Sensory systems continuously mold themselves to the widely varying contexts in which they must operate. Studies of these adaptations have played a long and central role in vision science, partly because the specific adaptations remain a powerful tool for dissecting vision by exposing the mechanisms that are adapting. That is, “if it adapts, it's there.” Many insights about vision have come from this use of adaptation, as a method. A second important trend has been the realization that the processes of adaptation are themselves essential to how vision works and thus likely operate at all levels. That is, “if it's there, it adapts.” This observation has focused interest on the mechanisms of adaptation as the target rather than the probe. Together, these approaches have led to an emerging view of adaptation as a fundamental and ubiquitous coding strategy impacting all aspects of how we see.

Associated Article

There are media items related to this article:
Visual Adaptation: Supplemental Video 1

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abbott LF, Varela JA, Sen K, Nelson SB. 1997. Synaptic depression and cortical gain control. Science 275:220–24 [Google Scholar]
  2. Andrews DP. 1967. Perception of contour orientation in the central fovea part I: short lines. Vis. Res. 7:975–997 [Google Scholar]
  3. Anstis S. 2013. Contour adaptation. J. Vis. 13:225 [Google Scholar]
  4. Artal P, Chen L, Fernandez EJ, Singer B, Manzanera S, Williams DR. 2004. Neural compensation for the eye's optical aberrations. J. Vis. 4:281–87 [Google Scholar]
  5. Barlow HB. 1990a. A theory about the functional role and synaptic mechanism of visual aftereffects. Visual Coding and Efficiency C Blakemore 363–75 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  6. Barlow HB. 1990b. Conditions for versatile learning, Helmholtz's unconscious inference, and the task of perception. Vis. Res. 30:1561–71 [Google Scholar]
  7. Barton B, Treister A, Humphrey M, Abedi G, Cramer SC, Brewer AA. 2014. Paradoxical visuomotor adaptation to reversed visual input is predicted by BDNF Val66Met polymorphism. J. Vis. 14:94 [Google Scholar]
  8. Belmore SC, Shevell SK. 2011. Very-long-term and short-term chromatic adaptation: Are their influences cumulative?. Vis. Res. 51:362–66 [Google Scholar]
  9. Benucci A, Saleem AB, Carandini M. 2013. Adaptation maintains population homeostasis in primary visual cortex. Nat. Neurosci. 16:724–29 [Google Scholar]
  10. Bex PJ, Solomon SG, Dakin SC. 2009. Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure. J. Vis. 9:101 [Google Scholar]
  11. Blake R, Overton R, Lema-Stern S. 1981. Interocular transfer of visual aftereffects. J. Exp. Psychol. Hum. Percept. Perform. 7:367–81 [Google Scholar]
  12. Boehm AE, MacLeod DIA, Bosten JM. 2014. Compensation for red-green contrast loss in anomalous trichromats. J. Vis. 14:1319 [Google Scholar]
  13. Boehnke SE, Berg DJ, Marino RA, Baldi PF, Itti L, Munoz DP. 2011. Visual adaptation and novelty responses in the superior colliculus. Eur. J. Neurosci. 34:766–79 [Google Scholar]
