 2003. Spatial vs. object specific attention in high-order visual areas. NeuroImage 19:308–18 [Google Scholar]
  11. Axelrod V, Yovel G. 2012. Hierarchical processing of face viewpoint in human visual cortex. J. Neurosci. 32:2442–52 [Google Scholar]
  12. Bailey P, von Bonin G. 1951. The Isocortex of Man Urbana, IL: Univ. Ill. Press [Google Scholar]
  13. Barres BA, Raff MC. 1993. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361:258–60 [Google Scholar]
  14. Behrmann M, Avidan G, Marotta JJ, Kimchi R. 2005. Detailed exploration of face-related processing in congenital prosopagnosia: 1. Behavioral findings. J. Cogn. Neurosci. 17:1130–49 [Google Scholar]
  15. Behrmann M, Plaut DC. 2013. Distributed circuits, not circumscribed centers, mediate visual recognition. Trends Cogn. Sci. 17:210–19 [Google Scholar]
  16. Benton AL. 1980. The neuropsychology of facial recognition. Am. Psychol. 35:176–86 [Google Scholar]
  17. Berman MG, Park J, Gonzalez R, Polk TA, Gehrke A. et al. 2010. Evaluating functional localizers: the case of the FFA. NeuroImage 50:56–71 [Google Scholar]
  18. Bi T, Chen J, Zhou T, He Y, Fang F. 2014. Function and structure of human left fusiform cortex are closely associated with perceptual learning of faces. Curr. Biol. 24:222–27 [Google Scholar]
  19. Brodmann K. 1909. The Principles of Comparative Localisation in the Cerebral Cortex Based on Cytoarchitectonics Lausanne, Switz: Springer [Google Scholar]
  20. Bruce V, Young A. 1986. Understanding face recognition. Br. J. Psychol. 77:3305–27 [Google Scholar]
  21. Bugatus L, Weiner KS, Grill-Spector K. 2017. Task alters category representations in prefrontal but not high-level visual cortex. NeuroImage 155:437–49 [Google Scholar]
  22. Cadieu CF, Hong H, Yamins DL, Pinto N, Ardila D. et al. 2014. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLOS Comput. Biol. 10:e1003963 [Google Scholar]
  23. Calder AJ, Beaver JD, Winston JS, Dolan RJ, Jenkins R. et al. 2007. Separate coding of different gaze directions in the superior temporal sulcus and inferior parietal lobule. Curr. Biol. 17:20–25 [Google Scholar]
  24. Calder AJ, Young AW. 2005. Understanding the recognition of facial identity and facial expression. Nat. Rev. Neurosci. 6:641–51 [Google Scholar]
  25. Carlson T, Hogendoorn H, Fonteijn H, Verstraten FA. 2011. Spatial coding and invariance in object-selective cortex. Cortex 47:14–22 [Google Scholar]
  26. Caspers J, Zilles K, Eickhoff SB, Schleicher A, Mohlberg H, Amunts K. 2013. Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct. Funct. 218:511–26 [Google Scholar]
  27. Collins JA, Olson IR. 2014. Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61:65–79 [Google Scholar]
  28. Çukur T, Huth AG, Nishimoto S, Gallant JL. 2013a. Functional subdomains within human FFA. J. Neurosci. 33:16748–66 [Google Scholar]
  29. Çukur T, Nishimoto S, Huth AG, Gallant JL. 2013b. Attention during natural vision warps semantic representation across the human brain. Nat. Neurosci. 16:763–70 [Google Scholar]
  30. Davidenko N, Remus DA, Grill-Spector K. 2012. Face-likeness and image variability drive responses in human face-selective ventral regions. Hum. Brain Mapp. 33:2234–49 [Google Scholar]
  31. Davidesco I, Harel M, Ramot M, Kramer U, Kipervasser S. et al. 2013. Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy. J. Neurosci. 33:1228–40 [Google Scholar]
  32. Davidesco I, Zion-Golumbic E, Bickel S, Harel M, Groppe DM. et al. 2014. Exemplar selectivity reflects perceptual similarities in the human fusiform cortex. Cereb. Cortex 24:1879–93 [Google Scholar]
  33. de Haas B, Schwarzkopf DS, Alvarez I, Lawson RP, Henriksson L. et al. 2016. Perception and processing of faces in the human brain is tuned to typical feature locations. J. Neurosci. 36:9289–302 [Google Scholar]
  34. Duchaine BC, Nakayama K. 2006. Developmental prosopagnosia: a window to content-specific face processing. Curr. Opin. Neurobiol. 16:166–73 [Google Scholar]
