1932

Abstract

The entorhinal cortex (EC) is a critical element of the hippocampal formation located within the medial temporal lobe (MTL) in primates. The EC has historically received attention for being the primary mediator of cortical information going into and coming from the hippocampus proper. In this review, we highlight the significance of the EC as a major player in memory processing, along with other associated structures in the primate MTL. The complex, convergent topographies of cortical and subcortical input to the EC, combined with short-range intrinsic connectivity and the selective targeting of EC efferents to the hippocampus, provide evidence for subregional specialization and integration of information beyond what would be expected if this structure were a simple conduit of information for the hippocampus. Lesion studies of the EC provide evidence implicating this region as critical for memory and the flexible use of complex relational associations between experienced events. The physiology of this structure's constituent principal cells mirrors the complexity of its anatomy. EC neurons respond preferentially to aspects of memory-dependent paradigms including object, place, and time. EC neurons also show striking spatial representations as primates explore visual space, similar to those identified in rodents navigating physical space. In this review, we highlight the great strides that have been made toward furthering our understanding of the primate EC, and we identify paths forward for future experiments to provide additional insight into the role of this structure in learning and memory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-030320-041115
2020-09-15
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/vision/6/1/annurev-vision-030320-041115.html?itemId=/content/journals/10.1146/annurev-vision-030320-041115&mimeType=html&fmt=ahah

Literature Cited

  1. Aggleton JP. 1986. A description of the amygdalo-hippocampal interconnections in the macaque monkey. Exp. Brain Res. 64:3515–26
    [Google Scholar]
  2. Aghajan ZM, Schuette P, Fields TA, Tran ME, Siddiqui SM et al. 2017. Theta oscillations in the human medial temporal lobe during real-world ambulatory movement. Curr. Biol. 27:243743–51.e3
    [Google Scholar]
  3. Aguirre GK, Detre JA, Alsop DC, D'Esposito M 1996. The parahippocampus subserves topographical learning in man. Cereb. Cortex 6:6823–29
    [Google Scholar]
  4. Amaral DG, Cowan WM. 1980. Subcortical afferents to the hippocampal formation in the monkey. J. Comp. Neurol. 189:4573–91
    [Google Scholar]
  5. Amaral DG, Insausti R, Cowan WM 1987. The entorhinal cortex of the monkey: I. Cytoarchitectonic organization. J. Comp. Neurol. 264:3326–55
    [Google Scholar]
  6. Baxter MG, Hadfield WS, Murray EA 1999. Rhinal cortex lesions produce mild deficits in visual discrimination learning for an auditory secondary reinforcer in rhesus monkeys. Behav. Neurosci. 113:2243–52
    [Google Scholar]
  7. Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE 2001. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8:5229–42
    [Google Scholar]
  8. Bohbot VD, Copara MS, Gotman J, Ekstrom AD 2017. Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation. Nat. Commun. 8:14415
    [Google Scholar]
  9. Bright IM, Meister MLR, Cruzado NA, Tiganj Z, Howard MW, Buffalo EA 2019. A temporal record of the past with a spectrum of time constants in the monkey entorhinal cortex. bioRxiv 688341. https://doi.org/10.1101/688341
    [Crossref]
  10. Brodmann K, Garey LJ. 2006. Brodmann's: Localisation in the Cerebral Cortex Berlin: Springer
  11. Buckmaster CA, Eichenbaum H, Amaral DG, Suzuki WA, Rapp PR 2004. Entorhinal cortex lesions disrupt the relational organization of memory in monkeys. J. Neurosci. 24:449811–25
    [Google Scholar]
  12. Buffalo EA. 2015. Bridging the gap between spatial and mnemonic views of the hippocampal formation. Hippocampus 25:6713–18
    [Google Scholar]
  13. Buffalo EA, Ramus SJ, Clark RE, Teng E, Squire LR, Zola SM 1999. Dissociation between the effects of damage to perirhinal cortex and area TE. Learn. Mem. 6:6572–99