  14. Bompas A, Powell G, Sumner P. 2013. Systematic biases in adult color perception persist despite lifelong information sufficient to calibrate them. J. Vis. 13:119 [Google Scholar]
  15. Brainard DH, Roorda A, Yamauchi Y, Calderone JB, Metha A. et al. 2000. Functional consequences of the relative numbers of L and M cones. J. Opt. Soc. Am. A 17:607–14 [Google Scholar]
  16. Brown AM, Lindsey DT. 2009. Contrast insensitivity: the critical immaturity in infant visual performance. Optom. Vis. Sci. 86:572–76 [Google Scholar]
  17. Carandini M, Heeger DJ. 2011. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:51–62 [Google Scholar]
  18. Carbon C-C. 2011. Cognitive mechanisms for explaining dynamics of aesthetic appreciation. i-Perception 2:708–19 [Google Scholar]
  19. Chopin A, Mamassian P. 2012. Predictive properties of visual adaptation. Curr. Biol. 22:622–26 [Google Scholar]
  20. Clifford CW, Webster MA, Stanley GB, Stocker AA, Kohn A. et al. 2007. Visual adaptation: neural, psychological and computational aspects. Vis. Res. 47:3125–31 [Google Scholar]
  21. Delahunt PB, Webster MA, Ma L, Werner JS. 2004. Long-term renormalization of chromatic mechanisms following cataract surgery. Vis. Neurosci. 21:301–7 [Google Scholar]
  22. Demb JB. 2008. Functional circuitry of visual adaptation in the retina. J. Physiol. 586:4377–84 [Google Scholar]
  23. Dhruv NT, Carandini M. 2014. Cascaded effects of spatial adaptation in the early visual system. Neuron 81:529–35 [Google Scholar]
  24. Dickinson JE, Almeida RA, Bell J, Badcock DR. 2010. Global shape aftereffects have a local substrate: a tilt aftereffect field. J. Vis. 10:135 [Google Scholar]
  25. Eisner A, Enoch JM. 1982. Some effects of 1 week's monocular exposure to long-wavelength stimuli. Percept. Psychophys. 31:169–74 [Google Scholar]
  26. Elliott SL, Georgeson MA, Webster MA. 2011. Response normalization and blur adaptation: data and multi-scale model. J. Vis. 11:27 [Google Scholar]
  27. Elliott SL, Hardy JL, Webster MA, Werner JS. 2007. Aging and blur adaptation. J. Vis. 7:68 [Google Scholar]
  28. Elliott SL, Werner JS, Webster MA. 2012. Individual and age-related variation in chromatic contrast adaptation. J. Vis. 12:811 [Google Scholar]
  29. Fang F, He S. 2005. Viewer-centered object representation in the human visual system revealed by viewpoint aftereffects. Neuron 45:793–800 [Google Scholar]
  30. Foster DH. 2011. Color constancy. Vis. Res. 51:674–700 [Google Scholar]
  31. Galvin SJ, O’Shea RP, Squire AM, Govan DG. 1997. Sharpness overconstancy in peripheral vision. Vis. Res. 37:2035–39 [Google Scholar]
  32. Gardner JL, Sun P, Waggoner RA, Ueno K, Tanaka K, Cheng K. 2005. Contrast adaptation and representation in human early visual cortex. Neuron 47:607–20 [Google Scholar]
  33. Geisler WS. 2008. Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol. 59:167–92 [Google Scholar]
  34. Georgeson MA, Sullivan GD. 1975. Contrast constancy: deblurring in human vision by spatial frequency channels. J. Physiol. 252:627–56 [Google Scholar]
  35. Gepshtein S, Lesmes LA, Albright TD. 2013. Sensory adaptation as optimal resource allocation. PNAS 110:4368–73 [Google Scholar]