  35. Duchaine BC, Yovel G. 2015. A revised neural framework for face processing. Annu. Rev. Vis. Sci. 1:393–416 [Google Scholar]
  36. Dumoulin SO, Wandell BA. 2008. Population receptive field estimates in human visual cortex. NeuroImage 39:647–60 [Google Scholar]
  37. Egner T, Monti JM, Summerfield C. 2010. Expectation and surprise determine neural population responses in the ventral visual stream. J. Neurosci. 30:16601–8 [Google Scholar]
  38. Eickenberg M, Gramfort A, Varoquaux G, Thirion B. 2017. Seeing it all: convolutional network layers map the function of the human visual system. NeuroImage 152:184–94 [Google Scholar]
  39. Elston GN, Fujita I. 2014. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front. Neuroanat. 8:78 [Google Scholar]
  40. Etxeberria A, Hokanson KC, Dao DQ, Mayoral SR, Mei F. et al. 2016. Dynamic modulation of myelination in response to visual stimuli alters optic nerve conduction velocity. J. Neurosci. 36:6937–48 [Google Scholar]
  41. Ewbank MP, Andrews TJ. 2008. Differential sensitivity for viewpoint between familiar and unfamiliar faces in human visual cortex. NeuroImage 40:1857–70 [Google Scholar]
  42. Fang F, He S. 2005. Cortical responses to invisible objects in the human dorsal and ventral pathways. Nat. Neurosci. 8:1380–85 [Google Scholar]
  43. Farivar R, Blanke O, Chaudhuri A. 2009. Dorsal-ventral integration in the recognition of motion-defined unfamiliar faces. J. Neurosci. 29:5336–42 [Google Scholar]
  44. Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47 [Google Scholar]
  45. Fischl B, Sereno MI, Tootell RB, Dale AM. 1999. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8:272–84 [Google Scholar]
  46. Freiwald W, Duchaine B, Yovel G. 2016. Face processing systems: from neurons to real-world social perception. Annu. Rev. Neurosci. 39:325–46 [Google Scholar]
  47. Frost MA, Goebel R. 2012. Measuring structural-functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment. NeuroImage 59:1369–81 [Google Scholar]
  48. Fukushima K. 1982. Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw 1:119–30 [Google Scholar]
  49. Gauthier I, Skudlarski P, Gore JC, Anderson AW. 2000. Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3:191–97 [Google Scholar]
  50. Gilaie-Dotan S, Gelbard-Sagiv H, Malach R. 2010. Perceptual shape sensitivity to upright and inverted faces is reflected in neuronal adaptation. NeuroImage 50:383–95 [Google Scholar]
  51. Gilaie-Dotan S, Malach R. 2007. Sub-exemplar shape tuning in human face-related areas. Cereb. Cortex 17:325–38 [Google Scholar]
  52. Gomez J, Barnett MA, Natu V, Mezer A, Palomero-Gallagher N. et al. 2017. Microstructural proliferation in human cortex is coupled with the development of face processing. Science 355:68–71 [Google Scholar]
  53. Gomez J, Pestilli F, Witthoft N, Golarai G, Liberman A. et al. 2015. Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron 85:216–27 [Google Scholar]
  54. Gratton C, Sreenivasan KK, Silver MA, D'Esposito M. 2013. Attention selectively modifies the representation of individual faces in the human brain. J. Neurosci. 33:6979–89 [Google Scholar]
  55. Grill-Spector K, Henson R, Martin A. 2006. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10:14–23 [Google Scholar]
  56. Grill-Spector K, Knouf N, Kanwisher N. 2004. The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7:555–62 [Google Scholar]
  57. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R. 1999. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203 [Google Scholar]
  58. Grill-Spector K, Malach R. 2001. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol 107:293–321 [Google Scholar]
  59. Grill-Spector K, Weiner KS. 2014. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15:536–48 [Google Scholar]
  60. Grimaldi P, Saleem KS, Tsao D. 2016. Anatomical connections of the functionally defined “face patches” in the macaque monkey. Neuron 90:1325–42 [Google Scholar]
