1932

Abstract

Inferior temporal cortex (IT) is a key part of the ventral visual pathway implicated in object, face, and scene perception. But how does IT work? Here, I describe an organizational scheme that marries form and function and provides a framework for future research. The scheme consists of a series of stages arranged along the posterior-anterior axis of IT, defined by anatomical connections and functional responses. Each stage comprises a complement of subregions that have a systematic spatial relationship. The organization of each stage is governed by an eccentricity template, and corresponding eccentricity representations across stages are interconnected. Foveal representations take on a role in high-acuity object vision (including face recognition); intermediate representations compute other aspects of object vision such as behavioral valence (using color and surface cues); and peripheral representations encode information about scenes. This multistage, parallel-processing model invokes an innately determined organization refined by visual experience that is consistent with principles of cortical development. The model is also consistent with principles of evolution, which suggest that visual cortex expanded through replication of retinotopic areas. Finally, the model predicts that the most extensively studied network within IT—the face patches—is not unique but rather one manifestation of a canonical set of operations that reveal general principles of how IT works.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-034202
2018-09-15
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-091517-034202.html?itemId=/content/journals/10.1146/annurev-vision-091517-034202&mimeType=html&fmt=ahah

Literature Cited

  1. Afraz SR, Kiani R, Esteky H 2006. Microstimulation of inferotemporal cortex influences face categorization. Nature 442:692–95
    [Google Scholar]
  2. Allman JM 1999. Evolving Brains New York: Sci. Am. Libr.
  3. Allman JM, Kaas JH 1971. A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res 31:85–105
    [Google Scholar]
  4. Arcaro MJ, Livingstone MS 2017. A hierarchical, retinotopic proto-organization of the primate visual system at birth. eLife 6:e26196
    [Google Scholar]
  5. Arcaro MJ, Schade PF, Vincent JL, Ponce CR, Livingstone MS 2017. Seeing faces is necessary for face-domain formation. Nat. Neurosci. 20:1404–12
    [Google Scholar]
  6. Baldassano C, Iordan MC, Beck DM, Fei-Fei L 2012. Voxel-level functional connectivity using spatial regularization. NeuroImage 63:1099–106
    [Google Scholar]
  7. Baldassi C, Alemi-Neissi A, Pagan M, DiCarlo JJ, Zecchina R, Zoccolan D 2013. Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons. PLOS Comput. Biol. 9:e1003167
    [Google Scholar]
  8. Bartels A, Zeki S 2000. The architecture of the colour centre in the human visual brain: new results and a review. Eur. J. Neurosci. 12:172–93
    [Google Scholar]
  9. Bartolomeo P, Bachoud-Levi AC, Denes G 1997. Preserved imagery for colours in a patient with cerebral achromatopsia. Cortex 33:369–78
    [Google Scholar]
  10. Beauchamp MS, Haxby JV, Jennings JE, DeYoe EA 1999. An fMRI version of the Farnsworth–Munsell 100-Hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cereb. Cortex 9:257–63
    [Google Scholar]
  11. Bohon KS, Hermann KL, Hansen T, Conway BR 2016. Representation of perceptual color space in macaque posterior inferior temporal cortex (the V4 complex). eNeuro 3:e0039–16.2016
    [Google Scholar]
  12. Boussaoud D, Desimone R, Ungerleider LG 1991. Visual topography of area TEO in the macaque. J. Comp. Neurol. 306:554–75
    [Google Scholar]
  13. Bouvier SE, Engel SA 2006. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb. Cortex 16:183–91
    [Google Scholar]
  14. Brewer AA, Press WA, Logothetis NK, Wandell BA 2002. Visual areas in macaque cortex measured using functional magnetic resonance imaging. J. Neurosci. 22:10416–26
    [Google Scholar]
  15. Cadieu CF, Hong H, Yamins DL, Pinto N, Ardila D et al. 2014. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLOS Comput. Biol. 10:e1003963
    [Google Scholar]
  16. Caramazza A, Shelton JR 1998. Domain-specific knowledge systems in the brain: the animate-inanimate distinction. J. Cogn. Neurosci. 10:1–34
    [Google Scholar]