  36. Gibson JJ. 1986. The Ecological Approach to Visual Perception Hillsdale, NJ: Lawrence Erlbaum Assoc.
  37. Glasser DM, Tsui JMG, Pack CC, Tadin D. 2011. Perceptual and neural consequences of rapid motion adaptation. PNAS 108:18215–16 [Google Scholar]
  38. Goddard E, Mannion DJ, McDonald JS, Solomon SG, Clifford CW. 2010a. Combination of subcortical color channels in human visual cortex. J. Vis. 10:525 [Google Scholar]
  39. Goddard E, Solomon S, Clifford C. 2010b. Adaptable mechanisms sensitive to surface color in human vision. J. Vis. 10:917 [Google Scholar]
  40. Gollisch T, Meister M. 2010. Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65:150–64 [Google Scholar]
  41. Graham NV. 1989. Visual Pattern Analyzers Oxford, UK: Oxford Univ. Press
  42. Greene MR, Oliva A. 2010. High-level aftereffects to global scene properties. J. Exp. Psychol. Hum. Percept. Perform. 36:1430–42 [Google Scholar]
  43. Greenlee MW, Georgeson MA, Magnussen S, Harris JP. 1991. The time course of adaptation to spatial contrast. Vis. Res. 31:223–36 [Google Scholar]
  44. Grill-Spector K, Henson R, Martin A. 2006. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10:14–23 [Google Scholar]
  45. Grill-Spector K, Malach R. 2001. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. 107:293–321 [Google Scholar]
  46. Haak KV, Fast E, Bao M, Lee M, Engel SA. 2014. Four days of visual contrast deprivation reveals limits of neuronal adaptation. Curr. Biol. 24:2575–79 [Google Scholar]
  47. Harris H, Gliksberg M, Sagi D. 2012. Generalized perceptual learning in the absence of sensory adaptation. Curr. Biol. 22:1813–17 [Google Scholar]
  48. He D, Kersten D, Fang F. 2012. Opposite modulation of high- and low-level visual aftereffects by perceptual grouping. Curr. Biol. 22:1040–45 [Google Scholar]
  49. Hegdé J. 2009. How reliable is the pattern adaptation technique? A modeling study. J. Neurophysiol. 102:2245–52 [Google Scholar]
  50. Helson H. 1964. Adaptation-Level Theory: An Experimental and Systematic Approach to Behavior New York: Harper
  51. Hillis JM, Brainard DH. 2007. Distinct mechanisms mediate visual detection and identification. Curr. Biol. 17:1714–19 [Google Scholar]
  52. Jenkins R, Beaver JD, Calder AJ. 2006. I thought you were looking at me: direction-specific aftereffects in gaze perception. Psychol. Sci. 17:506–13 [Google Scholar]
  53. Jordan H, Fallah M, Stoner GR. 2006. Adaptation of gender derived from biological motion. Nat. Neurosci. 9:738–39 [Google Scholar]
  54. Kastner DB, Baccus SA. 2014. Insights from the retina into the diverse and general computations of adaptation, detection, and prediction. Curr. Opin. Neurobiol. 25:63–69 [Google Scholar]
  55. Knapen T, Rolfs M, Wexler M, Cavanagh P. 2010. The reference frame of the tilt aftereffect. J. Vis. 10:18 [Google Scholar]
  56. Kohn A. 2007. Visual adaptation: physiology, mechanisms, and functional benefits. J. Neurophysiol. 97:3155–64 [Google Scholar]
  57. Kompaniez E, Abbey CK, Boone JM, Webster MA. 2013. Adaptation aftereffects in the perception of radiological images. PLOS ONE 8:e76175 [Google Scholar]
  58. Kording KP, Tenenbaum JB, Shadmehr R. 2007. The dynamics of memory as a consequence of optimal adaptation to a changing body. Nat. Neurosci. 10:779–86 [Google Scholar]
  59. Krauskopf J, Williams DR, Mandler MB, Brown AM. 1986. Higher order color mechanisms. Vis. Res. 26:23–32 [Google Scholar]