  61. Gross CG, Bender DB, Rocha-Miranda CE. 1969. Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166:1303–6 [Google Scholar]
  62. Gross CG, Sergent J. 1992. Face recognition. Curr. Opin. Neurobiol. 2:156–61 [Google Scholar]
  63. Gschwind M, Pourtois G, Schwartz S, Van De Ville D, Vuilleumier P. 2012. White-matter connectivity between face-responsive regions in the human brain. Cereb. Cortex 22:1564–76 [Google Scholar]
  64. Guclu U, van Gerven MA. 2015. Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35:10005–14 [Google Scholar]
  65. Harris RJ, Rice GE, Young AW, Andrews TJ. 2016. Distinct but overlapping patterns of response to words and faces in the fusiform gyrus. Cereb. Cortex 26:3161–68 [Google Scholar]
  66. Hasson U, Levy I, Behrmann M, Hendler T, Malach R. 2002. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34:479–90 [Google Scholar]
  67. Haxby JV, Hoffman EA, Gobbini MI. 2000. The distributed human neural system for face perception. Trends Cogn. Sci. 4:223–33 [Google Scholar]
  68. Hemond CC, Kanwisher NG, Op de Beeck HP. 2007. A preference for contralateral stimuli in human object- and face-selective cortex. PLOS ONE 2:e574 [Google Scholar]
  69. Henriksson L, Mur M, Kriegeskorte N. 2015. Faciotopy—a face-feature map with face-like topology in the human occipital face area. Cortex 72:156–67 [Google Scholar]
  70. Holmes G. 1918. Disturbances of vision by cerebral lesions. Br. J. Ophthalmol. 2:353–84 [Google Scholar]
  71. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54 [Google Scholar]
  72. Hutchinson JB, Uncapher MR, Weiner KS, Bressler DW, Silver MA. et al. 2014. Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cereb. Cortex 24:149–66 [Google Scholar]
  73. Ishai A, Ungerleider LG, Martin A, Haxby JV. 2000. The representation of objects in the human occipital and temporal cortex. J. Cogn. Neurosci. 12:Suppl. 235–51 [Google Scholar]
  74. Jacques C, Witthoft N, Weiner KS, Foster BL, Rangarajan V. et al. 2016. Corresponding ECoG and fMRI category-selective signals in human ventral temporal cortex. Neuropsychologia 83:14–28 [Google Scholar]
  75. Jiang X, Rosen E, Zeffiro T, Vanmeter J, Blanz V, Riesenhuber M. 2006. Evaluation of a shape-based model of human face discrimination using fMRI and behavioral techniques. Neuron 50:159–72 [Google Scholar]
  76. Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvee M. et al. 2012. Focal electrical intracerebral stimulation of a face-sensitive area causes transient prosopagnosia. Neuroscience 222:281–88 [Google Scholar]
  77. Jonas J, Jacques C, Liu-Shuang J, Brissart H, Colnat-Coulbois S. et al. 2016. A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. PNAS 113:E4088–97 [Google Scholar]
  78. Jonas J, Rossion B, Krieg J, Koessler L, Colnat-Coulbois S. et al. 2014. Intracerebral electrical stimulation of a face-selective area in the right inferior occipital cortex impairs individual face discrimination. NeuroImage 99:487–97 [Google Scholar]
  79. Kanwisher N. 2000. Domain specificity in face perception. Nat. Neurosci. 3:759–63 [Google Scholar]
  80. Kanwisher N. 2010. Functional specificity in the human brain: a window into the functional architecture of the mind. PNAS 107:11163–70 [Google Scholar]
  81. Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:4302–11 [Google Scholar]
  82. Kanwisher N, Tong F, Nakayama K. 1998. The effect of face inversion on the human fusiform face area. Cognition 68:B1–11 [Google Scholar]
  83. Kay KN, Naselaris T, Prenger RJ, Gallant JL. 2008. Identifying natural images from human brain activity. Nature 452:352–55 [Google Scholar]
  84. Kay KN, Weiner KS, Grill-Spector K. 2015. Attention reduces spatial uncertainty in human ventral temporal cortex. Curr. Biol. 25:595–600 [Google Scholar]
  85. Kay KN, Winawer J, Mezer A, Wandell BA. 2013. Compressive spatial summation in human visual cortex. J. Neurophysiol. 110:481–94 [Google Scholar]