  17. Carlson TA, Simmons RA, Kriegeskorte N, Slevc LR 2014. The emergence of semantic meaning in the ventral temporal pathway. J. Cogn. Neurosci. 26:120–31
    [Google Scholar]
  18. Chang L, Tsao DY 2017. The code for facial identity in the primate brain. Cell 169:1013–28.e14
    [Google Scholar]
  19. Connor CE, Knierim JJ 2017. Integration of objects and space in perception and memory. Nat. Neurosci. 20:1493–503
    [Google Scholar]
  20. Conway BR 2016. Processing. Experience: Culture, Cognition, and the Common Sense CA Jones, D Mather, R Uchill 86–109 Cambridge, MA: MIT Press
    [Google Scholar]
  21. Conway BR, Moeller S, Tsao DY 2007. Specialized color modules in macaque extrastriate cortex. Neuron 56:560–73
    [Google Scholar]
  22. Conway BR, Tsao DY 2009. Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex. PNAS 106:18034–39
    [Google Scholar]
  23. DiCarlo JJ, Zoccolan D, Rust NC 2012. How does the brain solve visual object recognition. ? Neuron 73:415–34
    [Google Scholar]
  24. Farah M 2004. Visual Agnosia Cambridge, MA: MIT Press. , 2nd ed..
  25. Firth SI, Wang CT, Feller MB 2005. Retinal waves: mechanisms and function in visual system development. Cell Calcium 37:425–32
    [Google Scholar]
  26. Fisher C, Freiwald WA 2015. Contrasting specializations for facial motion within the macaque face-processing system. Curr. Biol. 25:261–66
    [Google Scholar]
  27. Freiwald W, Duchaine B, Yovel G 2016. Face processing systems: from neurons to real-world social perception. Annu. Rev. Neurosci. 39:325–46
    [Google Scholar]
  28. Freiwald WA, Tsao DY 2010. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845–51
    [Google Scholar]
  29. Gaffan D, Heywood CA 1993. A spurious category-specific visual agnosia for living things in normal human and nonhuman primates. J. Cogn. Neurosci. 5:118–28
    [Google Scholar]
  30. Gagin G, Qu J, Hu Y, Lafer-Sousa R, Conway BR 2014. Color-detection thresholds in monkeys and humans. J. Vis. 14:812
    [Google Scholar]
  31. Gauthier I, Tarr MJ 2016. Visual object recognition: Do we (finally) know more now than we did. ? Annu. Rev. Vis. Sci. 2:377–96
    [Google Scholar]
  32. Gegenfurtner KR, Rieger J 2000. Sensory and cognitive contributions of color to the recognition of natural scenes. Curr. Biol. 10:805–8
    [Google Scholar]
  33. Geisler WS 2008. Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol. 59:167–92
    [Google Scholar]
  34. Ghazizadeh A, Griggs W, Hikosaka O 2016. Ecological origins of object salience: reward, uncertainty, aversiveness, and novelty. Front. Neurosci. 10:378
    [Google Scholar]
  35. Gibson E, Futrell R, Jara-Ettinger J, Mahowald K, Bergen L et al. 2017. Color naming across languages reflects color use. PNAS 114:10785–90
    [Google Scholar]
  36. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J et al. 2016. A multi-modal parcellation of human cerebral cortex. Nature 536:171–78
    [Google Scholar]
  37. Griffis JC, Elkhetali AS, Burge WK, Chen RH, Bowman AD et al. 2017. Retinotopic patterns of functional connectivity between V1 and large-scale brain networks during resting fixation. NeuroImage 146:1071–83
    [Google Scholar]
  38. Griggs WS, Kim HF, Ghazizadeh A, Gabriela Costello M, Wall KM, Hikosaka O 2017. Flexible and stable value coding areas in caudate head and tail receive anatomically distinct cortical and subcortical inputs. Front. Neuroanat. 11:106
    [Google Scholar]
  39. Grill-Spector K, Weiner KS 2014. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15:536–48
    [Google Scholar]
  40. Groen IIA, Silson EH, Baker CI 2017. Contributions of low- and high-level properties to neural processing of visual scenes in the human brain. Philos. Trans. R. Soc. B 372:20160102
    [Google Scholar]
  41. Gross CG 2008. Single neuron studies of inferior temporal cortex. Neuropsychologia 46:841–52
    [Google Scholar]
  42. Harel A, Kravitz DJ, Baker CI 2014. Task context impacts visual object processing differentially across the cortex. PNAS 111:E962–71
    [Google Scholar]
  43. Haxby JV, Guntupalli JS, Connolly AC, Halchenko YO, Conroy BR et al. 2011. A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron 72:404–16
    [Google Scholar]
  44. He KM, Zhang XY, Ren SQ, Sun J 2015. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. 2015 IEEE International Conference on Computer Vision1026–34 Los Alamitos, CA: IEEE Comp. Soc.