  60. Krekelberg B, Boynton GM, van Wezel RJA. 2006. Adaptation: from single cells to BOLD signals. Trends Neurosci. 29:250–256 [Google Scholar]
  61. Kwon M, Legge GE, Fang F, Cheong AMY, He S. 2009. Adaptive changes in visual cortex following prolonged contrast reduction. J. Vis. 9:220 [Google Scholar]
  62. Larsson J, Smith AT. 2012. fMRI repetition suppression: neuronal adaptation or stimulus expectation?. Cereb. Cortex 22:567–76 [Google Scholar]
  63. Lawson RP, Clifford CW, Calder AJ. 2009. About turn: the visual representation of human body orientation revealed by adaptation. Psychol. Sci. 20:363–71 [Google Scholar]
  64. Leopold DA, O’Toole AJ, Vetter T, Blanz V. 2001. Prototype-referenced shape encoding revealed by high-level aftereffects. Nat. Neurosci. 4:89–94 [Google Scholar]
  65. Leopold DA, Rhodes G, Müller KM, Jeffery L. 2005. The dynamics of visual adaptation to faces. Proc. R. Soc. B 272:897–904 [Google Scholar]
  66. MacLeod DIA. 2003. Colour discrimination, colour constancy, and natural scene statistics. Normal and Defective Colour Vision JD Mollon, J Pokorny, K Knoblauch 189–217 London: Oxford Univ. Press [Google Scholar]
  67. Malach R. 2012. Targeting the functional properties of cortical neurons using fMR-adaptation. Neuroimage 62:1163–69 [Google Scholar]
  68. Mante V, Frazor RA, Bonin V, Geisler WS, Carandini M. 2005. Independence of luminance and contrast in natural scenes and in the early visual system. Nat. Neurosci. 8:1690–97 [Google Scholar]
  69. Mather G, Pavan A, Campana G, Casco C. 2008. The motion aftereffect reloaded. Trends Cogn. Sci. 12:481–87 [Google Scholar]
  70. Maus GW, Chaney W, Liberman A, Whitney D. 2013. The challenge of measuring long-term positive aftereffects. Curr. Biol. 23:R438–39 [Google Scholar]
  71. McCollough Howard C, Webster MA. 2011. McCollough effect. Scholarpedia 6:28175 [Google Scholar]
  72. McDermott KC, Malkoc G, Mulligan JB, Webster MA. 2010. Adaptation and visual salience. J. Vis. 10:17 [Google Scholar]
  73. McDermott KC, Webster MA. 2012. The perceptual balance of color. J. Opt. Soc. Am. A 29:A108–17 [Google Scholar]
  74. McGovern DP, Roach NW, Webb BS. 2012. Perceptual learning reconfigures the effects of visual adaptation. J. Neurosci. 32:13621–29 [Google Scholar]
  75. Mesik J, Bao M, Engel SA. 2013. Spontaneous recovery of motion and face aftereffects. Vis. Res. 89:72–78 [Google Scholar]
  76. Mohr HM, Linder NS, Dennis H, Sireteanu R. 2011. Orientation-specific aftereffects to mentally generated lines. Perception 40:272–90 [Google Scholar]
  77. Mon-Williams M, Tresilian JR, Strang NC, Kochhar P, Wann JP. 1998. Improving vision: neural compensation for optical defocus. Proc. R. Soc. B 265:71–77 [Google Scholar]
  78. Motoyoshi I, Nishida S, Sharan L, Adelson EH. 2007. Image statistics and the perception of surface qualities. Nature 447:206–9 [Google Scholar]
  79. Movshon JA, Lennie P. 1979. Pattern-selective adaptation in visual cortical neurones. Nature 278:850–52 [Google Scholar]
  80. Muller KM, Schillinger F, Do DH, Leopold DA. 2009. Dissociable perceptual effects of visual adaptation. PLOS ONE 4:e6183 [Google Scholar]
  81. Mur M, Ruff DA, Bodurka J, Bandettini PA, Kriegeskorte N. 2010. Face-identity change activation outside the face system: “Release from adaptation” may not always indicate neuronal selectivity. Cereb. Cortex 20:2027–42 [Google Scholar]
  82. Neitz J, Carroll J, Yamauchi Y, Neitz M, Williams DR. 2002. Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron 35:783–92 [Google Scholar]