  86. Kay KN, Yeatman JD. 2017. Bottom-up and top-down computations in high-level visual cortex. eLife 6:e22341 [Google Scholar]
  87. Khaligh-Razavi SM, Kriegeskorte N. 2014. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLOS Comput. Biol. 10:11e1003915 [Google Scholar]
  88. Kietzmann TC, Swisher JD, Konig P, Tong F. 2012. Prevalence of selectivity for mirror-symmetric views of faces in the ventral and dorsal visual pathways. J. Neurosci. 32:11763–72 [Google Scholar]
  89. Kim M, Ducros M, Carlson T, Ronen I, He S. et al. 2006. Anatomical correlates of the functional organization in the human occipitotemporal cortex. Magn. Reson. Imaging 24:583–90 [Google Scholar]
  90. Klein BP, Harvey BM, Dumoulin SO. 2014. Attraction of position preference by spatial attention throughout human visual cortex. Neuron 84:227–37 [Google Scholar]
  91. Konorski J. 1967. Integrative Activity of the Brain. An Interdisciplinary Approach Chicago: Univ. Chicago Press [Google Scholar]
  92. Kriegeskorte N. 2015. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1:417–46 [Google Scholar]
  93. Kriegeskorte N, Formisano E, Sorger B, Goebel R. 2007. Individual faces elicit distinct response patterns in human anterior temporal cortex. PNAS 104:20600–5 [Google Scholar]
  94. Kubilius J, Bracci S, Op de Beeck HP. 2016. Deep neural networks as a computational model for human shape sensitivity. PLOS Comput. Biol. 12:e1004896 [Google Scholar]
  95. Levy I, Hasson U, Avidan G, Hendler T, Malach R. 2001. Center-periphery organization of human object areas. Nat. Neurosci. 4:533–39 [Google Scholar]
  96. Loffler G, Yourganov G, Wilkinson F, Wilson HR. 2005. fMRI evidence for the neural representation of faces. Nat. Neurosci. 8:1386–90 [Google Scholar]
  97. Loftus GR, Harley EM. 2005. Why is it easier to identify someone close than far away. ? Psychon. Bull. Rev. 12:43–65 [Google Scholar]
  98. Lorenz S, Weiner KS, Caspers J, Mohlberg H, Schleicher A. et al. 2017. Two new cytoarchitectonic areas on the human mid-fusiform gyrus. Cereb. Cortex 27:373–85 [Google Scholar]
  99. Lutti A, Dick F, Sereno MI, Weiskopf N. 2014. Using high-resolution quantitative mapping of R1 as an index of cortical myelination. NeuroImage 93:2176–88 [Google Scholar]
  100. McCarthy G, Puce A, Belger A, Allison T. 1999. Electrophysiological studies of human face perception. II: response properties of face-specific potentials generated in occipitotemporal cortex. Cereb. Cortex 9:431–44 [Google Scholar]
  101. McCarthy G, Puce A, Gore JC, Allison T. 1997. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9:605–10 [Google Scholar]
  102. McGugin RW, Van Gulick AE, Gauthier I. 2016. Cortical thickness in fusiform face area predicts face and object recognition performance. J. Cogn. Neurosci. 28:282–94 [Google Scholar]
  103. McKone E. 2009. Holistic processing for faces operates over a wide range of sizes but is strongest at identification rather than conversational distances. Vis. Res. 49:268–83 [Google Scholar]
  104. Mezer A, Yeatman JD, Stikov N, Kay KN, Cho NJ. et al. 2013. Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nat. Med. 19:1667–72 [Google Scholar]
  105. Moeller S, Freiwald WA, Tsao DY. 2008. Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–59 [Google Scholar]
  106. Moutoussis K, Zeki S. 2002. The relationship between cortical activation and perception investigated with invisible stimuli. PNAS 99:9527–32 [Google Scholar]
  107. Mur M, Ruff DA, Bodurka J, De Weerd P, Bandettini PA, Kriegeskorte N. 2012. Categorical, yet graded—single-image activation profiles of human category-selective cortical regions. J. Neurosci. 32:8649–62 [Google Scholar]
  108. Murphey DK, Maunsell JHR, Beauchamp MS, Yoshor D. 2009. Perceiving electrical stimulation of identified human visual areas. PNAS 106:5389–93 [Google Scholar]
  109. Naselaris T, Kay KN, Nishimoto S, Gallant JL. 2011. Encoding and decoding in fMRI. NeuroImage 56:400–10 [Google Scholar]