    [Google Scholar]
  45. Henriksson L, Khaligh-Razavi SM, Kay K, Kriegeskorte N 2015. Visual representations are dominated by intrinsic fluctuations correlated between areas. NeuroImage 114:275–86
    [Google Scholar]
  46. Hong H, Yamins DL, Majaj NJ, DiCarlo JJ 2016. Explicit information for category-orthogonal object properties increases along the ventral stream. Nat. Neurosci. 19:613–22
    [Google Scholar]
  47. Horton JC, Hubel DH 1981. Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–64
    [Google Scholar]
  48. Hubel DH, Livingstone MS 1985. Complex-unoriented cells in a subregion of primate area 18. Nature 315:325–27
    [Google Scholar]
  49. Hubel DH, Wiesel TN 1977. Ferrier lecture—functional architecture of macaque monkey visual cortex. Proc. R. Soc. B 198:1–59
    [Google Scholar]
  50. Hubel DH, Wiesel TN, Yeagle EM, Lafer-Sousa R, Conway BR 2013. Binocular stereoscopy in visual areas V-2, V-3, and V-3A of the macaque monkey. Cereb. Cortex 25:959–71
    [Google Scholar]
  51. Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant JL 2016. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532:453–58
    [Google Scholar]
  52. Huth AG, Nishimoto S, Vu AT, Gallant JL 2012. A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76:1210–24
    [Google Scholar]
  53. Inouye T 1909. Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre nach Beobachtungen an Versundeten der letzten Japanische Kriege Leipzig, Ger: W. Engelmann
  54. Issa EB, DiCarlo JJ 2012. Precedence of the eye region in neural processing of faces. J. Neurosci. 32:16666–82
    [Google Scholar]
  55. Jozwik KM, Kriegeskorte N, Storrs KR, Mur M 2017. Deep convolutional neural networks outperform feature-based but not categorical models in explaining object similarity judgments. Front. Psychol. 8:1726
    [Google Scholar]
  56. Kanwisher N 2010. Functional specificity in the human brain: a window into the functional architecture of the mind. PNAS 107:11163–70
    [Google Scholar]
  57. Khaligh-Razavi SM, Kriegeskorte N 2014. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLOS Comput. Biol. 10:e1003915
    [Google Scholar]
  58. Kim JG, Biederman I 2011. Where do objects become scenes. ? Cereb. Cortex 21:1738–46
    [Google Scholar]
  59. Konkle T, Oliva A 2012. A real-world size organization of object responses in occipitotemporal cortex. Neuron 74:1114–24
    [Google Scholar]
  60. Kourtzi Z, Connor CE 2011. Neural representations for object perception: structure, category, and adaptive coding. Annu. Rev. Neurosci. 34:45–67
    [Google Scholar]
  61. Kravitz DJ, Kriegeskorte N, Baker CI 2010. High-level visual object representations are constrained by position. Cereb. Cortex 20:2916–25
    [Google Scholar]
  62. Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M 2013. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17:26–49
    [Google Scholar]
  63. Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J et al. 2008. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60:1126–41
    [Google Scholar]
  64. Krubitzer L 2009. In search of a unifying theory of complex brain evolution. Ann. N. Y. Acad. Sci. 1156:44–67
    [Google Scholar]
  65. Kumar S, Popivanov ID, Vogels R 2018. Transformation of visual representations across ventral stream body–selective patches. Cereb. Cortex. In press
  66. Lafer-Sousa R, Conway BR 2013. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat. Neurosci. 16:1870–78
    [Google Scholar]
  67. Lafer-Sousa R, Conway BR, Kanwisher NG 2016. Color-biased regions of the ventral visual pathway lie between face- and place-selective regions in humans, as in macaques. J. Neurosci. 36:1682–97