    [Google Scholar]
  14. Buffalo EA, Ramus SJ, Squire LR, Zola SM 2000. Perception and recognition memory in monkeys following lesions of area TE and perirhinal cortex. Learn. Mem. 7:6375–82
    [Google Scholar]
  15. Burgess N, Barry C, O'Keefe J 2007. An oscillatory interference model of grid cell firing. Hippocampus 17:9801–12
    [Google Scholar]
  16. Burwell RD. 2006. The parahippocampal region: corticocortical connectivity. Ann. N. Y. Acad. Sci. 911:125–42
    [Google Scholar]
  17. Burwell RD, Amaral DG. 1998. Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J. Comp. Neurol. 391:3293–321
    [Google Scholar]
  18. Carmichael ST, Clugnet M‐C, Price JL 1994. Central olfactory connections in the macaque monkey. J. Comp. Neurol. 346:3403–34
    [Google Scholar]
  19. Carpenter F, Burgess N, Barry C 2017. Modulating medial septal cholinergic activity reduces medial entorhinal theta frequency without affecting speed or grid coding. Sci. Rep. 7:14573
    [Google Scholar]
  20. Chaplin TA, Rosa MGP, Lui LL 2018. Auditory and visual motion processing and integration in the primate cerebral cortex. Front. Neural Circuits 12:93
    [Google Scholar]
  21. Chen LL, Lin L-H, Green EJ, Barnes CA, McNaughton BL 1994. Head-direction cells in the rat posterior cortex. Exp. Brain Res. 101:18–23
    [Google Scholar]
  22. Chrobak JJ, Amaral DG. 2007. Entorhinal cortex of the monkey: VII. Intrinsic connections. J. Comp. Neurol. 500:4612–33
    [Google Scholar]
  23. Chudasama Y, Izquierdo A, Murray EA 2009. Distinct contributions of the amygdala and hippocampus to fear expression. Eur. J. Neurosci. 30:122327–37
    [Google Scholar]
  24. Clark BJ, Bassett JP, Wang SS, Taube JS 2010. Impaired head direction cell representation in the anterodorsal thalamus after lesions of the retrosplenial cortex. J. Neurosci. 30:155289–302
    [Google Scholar]
  25. Constantinescu AO, O'Reilly JX, Behrens TEJ 2016. Organizing conceptual knowledge in humans with a gridlike code. Science 352:62921464–68
    [Google Scholar]
  26. Constantinou M, Cogno SG, Elijah DH, Kropff E, Gigg J et al. 2016. Bursting neurons in the hippocampal formation encode features of LFP rhythms. Front. Comput. Neurosci. 10:133
    [Google Scholar]
  27. Courellis HS, Nummela SU, Metke M, Diehl GW, Bussell R et al. 2019. Spatial encoding in primate hippocampus during free navigation. PLOS Biol 17:12e3000546
    [Google Scholar]
  28. Deshmukh SS, Knierim JJ. 2011. Representation of non-spatial and spatial information in the lateral entorhinal cortex. Front. Behav. Neurosci. 5:69
    [Google Scholar]
  29. Desimone R, Ungerleider LG. 1986. Multiple visual areas in the caudal superior temporal sulcus of the macaque. J. Comp. Neurol. 248:2164–89
    [Google Scholar]
  30. Diehl GW, Hon OJ, Leutgeb S, Leutgeb JK 2017. Grid and nongrid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes. Neuron 94:183–92.e6
    [Google Scholar]
  31. Doan TP, Lagartos-Donate MJ, Nilssen ES, Ohara S, Witter MP 2019. Convergent projections from perirhinal and postrhinal cortices suggest a multisensory nature of lateral, but not medial, entorhinal cortex. Cell Rep 29:3617–27.e7
    [Google Scholar]
  32. Doeller CF, Barry C, Burgess N 2010. Evidence for grid cells in a human memory network. Nature 463:7281657–61
    [Google Scholar]
  33. Dolleman-Van Der Weel MJ, Witter MP 1996. Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J. Comp. Neurol. 364:4637–50
    [Google Scholar]
  34. Dragoi G, Carpi D, Recce M, Csicsvari J, Buzsáki G 1999. Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat. J. Neurosci. 19:146191–99
    [Google Scholar]
  35. Eichenbaum H. 2017. The role of the hippocampus in navigation is memory. J. Neurophysiol. 117:41785–96
    [Google Scholar]
  36. Eliav T, Geva-Sagiv M, Finkelstein A, Yartsev MM, Rubin A et al. 2015. Synchronicity without rhythmicity in the hippocampal formation of behaving bats. Paper presented at Neuroscience 2015, Oct. 17–21, Chicago, IL
    [Google Scholar]
  37. Evrard HC. 2019. The organization of the primate insular cortex. Front. Neuroanat. 14:43