  110. Nasr S, Liu N, Devaney KJ, Yue X, Rajimehr R. et al. 2011. Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31:13771–85 [Google Scholar]
  111. Natu VS, Barnett MA, Hartley J, Gomez J, Stigliani A, Grill-Spector K. 2016. Development of neural sensitivity to face identity correlates with perceptual discriminability. J. Neurosci. 36:10893–907 [Google Scholar]
  112. Natu VS, Jiang F, Narvekar A, Keshvari S, Blanz V, O'Toole AJ. 2010. Dissociable neural patterns of facial identity across changes in viewpoint. J. Cogn. Neurosci. 22:1570–82 [Google Scholar]
  113. Natu VS, O'Toole AJ. 2015. Spatiotemporal changes in neural response patterns to faces varying in visual familiarity. NeuroImage 108:151–59 [Google Scholar]
  114. Nestor A, Plaut DC, Behrmann M. 2011. Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. PNAS 108:9998–10003 [Google Scholar]
  115. O'Craven KM, Downing PE, Kanwisher N. 1999. fMRI evidence for objects as the units of attentional selection. Nature 401:584–87 [Google Scholar]
  116. Orlov T, Makin TR, Zohary E. 2010. Topographic representation of the human body in the occipitotemporal cortex. Neuron 68:586–600 [Google Scholar]
  117. Parvizi J, Jacques C, Foster BL, Withoft N, Rangarajan V. et al. 2012. Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32:14915–20 [Google Scholar]
  118. Peelen MV, Downing PE. 2005. Within-subject reproducibility of category-specific visual activation with functional MRI. Hum. Brain Mapp. 25:402–8 [Google Scholar]
  119. Pelphrey KA, Sasson NJ, Reznick JS, Paul G, Goldman BD, Piven J. 2002. Visual scanning of faces in autism. J. Autism. Dev. Disord. 32:249–61 [Google Scholar]
  120. Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ. et al. 2009. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J. Neurophysiol. 101:2581–600 [Google Scholar]
  121. Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N. 2011a. Differential selectivity for dynamic versus static information in face-selective cortical regions. NeuroImage 56:2356–63 [Google Scholar]
  122. Pitcher D, Duchaine B, Walsh V. 2014. Combined TMS and fMRI reveal dissociable cortical pathways for dynamic and static face perception. Curr. Biol. 24:2066–70 [Google Scholar]
  123. Pitcher D, Goldhaber T, Duchaine B, Walsh V, Kanwisher N. 2012. Two critical and functionally distinct stages of face and body perception. J. Neurosci. 32:15877–85 [Google Scholar]
  124. Pitcher D, Walsh V, Duchaine B. 2011b. The role of the occipital face area in the cortical face perception network. Exp. Brain Res. 209:481–93 [Google Scholar]
  125. Pitcher D, Walsh V, Yovel G, Duchaine B. 2007. TMS evidence for the involvement of the right occipital face area in early face processing. Curr. Biol. 17:1568–73 [Google Scholar]
  126. Privman E, Nir Y, Kramer U, Kipervasser S, Andelman F. et al. 2007. Enhanced category tuning revealed by intracranial electroencephalograms in high-order human visual areas. J. Neurosci. 27:6234–42 [Google Scholar]
  127. Puce A, Allison T, Asgari M, Gore JC, McCarthy G. 1996. Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J. Neurosci. 16:5205–15 [Google Scholar]
  128. Puce A, Allison T, Bentin S, Gore JC, McCarthy G. 1998. Temporal cortex activation in humans viewing eye and mouth movements. J. Neurosci. 18:2188–99 [Google Scholar]
  129. Puce A, Allison T, McCarthy G. 1999. Electrophysiological studies of human face perception. III: effects of top-down processing on face-specific potentials. Cereb. Cortex 9:445–58 [Google Scholar]
  130. Pyles JA, Verstynen TD, Schneider W, Tarr MJ. 2013. Explicating the face perception network with white matter connectivity. PLOS ONE 8:e61611 [Google Scholar]
  131. Rajimehr R, Young JC, Tootell RB. 2009. An anterior temporal face patch in human cortex, predicted by macaque maps. PNAS 106:1995–2000 [Google Scholar]
  132. Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS. 1986. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232:232–35 [Google Scholar]