    [Google Scholar]
  68. Lafer-Sousa R, Liu YO, Lafer-Sousa L, Wiest MC, Conway BR 2012. Color tuning in alert macaque V1 assessed with fMRI and single-unit recording shows a bias toward daylight colors. J. Opt. Soc. Am. A 29:657–70
    [Google Scholar]
  69. Landi SM, Freiwald WA 2017. Two areas for familiar face recognition in the primate brain. Science 357:591–95
    [Google Scholar]
  70. Lehky SR, Tanaka K 2016. Neural representation for object recognition in inferotemporal cortex. Current Opin. Neurobiol. 37:23–35
    [Google Scholar]
  71. Leopold DA, Bondar IV, Giese MA 2006. Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature 442:572–75
    [Google Scholar]
  72. Lescroart MD, Stansbury DE, Gallant JL 2015. Fourier power, subjective distance, and object categories all provide plausible models of BOLD responses in scene-selective visual areas. Front. Comput. Neurosci. 9:135
    [Google Scholar]
  73. Levy I, Hasson U, Avidan G, Hendler T, Malach R 2001. Center-periphery organization of human object areas. Nat. Neurosci. 4:533–39
    [Google Scholar]
  74. Li N, DiCarlo JJ 2008. Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Science 321:1502–7
    [Google Scholar]
  75. Lim S, McKee JL, Woloszyn L, Amit Y, Freedman DJ et al. 2015. Inferring learning rules from distributions of firing rates in cortical neurons. Nat. Neurosci. 18:1804–10
    [Google Scholar]
  76. Liu N, Kriegeskorte N, Mur M, Hadj-Bouziane F, Luh WM et al. 2013. Intrinsic structure of visual exemplar and category representations in macaque brain. J. Neurosci. 33:11346–60
    [Google Scholar]
  77. Liu X, Yanagawa T, Leopold DA, Fujii N, Duyn JH 2015. Robust long-range coordination of spontaneous neural activity in waking, sleep and anesthesia. Cereb. Cortex 25:2929–38
    [Google Scholar]
  78. Logothetis NK, Sheinberg DL 1996. Visual object recognition. Annu. Rev. Neurosci. 19:577–621
    [Google Scholar]
  79. Luzzatti C, Davidoff J 1994. Impaired retrieval of object-colour knowledge with preserved colour naming. Neuropsychologia 32:933–50
    [Google Scholar]
  80. Mahon BZ, Caramazza A 2011. What drives the organization of object knowledge in the brain. ? Trends Cogn. Sci. 15:97–103
    [Google Scholar]
  81. Malach R, Levy I, Hasson U 2002. The topography of high-order human object areas. Trends Cogn. Sci. 6:176–84
    [Google Scholar]
  82. Malcolm GL, Groen II, Baker CI 2016. Making sense of real-world scenes. Trends Cogn. Sci. 20:843–56
    [Google Scholar]
  83. Mante V, Sussillo D, Shenoy KV, Newsome WT 2013. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503:78–84
    [Google Scholar]
  84. Martin A 2016. GRAPES—Grounding representations in action, perception, and emotion systems: how object properties and categories are represented in the human brain. Psychon. Bull. Rev. 23:979–90
    [Google Scholar]
  85. Martinaud O 2017. Visual agnosia and focal brain injury. Rev. Neurol. 173:451–60
    [Google Scholar]
  86. Matsumoto N, Eldridge MA, Saunders RC, Reoli R, Richmond BJ 2016. Mild perceptual categorization deficits follow bilateral removal of anterior inferior temporal cortex in rhesus monkeys. J. Neurosci. 36:43–53
    [Google Scholar]
  87. McKee JL, Riesenhuber M, Miller EK, Freedman DJ 2014. Task dependence of visual and category representations in prefrontal and inferior temporal cortices. J. Neurosci. 34:16065–75
    [Google Scholar]