  83. Nishida S, Ashida H, Sato T. 1994. Complete interocular transfer of motion aftereffect with flickering test. Vis. Res. 34:2707–16 [Google Scholar]
  84. O’Neil SF, Webster MA. 2014. Filling in, filling out, or filtering out: processes stabilizing color appearance near the center of gaze. J. Opt. Soc. Am. A 31:A140–47 [Google Scholar]
  85. Ohzawa I, Sclar G, Freeman RD. 1982. Contrast gain control in the cat visual cortex. Nature 298:266–68 [Google Scholar]
  86. Owsley C. 2011. Aging and vision. Vis. Res. 51:1610–1622 [Google Scholar]
  87. Paradiso MA, Shimojo S, Nakayama K. 1989. Subjective contours, tilt aftereffects, and visual cortical organization. Vis. Res. 29:1205–13 [Google Scholar]
  88. Patterson CA, Duijnhouwer J, Wissig SC, Krekelberg B, Kohn A. 2014. Similar adaptation effects in primary visual cortex and area MT of the macaque monkey under matched stimulus conditions. J. Neurophysiol. 111:1203–13 [Google Scholar]
  89. Patterson CA, Wissig SC, Kohn A. 2013. Distinct effects of brief and prolonged adaptation on orientation tuning in primary visual cortex. J. Neurosci. 33:532–43 [Google Scholar]
  90. Powell G, Bompas A, Sumner P. 2012. Making the incredible credible: Afterimages are modulated by contextual edges more than real stimuli. J. Vis. 12:1017 [Google Scholar]
  91. Quian Quiroga R, Kraskov A, Mormann F, Fried I, Koch C. 2014. Single-cell responses to face adaptation in the human medial temporal lobe. Neuron 84:363–69 [Google Scholar]
  92. Radhakrishnan A, Dorronsoro C, Sawides L, Webster MA, Marcos S. 2015. A cyclopean neural mechanism compensating for optical differences between the eyes. Curr. Biol. 25:R188–89 [Google Scholar]
  93. Ranganath C, Rainer G. 2003. Neural mechanisms for detecting and remembering novel events. Nat. Rev. Neurosci. 4:193–202 [Google Scholar]
  94. Raymond JE. 1993. Complete interocular transfer of motion adaptation effects on motion coherence thresholds. Vis. Res. 33:1865–70 [Google Scholar]
  95. Regan BC, Mollon JD. 1997. The relative salience of the cardinal axes of colour space in normal and anomalous trichromats. Colour Vision Deficiencies CR Cavonius 261–70 Dordrecht, Neth: Kluwer [Google Scholar]
  96. Rieke F, Rudd ME. 2009. The challenges natural images pose for visual adaptation. Neuron 64:605–16 [Google Scholar]
  97. Rolfs M, Dambacher M, Cavanagh P. 2013. Visual adaptation of the perception of causality. Curr. Biol. 23:250–54 [Google Scholar]
  98. Roseboom W, Linares D, Nishida S. 2015. Sensory adaptation for timing perception. Proc. R. Soc. B 282:20142833 [Google Scholar]
  99. Ross DA, Deroche M, Palmeri TJ. 2014. Not just the norm: Exemplar-based models also predict face aftereffects. Psychon. Bull. Rev. 21:47–70 [Google Scholar]
  100. Sanchez-Vives MV, Nowak LG, Mccormick DA. 2000. Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J. Neurosci. 20:4286–99 [Google Scholar]
  101. Sawides L, de Gracia P, Dorronsoro C, Webster MA, Marcos S. 2011. Vision is adapted to the natural level of blur present in the retinal image. PLOS ONE 6:e27031 [Google Scholar]
  102. Sawides L, Dorronsoro C, de Gracia P, Vinas M, Webster M, Marcos S. 2012. Dependence of subjective image focus on the magnitude and pattern of high order aberrations. J. Vis. 12:84 [Google Scholar]
  103. Schwartz O, Hsu A, Dayan P. 2007. Space and time in visual context. Nat. Rev. Neurosci. 8:522–35 [Google Scholar]