  133. Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C. et al. 2014. Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J. Neurosci. 34:12828–36 [Google Scholar]
  134. Reynolds JH, Heeger DJ. 2009. The normalization model of attention. Neuron 61:168–85 [Google Scholar]
  135. Riesenhuber M, Poggio T. 1999. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2:1019–25 [Google Scholar]
  136. Rivara CB, Sherwood CC, Bouras C, Hof PR. 2003. Stereologic characterization and spatial distribution patterns of Betz cells in the human primary motor cortex. Anat. Rec. 270:137–51 [Google Scholar]
  137. Rosenke M, Weiner KS, Barnett MA, Zilles K, Amunts K. et al. 2017. A cross-validated cytoarchitectonic atlas of the human ventral visual stream. NeuroImage In press [Google Scholar]
  138. Rossion B. 2008. Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia. NeuroImage 40:423–26 [Google Scholar]
  139. Rossion B, Boremanse A. 2011. Robust sensitivity to facial identity in the right human occipito-temporal cortex as revealed by steady-state visual-evoked potentials. J. Vis. 11:216 [Google Scholar]
  140. Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E. 2003. A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126:2381–95 [Google Scholar]
  141. Rotshtein P, Henson RNA, Treves A, Driver J, Dolan RJ. 2005. Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nat. Neurosci. 8:107–13 [Google Scholar]
  142. Rottschy C, Eickhoff SB, Schleicher A, Mohlberg H, Kujovic M. et al. 2007. Ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas. Hum. Brain Mapp. 28:1045–59 [Google Scholar]
  143. Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JD, Saxe RR. 2012. Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat. Neurosci. 15:321–27 [Google Scholar]
  144. Schiltz C, Dricot L, Goebel R, Rossion B. 2010. Holistic perception of individual faces in the right middle fusiform gyrus as evidenced by the composite face illusion. J. Vis. 10:225 [Google Scholar]
  145. Schiltz C, Sorger B, Caldara R, Ahmed F, Mayer E. et al. 2006. Impaired face discrimination in acquired prosopagnosia is associated with abnormal response to individual faces in the right middle fusiform gyrus. Cereb. Cortex 16:574–86 [Google Scholar]
  146. Schleicher A, Amunts K, Geyer S, Kowalski T, Schormann T. et al. 2000. A stereological approach to human cortical architecture: identification and delineation of cortical areas. J. Chem. Neuroanat. 20:31–47 [Google Scholar]
  147. Schwarzlose RF, Swisher JD, Dang S, Kanwisher N. 2008. The distribution of category and location information across object-selective regions in human visual cortex. PNAS 105:4447–52 [Google Scholar]
  148. Sergent J, Ohta S, MacDonald B. 1992. Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115:115–36 [Google Scholar]
  149. Sergent J, Signoret JL. 1992. Functional and anatomical decomposition of face processing: evidence from prosopagnosia and PET study of normal subjects. Philos. Trans. R. Soc. B 335:55–61 [Google Scholar]
  150. Serre T, Oliva A, Poggio T. 2007. A feedforward architecture accounts for rapid categorization. PNAS 104:6424–29 [Google Scholar]
  151. Silver MA, Kastner S. 2009. Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 13:488–95 [Google Scholar]
  152. Silver MA, Ress D, Heeger DJ. 2005. Topographic maps of visual spatial attention in human parietal cortex. J. Neurophysiol. 94:1358–71 [Google Scholar]
  153. Snippe HP, Koenderink JJ. 1992. Information in channel-coded systems: correlated receivers. Biol. Cybern. 67:183–90 [Google Scholar]
  154. Song S, Garrido L, Nagy Z, Mohammadi S, Steel A. et al. 2015. Local but not long-range microstructural differences of the ventral temporal cortex in developmental prosopagnosia. Neuropsychologia 78:195–206 [Google Scholar]
  155. Sorger B, Goebel R, Schiltz C, Rossion B. 2007. Understanding the functional neuroanatomy of acquired prosopagnosia. NeuroImage 35:836–52 [Google Scholar]