  88. Miceli G, Fouch E, Capasso R, Shelton JR, Tomaiuolo F, Caramazza A 2001. The dissociation of color from form and function knowledge. Nat. Neurosci. 4:662–67
    [Google Scholar]
  89. Moeller S, Crapse T, Chang L, Tsao DY 2017. The effect of face patch microstimulation on perception of faces and objects. Nat. Neurosci. 20:743–52
    [Google Scholar]
  90. Monosov IE, Sheinberg DL, Thompson KG 2010. Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search. PNAS 107:13105–10
    [Google Scholar]
  91. Monosov IE, Sheinberg DL, Thompson KG 2011. The effects of prefrontal cortex inactivation on object responses of single neurons in the inferotemporal cortex during visual search. J. Neurosci. 31:15956–61
    [Google Scholar]
  92. Mruczek RE, Sheinberg DL 2007. Activity of inferior temporal cortical neurons predicts recognition choice behavior and recognition time during visual search. J. Neurosci. 27:2825–36
    [Google Scholar]
  93. Namima T, Yasuda M, Banno T, Okazawa G, Komatsu H 2014. Effects of luminance contrast on the color selectivity of neurons in the macaque area v4 and inferior temporal cortex. J. Neurosci. 34:14934–47
    [Google Scholar]
  94. Naselaris T, Stansbury DE, Gallant JL 2012. Cortical representation of animate and inanimate objects in complex natural scenes. J. Physiol. 106:239–49
    [Google Scholar]
  95. Nasr S, Liu N, Devaney KJ, Yue X, Rajimehr R et al. 2011. Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31:13771–85
    [Google Scholar]
  96. Nishimoto S, Huth AG, Bilenko NY, Gallant JL 2017. Eye movement-invariant representations in the human visual system. J. Vis. 17:111
    [Google Scholar]
  97. Nishio A, Shimokawa T, Goda N, Komatsu H 2014. Perceptual gloss parameters are encoded by population responses in the monkey inferior temporal cortex. J. Neurosci. 34:11143–51
    [Google Scholar]
  98. O'Reilly RC 2010. The what and how of prefrontal cortical organization. Trends Neurosci 33:355–61
    [Google Scholar]
  99. Op de Beeck HP, Deutsch JA, Vanduffel W, Kanwisher NG, DiCarlo JJ 2008. A stable topography of selectivity for unfamiliar shape classes in monkey inferior temporal cortex. Cereb. Cortex 18:1676–94
    [Google Scholar]
  100. Op de Beeck HP, Wagemans J, Vogels R 2001. Inferotemporal neurons represent low-dimensional configurations of parameterized shapes. Nat. Neurosci. 4:1244–52
    [Google Scholar]
  101. Osher DE, Saxe RR, Koldewyn K, Gabrieli JD, Kanwisher N, Saygin ZM 2016. Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb. Cortex 26:1668–83
    [Google Scholar]
  102. Parker AJ 1896. Morphology of the cerebral convolutions with special reference to the order of primates. J. Acad. Nat. Sci. Phila. 10:247–362
    [Google Scholar]
  103. Passingham R 2009. How good is the macaque monkey model of the human brain. ? Curr. Opin. Neurobiol. 19:6–11
    [Google Scholar]
  104. Passingham RE, Wise SP 2012. The Neurobiology of the Prefrontal Cortex New York: Oxford Univ. Press
  105. Pitcher D, Charles L, Devlin JT, Walsh V, Duchaine B 2009. Triple dissociation of faces, bodies, and objects in extrastriate cortex. Curr. Biol. 19:319–24
    [Google Scholar]
  106. Rajalingham R, Schmidt K, DiCarlo JJ 2015. Comparison of object recognition behavior in human and monkey. J. Neurosci. 35:12127–36
    [Google Scholar]
  107. Rajimehr R, Bilenko NY, Vanduffel W, Tootell RB 2014. Retinotopy versus face selectivity in macaque visual cortex. J. Cogn. Neurosci. 26:2691–700
    [Google Scholar]
  108. Rajimehr R, Tootell RB 2009. Does retinotopy influence cortical folding in primate visual cortex. ? J. Neurosci. 29:11149–52
    [Google Scholar]