    [Google Scholar]
  38. Fahy FL, Riches IP, Brown MW 1993. Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex. Exp. Brain Res. 96:3457–72
    [Google Scholar]
  39. Fritz J, Mishkin M, Saunders RC 2005. In search of an auditory engram. PNAS 102:269359–64
    [Google Scholar]
  40. Fyhn M, Molden S, Witter MP, Moser EI, Moser MB 2004. Spatial representation in the entorhinal cortex. Science 305:56881258–64
    [Google Scholar]
  41. Gaffan D, Murray EA. 1992. Monkeys (Macaca fascicularis) with rhinal cortex ablations succeed in object discrimination learning despite 24-hr intertrial intervals and fail at matching to sample despite double sample presentations. Behav. Neurosci. 106:130–38
    [Google Scholar]
  42. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI 2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436:7052801–6
    [Google Scholar]
  43. Hoffman KL, Dragan MC, Leonard TK, Micheli C, Montefusco-Siegmund R, Valiante TA 2013. Saccades during visual exploration align hippocampal 3–8 Hz rhythms in human and non-human primates. Front. Syst. Neurosci. 7:43
    [Google Scholar]
  44. Horner AJ, Bisby JA, Zotow E, Bush D, Burgess N 2016. Grid-like processing of imagined navigation. Curr. Biol. 26:6842–47
    [Google Scholar]
  45. Insausti R, Amaral DG. 2008. Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents. J. Comp. Neurol. 509:6608–41
    [Google Scholar]
  46. Insausti R, Amaral DG, Cowan WM 1987a. The entorhinal cortex of the monkey: II. Cortical afferents. J. Comp. Neurol. 264:3356–95
    [Google Scholar]
  47. Insausti R, Amaral DG, Cowan WM 1987b. The entorhinal cortex of the monkey: III. Subcortical afferents. J. Comp. Neurol. 264:3396–408
    [Google Scholar]
  48. Jacobs J, Kahana MJ, Ekstrom AD, Mollison MV, Fried I 2010. A sense of direction in human entorhinal cortex. PNAS 107:146487–92
    [Google Scholar]
  49. Jacobs J, Miller J, Lee SA, Coffey T, Watrous AJ et al. 2016. Direct electrical stimulation of the human entorhinal region and hippocampus impairs memory. Neuron 92:5983–90
    [Google Scholar]
  50. Jacobs J, Weidemann CT, Miller JF, Solway A, Burke JF et al. 2013. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat. Neurosci. 16:91188–90
    [Google Scholar]
  51. Julian JB, Keinath AT, Frazzetta G, Epstein RA 2018. Human entorhinal cortex represents visual space using a boundary-anchored grid. Nat. Neurosci. 21:2191–94
    [Google Scholar]
  52. Jutras MJ, Buffalo EA. 2010. Recognition memory signals in the macaque hippocampus. PNAS 107:1401–6
    [Google Scholar]
  53. Jutras MJ, Buffalo EA. 2014. Oscillatory correlates of memory in non-human primates. NeuroImage 85:2694–701
    [Google Scholar]
  54. Jutras MJ, Fries P, Buffalo EA 2013. Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. PNAS 110:3213144–49
    [Google Scholar]
  55. Khan UA, Liu L, Provenzano FA, Berman DE, Profaci CP et al. 2014. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease. Nat. Neurosci. 17:2304–11
    [Google Scholar]
  56. Killian NJ, Jutras MJ, Buffalo EA 2012. A map of visual space in the primate entorhinal cortex. Nature 491:7426761–64
    [Google Scholar]
  57. Killian NJ, Potter SM, Buffalo EA 2015. Saccade direction encoding in the primate entorhinal cortex during visual exploration. PNAS 112:5115743–48
    [Google Scholar]
  58. Komisaruk BR. 1970. Synchrony between limbic system theta activity and rhythmical behavior in rats. J. Comp. Physiol. Psychol. 70:3482–92
    [Google Scholar]
  59. Kondo H, Zaborszky L. 2016. Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. J. Comp. Neurol. 524:122503–15
    [Google Scholar]
  60. LaLumiere RT. 2014. Optogenetic dissection of amygdala functioning. Front. Behav. Neurosci. 8:107
    [Google Scholar]
  61. Lega BC, Jacobs J, Kahana M 2012. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus 22:4748–61
    [Google Scholar]
  62. Leonard BW, Amaral DG, Squire LR, Zola-Morgan S 1995. Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. J. Neurosci. 15:85637–59
    [Google Scholar]