  156. Sowell ER, Thompson PM, Rex D, Kornsand D, Tessner KD. et al. 2002. Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices. Cereb. Cortex 12:17–26 [Google Scholar]
  157. Sprague TC, Serences JT. 2013. Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices. Nat. Neurosci. 16:1879–87 [Google Scholar]
  158. Steeves JK, Culham JC, Duchaine BC, Pratesi CC, Valyear KF. et al. 2006. The fusiform face area is not sufficient for face recognition: evidence from a patient with dense prosopagnosia and no occipital face area. Neuropsychologia 44:594–609 [Google Scholar]
  159. Stigliani A, Weiner KS, Grill-Spector K. 2015. Temporal processing capacity in high-level visual cortex is domain specific. J. Neurosci. 35:12412–24 [Google Scholar]
  160. Summerfield C, Trittschuh EH, Monti JM, Mesulam MM, Egner T. 2008. Neural repetition suppression reflects fulfilled perceptual expectations. Nat. Neurosci. 11:1004–6 [Google Scholar]
  161. Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC. 2007. Visual topography of human intraparietal sulcus. J. Neurosci. 27:5326–37 [Google Scholar]
  162. Taigman Y, Yang M, Ranzato M, Wolf L. 2014. DeepFace: closing the gap to human-level performance in face verification Presented at IEEE Conf. Comput. Vis. Pattern Recognit Columbus, OH: [Google Scholar]
  163. Takemura H, Rokem A, Winawer J, Yeatman JD, Wandell BA, Pestilli F. 2016. A major human white matter pathway between dorsal and ventral visual cortex. Cereb. Cortex 26:2205–14 [Google Scholar]
  164. Tallinen T, Chung JY, Biggins JS, Mahadevan L. 2014. Gyrification from constrained cortical expansion. PNAS 111:3512667–72 [Google Scholar]
  165. Tanaka JW, Farah MJ. 1993. Parts and wholes in face recognition. Q. J. Exp. Psychol. 46:225–45 [Google Scholar]
  166. Tavor I, Yablonski M, Mezer A, Rom S, Assaf Y, Yovel G. 2013. Separate parts of occipito-temporal white matter fibers are associated with recognition of faces and places. NeuroImage 86:123–30 [Google Scholar]
  167. Tong F, Nakayama K, Moscovitch M, Weinrib O, Kanwisher N. 2000. Response properties of the human fusiform face area. Cogn. Neuropsychol. 17:257–80 [Google Scholar]
  168. Tong F, Nakayama K, Vaughan JT, Kanwisher N. 1998. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21:753–59 [Google Scholar]
  169. Tsao DY, Livingstone MS. 2008. Mechanisms of face perception. Annu. Rev. Neurosci. 31:411–37 [Google Scholar]
  170. Tsao DY, Moeller S, Freiwald WA. 2008. Comparing face patch systems in macaques and humans. PNAS 105:19514–19 [Google Scholar]
  171. Valentine T. 2001. Face-space models of face recognition. Computational, Geometric, and Process Perspectives on Facial Cognition: Contexts and Challenges MJ Wenger, JT Townsend Hillsdale, NJ: Lawrence Erlbaum Assoc. Inc. [Google Scholar]
  172. Van Belle G, Busigny T, Lefevre P, Joubert S, Felician O. et al. 2011. Impairment of holistic face perception following right occipito-temporal damage in prosopagnosia: converging evidence from gaze-contingency. Neuropsychologia 49:3145–50 [Google Scholar]
  173. Van Belle G, De Graef P, Verfaillie K, Busigny T, Rossion B. 2010. Whole not hole: expert face recognition requires holistic perception. Neuropsychologia 48:2620–29 [Google Scholar]
  174. Van Essen DC, Anderson CH, Felleman DJ. 1992. Information processing in the primate visual system: an integrated systems perspective. Science 255:419–23 [Google Scholar]
  175. Van Essen DC, Gallant JL. 1994. Neural mechanisms of form and motion processing in the primate visual system. Neuron 13:1–10 [Google Scholar]
  176. von Economo C, Koskinas GN. 1925. Atlas of Cytoarchitectonics of the Adult Human Cerebral Cortex Basel, Switz.: KARGER [Google Scholar]
  177. Vuilleumier P, Armony JL, Driver J, Dolan RJ. 2003. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci. 6:624–31 [Google Scholar]
  178. Vuilleumier P, Henson RN, Driver J, Dolan RJ. 2002. Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat. Neurosci. 5:491–99 [Google Scholar]