  104. Series P, Stocker AA, Simoncelli EP. 2009. Is the homunculus “aware” of sensory adaptation?. Neural Comput. 21:3271–304 [Google Scholar]
  105. Shadmehr R, Smith MA, Krakauer JW. 2010. Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33:89–108 [Google Scholar]
  106. Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24:1193–216 [Google Scholar]
  107. Solomon SG, Kohn A. 2014. Moving sensory adaptation beyond suppressive effects in single neurons. Curr. Biol. 24:R1012–22 [Google Scholar]
  108. Solomon SG, Peirce JW, Dhruv NT, Lennie P. 2004. Profound contrast adaptation early in the visual pathway. Neuron 42:155–62 [Google Scholar]
  109. Sperandio I, Lak A, Goodale MA. 2012. Afterimage size is modulated by size-contrast illusions. J. Vis. 12:218 [Google Scholar]
  110. Srinivasan MV, Laughlin SB, Dubs A. 1982. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. B 216:427–59 [Google Scholar]
  111. Stocker AA, Simoncelli EP. 2006. Sensory adaptation within a Bayesian framework for perception. Adv. Neural Inf. Process. Syst. 18:1291–98 [Google Scholar]
  112. Storrs KR, Arnold DH. 2012. Not all face aftereffects are equal. Vis. Res. 64:7–16 [Google Scholar]
  113. Suter PS, Suter S, Roessler JS, Parker KL, Armstrong CA, Powers JC. 1994. Spatial-frequency-tuned channels in early infancy: VEP evidence. Vis. Res. 34:737–45 [Google Scholar]
  114. Suzuki S, Cavanagh P. 1998. A shape-contrast effect for briefly presented stimuli. J. Exp. Psychol. Hum. Percept. Perform. 24:1315–41 [Google Scholar]
  115. Suzuki S, Grabowecky M. 2003. Attention during adaptation weakens negative afterimages. J. Exp. Psychol. Hum. Percept. Perform. 29:793–807 [Google Scholar]
  116. Tailby C, Solomon SG, Dhruv NT, Lennie P. 2008. Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque. J. Neurosci. 28:1131–39 [Google Scholar]
  117. Troje NF, Sadr J, Geyer H, Nakayama K. 2006. Adaptation aftereffects in the perception of gender from biological motion. J. Vis. 6:87 [Google Scholar]
  118. Tsuchiya N, Koch C. 2005. Continuous flash suppression reduces negative afterimages. Nat. Neurosci. 8:1096–101 [Google Scholar]
  119. Valentine T, Lewis MB, Hills PJ. 2015. Face-space: a unifying concept in face recognition research. Q. J. Exp. Psychol. In press
  120. van Lier R, Vergeer M, Anstis S. 2009. Filling-in afterimage colors between the lines. Curr. Biol. 19:R323–24 [Google Scholar]
  121. Vera-Diaz FA, Woods RL, Peli E. 2010. Shape and individual variability of the blur adaptation curve. Vis. Res. 50:1452–61 [Google Scholar]
  122. von der Heydt R, Macuda T, Qiu FT. 2005. Border-ownership-dependent tilt aftereffect. J. Opt. Soc. Am. A 22:2222–29 [Google Scholar]
  123. Vul E, Krizay E, MacLeod DI. 2008. The McCollough effect reflects permanent and transient adaptation in early visual cortex. J. Vis. 8:124 [Google Scholar]
  124. Wainwright MJ. 1999. Visual adaptation as optimal information transmission. Vis. Res. 39:3960–74 [Google Scholar]
  125. Wark B, Fairhall A, Rieke F. 2009. Timescales of inference in visual adaptation. Neuron 61:750–61 [Google Scholar]
  126. Wark B, Lundstrom BN, Fairhall A. 2007. Sensory adaptation. Curr. Opin. Neurobiol. 17:423–29 [Google Scholar]
  127. Webster MA. 1996. Human colour perception and its adaptation. Netw. Comput. Neural Syst. 7:587–634 [Google Scholar]
  128. Webster MA. 2011. Adaptation and visual coding. J. Vis. 11:53 [Google Scholar]