  109. Riesenhuber M, Poggio T 1999. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2:1019–25
    [Google Scholar]
  110. Riley MR, Qi XL, Constantinidis C 2017. Functional specialization of areas along the anterior-posterior axis of the primate prefrontal cortex. Cereb. Cortex 27:3683–97
    [Google Scholar]
  111. Rolls ET 2000. Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 27:205–18
    [Google Scholar]
  112. Romanski LM 2004. Domain specificity in the primate prefrontal cortex. Cogn. Affect. Behav. Neurosci. 4:421–29
    [Google Scholar]
  113. Romero MC, Bohon KS, Lafer-Sousa L, Conway BR 2014. Functional organization of colors, places and faces in alert macaque frontal cortex Poster presented at Neuroscience 2014 Washington, DC: Nov. 15
  114. Rosenthal I, Ratnasingam S, Haile T, Eastman S, Fuller-Deets J, Conway BR 2018. Color statistics of objects, and color tuning of object cortex in macaque monkey. J. Vis. In press
  115. Rust NC, DiCarlo JJ 2010. Selectivity and tolerance (“invariance”) both increase as visual information propagates from cortical area V4 to IT. J. Neurosci. 30:12978–95
    [Google Scholar]
  116. Sadagopan S, Zarco W, Freiwald WA 2017. A causal relationship between face-patch activity and face-detection behavior. eLife 6:e18558
    [Google Scholar]
  117. Sato T, Uchida G, Lescroart MD, Kitazono J, Okada M, Tanifuji M 2013. Object representation in inferior temporal cortex is organized hierarchically in a mosaic-like structure. J. Neurosci. 33:16642–56
    [Google Scholar]
  118. Schalk G, Kapeller C, Guger C, Ogawa H, Hiroshima S et al. 2017. Facephenes and rainbows: causal evidence for functional and anatomical specificity of face and color processing in the human brain. PNAS 114:12285–90
    [Google Scholar]
  119. Sereno AB, Sereno ME, Lehky SR 2014. Recovering stimulus locations using populations of eye-position modulated neurons in dorsal and ventral visual streams of non-human primates. Front. Integr. Neurosci. 8:28
    [Google Scholar]
  120. Serre T 2016. Models of visual categorization. WIREs Cogn. Sci. 7:197–213
    [Google Scholar]
  121. Sha L, Haxby JV, Abdi H, Guntupalli JS, Oosterhof NN et al. 2015. The animacy continuum in the human ventral vision pathway. J. Cogn. Neurosci. 27:665–78
    [Google Scholar]
  122. Sheinberg DL, Logothetis NK 1997. The role of temporal cortical areas in perceptual organization. PNAS 94:3408–13
    [Google Scholar]
  123. Sheinberg DL, Logothetis NK 2001. Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision. J. Neurosci. 21:1340–50
    [Google Scholar]
  124. Sigala N, Logothetis NK 2002. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415:318–20
    [Google Scholar]
  125. Silson EH, Chan AW, Reynolds RC, Kravitz DJ, Baker CI 2015. A retinotopic basis for the division of high-level scene processing between lateral and ventral human occipitotemporal cortex. J. Neurosci. 35:11921–35
    [Google Scholar]
  126. Srihasam K, Vincent JL, Livingstone MS 2014. Novel domain formation reveals proto-architecture in inferotemporal cortex. Nat. Neurosci. 17:1776–83
    [Google Scholar]
  127. Stoughton CM, Lafer-Sousa R, Gagin G, Conway BR 2012. Psychophysical chromatic mechanisms in macaque monkey. J. Neurosci. 32:15216–26
    [Google Scholar]
  128. Striem-Amit E, Ovadia-Caro S, Caramazza A, Margulies DS, Villringer A, Amedi A 2015. Functional connectivity of visual cortex in the blind follows retinotopic organization principles. Brain 138:1679–95
    [Google Scholar]
  129. Sugita Y 2008. Face perception in monkeys reared with no exposure to faces. PNAS 105:394–98