  179. Wandell BA, Winawer J. 2015. Computational neuroimaging and population receptive fields. Trends Cogn. Sci. 19:349–57 [Google Scholar]
  180. Weibert K, Andrews TJ. 2015. Activity in the right fusiform face area predicts the behavioural advantage for the perception of familiar faces. Neuropsychologia 75:588–96 [Google Scholar]
  181. Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A. et al. 2017. The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb. Cortex 27:146–61 [Google Scholar]
  182. Weiner KS, Golarai G, Caspers J, Chuapoco MR, Mohlberg H. et al. 2014. The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. NeuroImage 84:453–65 [Google Scholar]
  183. Weiner KS, Grill-Spector K. 2010. Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. NeuroImage 52:1559–73 [Google Scholar]
  184. Weiner KS, Grill-Spector K. 2011. Not one extrastriate body area: using anatomical landmarks, hMT+, and visual field maps to parcellate limb-selective activations in human lateral occipitotemporal cortex. NeuroImage 54:2183–99 [Google Scholar]
  185. Weiner KS, Grill-Spector K. 2012. The improbable simplicity of the fusiform face area. Trends Cogn. Sci. 16:251–54 [Google Scholar]
  186. Weiner KS, Grill-Spector K. 2013. Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol Res 77:74–97 [Google Scholar]
  187. Weiner KS, Grill-Spector K. 2015. The evolution of face processing networks. Trends Cogn. Sci. 19:240–41 [Google Scholar]
  188. Weiner KS, Jonas J, Gomez J, Maillard L, Brissart H. et al. 2016a. The face-processing network is resilient to focal resection of human visual cortex. J. Neurosci. 36:8425–40 [Google Scholar]
  189. Weiner KS, Sayres R, Vinberg J, Grill-Spector K. 2010. fMRI-adaptation and category selectivity in human ventral temporal cortex: regional differences across time scales. J. Neurophysiol. 103:3349–65 [Google Scholar]
  190. Weiner KS, Yeatman JD, Wandell BA. 2016b. The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex In press [Google Scholar]
  191. Weiner KS, Zilles K. 2016. The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 83:48–62 [Google Scholar]
  192. Weiss Y, Edelman S, Fahle M. 1993. Models of perceptual learning in vernier hyperacuity. Neural Comput 5:695–718 [Google Scholar]
  193. Winston JS, Henson RN, Fine-Goulden MR, Dolan RJ. 2004. fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. J. Neurophysiol. 92:1830–39 [Google Scholar]
  194. Witthoft N, Poltoratski S, Nguyen M, Golarai G, Liberman A. et al. 2016. Developmental prosopagnosia is associated with reduced spatial integration in the ventral visual cortex. bioRxiv051102 http://biorxiv.org/content/early/2016/04/29/051102
  195. Yamins DL, DiCarlo JJ. 2016. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19:356–65 [Google Scholar]
  196. Yamins DL, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. 2014. Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 111:8619–24 [Google Scholar]
  197. Yeatman JD, Weiner KS, Pestilli F, Rokem A, Mezer A, Wandell BA. 2014. The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. PNAS 111:E5214–23 [Google Scholar]
  198. Yi DJ, Kelley TA, Marois R, Chun MM. 2006. Attentional modulation of repetition attenuation is anatomically dissociable for scenes and faces. Brain Res 1080:53–62 [Google Scholar]
  199. Yovel G, Kanwisher N. 2004. Face perception: domain specific, not process specific. Neuron 44:889–98 [Google Scholar]
  200. Yovel G, Kanwisher N. 2005. The neural basis of the behavioral face-inversion effect. Curr. Biol. 15:2256–62 [Google Scholar]
  201. Yue X, Cassidy BS, Devaney KJ, Holt DJ, Tootell RB. 2011. Lower-level stimulus features strongly influence responses in the fusiform face area. Cereb. Cortex 21:35–47 [Google Scholar]
  202. Zeki S, Shipp S. 1988. The functional logic of cortical connections. Nature 335:311–17 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error