  129. Webster MA. 2014. Probing the functions of contextual modulation by adapting images rather than observers. Vis. Res. 104:68–79 [Google Scholar]
  130. Webster MA, Georgeson MA, Webster SM. 2002. Neural adjustments to image blur. Nat. Neurosci. 5:839–40 [Google Scholar]
  131. Webster MA, Halen K, Meyers AJ, Winkler P, Werner JS. 2010. Colour appearance and compensation in the near periphery. Proc. R. Soc. B 277:1817–25 [Google Scholar]
  132. Webster MA, Kaping D, Mizokami Y, Duhamel P. 2004. Adaptation to natural facial categories. Nature 428:557–61 [Google Scholar]
  133. Webster MA, Leonard D. 2008. Adaptation and perceptual norms in color vision. J. Opt. Soc. Am. A 25:2817–25 [Google Scholar]
  134. Webster MA, MacLeod. 2011. Visual adaptation and face perception. Philos. Trans. R. Soc. Lond. B 366:1702–25 [Google Scholar]
  135. Webster MA, Miyahara E. 1997. Contrast adaptation and the spatial structure of natural images. J. Opt. Soc. Am. A 14:2355–66 [Google Scholar]
  136. Webster MA, Mizokami Y, Svec LA, Elliott SL. 2006. Neural adjustments to chromatic blur. Spat. Vis. 19:111–32 [Google Scholar]
  137. Webster MA, Mollon JD. 1994. The influence of contrast adaptation on color appearance. Vis. Res. 34:1993–2020 [Google Scholar]
  138. Webster MA, Mollon JD. 1995. Colour constancy influenced by contrast adaptation. Nature 373:694–98 [Google Scholar]
  139. Webster MA, Mollon JD. 1997. Adaptation and the color statistics of natural images. Vis. Res. 37:3283–98 [Google Scholar]
  140. Webster MA, Werner JS, Field DJ. 2005. Adaptation and the phenomenology of perception. Fitting the Mind to the World: Adaptation and After-Effects in High-Level Vision CWG Clifford, G Rhodes 241–77 Oxford, UK: Oxford Univ. Press [Google Scholar]
  141. Weigelt S, Muckli L, Kohler A. 2008. Functional magnetic resonance adaptation in visual neuroscience. Rev. Neurosci. 19:363–80 [Google Scholar]
  142. Welbourne LE, Morland AB, Wade AR. 2015. Human colour perception changes between seasons. Curr. Biol. 25:R646–47 [Google Scholar]
  143. Werner JS, Schefrin BE. 1993. Loci of achromatic points throughout the life span. J. Opt. Soc. Am. A 10:1509–16 [Google Scholar]
  144. Wilson HR, Mei M, Habak C, Wilkinson F. 2011. Visual bandwidths for face orientation increase during healthy aging. Vis. Res. 51:160–64 [Google Scholar]
  145. Winawer J, Huk AC, Boroditsky L. 2008. A motion aftereffect from still photographs depicting motion. Psychol. Sci. 19:276–83 [Google Scholar]
  146. Winawer J, Huk AC, Boroditsky L. 2010. A motion aftereffect from visual imagery of motion. Cognition 114:276–84 [Google Scholar]
  147. Wissig SC, Patterson CA, Kohn A. 2013. Adaptation improves performance on a visual search task. J. Vis. 13:26 [Google Scholar]
  148. Wolpert DM, Diedrichsen J, Flanagan JR. 2011. Principles of sensorimotor learning. Nat. Rev. Neurosci. 12:739–51 [Google Scholar]
  149. Xu H, Dayan P, Lipkin RM, Qian N. 2008. Adaptation across the cortical hierarchy: Low-level curve adaptation affects high-level facial-expression judgments. J. Neurosci. 28:3374–83 [Google Scholar]
  150. Zaidi Q, Ennis R, Cao D, Lee B. 2012. Neural locus of color afterimages. Curr. Biol. 22:220–24 [Google Scholar]
  151. Zhang P, Bao M, Kwon M, He S, Engel SA. 2009. Effects of orientation-specific visual deprivation induced with altered reality. Curr. Biol. 19:1956–60 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error