    [Google Scholar]
  130. Tanaka J, Weiskopf D, Williams P 2001. The role of color in high-level vision. Trends Cogn. Sci. 5:211–15
    [Google Scholar]
  131. Tanaka K 1996. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19:109–39
    [Google Scholar]
  132. Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y 1999. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401:699–703
    [Google Scholar]
  133. Tsao DY, Moeller S, Freiwald WA 2008. Comparing face patch systems in macaques and humans. PNAS 105:19514–19
    [Google Scholar]
  134. Van Essen DC 1997. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–18
    [Google Scholar]
  135. Van Essen DC, Donahue C, Dierker DL, Glasser MF 2016. Parcellations and connectivity patterns in human and macaque cerebral cortex. Micro-, Meso- and Macro-Connectomics of the Brain H Kennedy, DC Van Essen, Y Christen 89–106 New York: Springer
    [Google Scholar]
  136. Van Essen DC, Zeki SM 1978. The topographic organization of rhesus monkey prestriate cortex. J. Physiol. 277:193–226
    [Google Scholar]
  137. Vanduffel W, Zhu Q, Orban GA 2014. Monkey cortex through fMRI glasses. Neuron 83:533–50
    [Google Scholar]
  138. Vaziri S, Connor CE 2016. Representation of gravity-aligned scene structure in ventral pathway visual cortex. Curr. Biol. 26:766–74
    [Google Scholar]
  139. Verhoef BE, Bohon KS, Conway BR 2015. Functional architecture for disparity in macaque inferior temporal cortex and its relationship to the architecture for faces, color, scenes, and visual field. J. Neurosci. 35:6952–68
    [Google Scholar]
  140. Vernon RJ, Gouws AD, Lawrence SJ, Wade AR, Morland AB 2016. Multivariate patterns in the human object-processing pathway reveal a shift from retinotopic to shape curvature representations in lateral occipital areas, LO-1 and LO-2. J. Neurosci. 36:5763–74
    [Google Scholar]
  141. Walther DB, Koch C 2007. Attention in hierarchical models of object recognition. Prog. Brain Res. 165:57–78
    [Google Scholar]
  142. Wandell BA, Winawer J 2011. Imaging retinotopic maps in the human brain. Vis. Res. 51:718–37
    [Google Scholar]
  143. Warland DK, Huberman AD, Chalupa LM 2006. Dynamics of spontaneous activity in the fetal macaque retina during development of retinogeniculate pathways. J. Neurosci. 26:5190–97
    [Google Scholar]
  144. Watson DM, Andrews TJ, Hartley T 2017. A data driven approach to understanding the organization of high-level visual cortex. Sci. Rep. 7:3596
    [Google Scholar]
  145. Weisberg J, van Turennout M, Martin A 2007. A neural system for learning about object function. Cereb. Cortex 17:513–21
    [Google Scholar]
  146. Winawer J, Horiguchi H, Sayres RA, Amano K, Wandell BA 2010. Mapping hV4 and ventral occipital cortex: the venous eclipse. J. Vis. 10:51
    [Google Scholar]
  147. Wong RO 1999. Retinal waves and visual system development. Annu. Rev. Neurosci. 22:29–47
    [Google Scholar]
  148. Yamins DL, DiCarlo JJ 2016.a Eight open questions in the computational modeling of higher sensory cortex. Curr. Opin. Neurobiol. 37:114–20
    [Google Scholar]
  149. Yamins DL, DiCarlo JJ 2016.b Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19:356–65
    [Google Scholar]
  150. Yovel G, Freiwald WA 2013. Face recognition systems in monkey and human: Are they the same thing. ? F1000Prime Rep 5:10
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-034202
Loading
/content/journals/10.1146/annurev-vision-091517-034202
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error