  63. Liu AKL, Chang RC-C, Pearce RKB, Gentleman SM 2015. Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer's and Parkinson's disease. Acta Neuropathol 3:527–40
    [Google Scholar]
  64. Maass A, Berron D, Libby LA, Ranganath C, Düzel E 2015. Functional subregions of the human entorhinal cortex. eLife 4:e06426
    [Google Scholar]
  65. Meister MLR, Buffalo EA. 2018. Neurons in primate entorhinal cortex represent gaze position in multiple spatial reference frames. J. Neurosci. 38:102430–41
    [Google Scholar]
  66. Mesulam M-M, Mufson EJ, Levey AI, Wainer BH 1983. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214:2170–97
    [Google Scholar]
  67. Meunier M, Bachevalier J, Mishkin M, Murray EA 1993. Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J. Neurosci. 13:125418–32
    [Google Scholar]
  68. Miller EK, Desimone R. 1994. Parallel neuronal mechanisms for short-term memory. Science 263:5146520–22
    [Google Scholar]
  69. Miller EK, Erickson CA, Desimone R 1996. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16:165154–67
    [Google Scholar]
  70. Miller EK, Li L, Desimone R 1993. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurosci. 13:41460–78
    [Google Scholar]
  71. Milner B. 1972. Disorders of learning and memory after temporal lobe lesions in man. Clin. Neurosurg. 19:421–46
    [Google Scholar]
  72. Mishkin M. 1982. A memory system in the monkey. Philos. Trans. R. Soc. Lond. B 298:108983–95
    [Google Scholar]
  73. Mitchell SJ, Rawlins JNP, Steward O, Olton DS 1982. Medial septal area lesions disrupt θ rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J. Neurosci. 2:3292–302
    [Google Scholar]
  74. Murray EA, Mishkin M. 1998. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J. Neurosci. 18:166568–82
    [Google Scholar]
  75. Nau M, Julian JB, Doeller CF 2018a. How the brain's navigation system shapes our visual experience. Trends Cogn. Sci. 22:9810–25
    [Google Scholar]
  76. Nau M, Navarro Schröder T, Bellmund JLS, Doeller CF 2018b. Hexadirectional coding of visual space in human entorhinal cortex. Nat. Neurosci. 21:2188–90
    [Google Scholar]
  77. Naya Y, Chen H, Yang C, Suzuki WA, Squire LR 2017. Contributions of primate prefrontal cortex and medial temporal lobe to temporal-order memory. PNAS 114:5113555–60
    [Google Scholar]
  78. Naya Y, Suzuki WA. 2011. Integrating what and when across the primate medial temporal lobe. Science 333:6043773–76
    [Google Scholar]
  79. Nemanic S, Alvarado MC, Bachevalier J 2004. The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object-delayed nonmatching in monkeys. J. Neurosci. 24:82013–26
    [Google Scholar]
  80. O'Keefe J, Dostrovsky J. 1971. The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:1171–75
    [Google Scholar]
  81. O'Keefe J, Nadel L. 1978. The Hippocampus as a Cognitive Map Oxford, UK: Clarendon Press
  82. Pascalis O, Bachevalier J. 1999. Neonatal aspiration lesions of the hippocampal formation impair visual recognition memory when assessed by paired-comparison task but not by delayed nonmatching-to-sample task. Hippocampus 9:6609–16
    [Google Scholar]
  83. Ramón y Cajal S. 1899. Estudios sobre la corteza cerebral humana. I. Corteza visual. Riv. Trimest. Microgr. 4:11–63
    [Google Scholar]
  84. Ramos JMJ. 2014. Essential role of the perirhinal cortex in complex tactual discrimination tasks in rats. Cereb. Cortex 24:82068–80
    [Google Scholar]
  85. Rempel-Clower NL. 2000. The laminar pattern of connections between prefrontal and anterior temporal cortices in the rhesus monkey is related to cortical structure and function. Cereb. Cortex 10:9851–65
    [Google Scholar]
  86. Ren Y, Zhang L, Lu Y, Yang H, Westlund KN 2009. Central lateral thalamic neurons receive noxious visceral mechanical and chemical input in rats. J. Neurophysiol. 102:1244–58
    [Google Scholar]
  87. Riches IP, Wilson FAW, Brown MW 1991. The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate. J. Neurosci. 11:61763–79
    [Google Scholar]
  88. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP et al. 2006. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:5774758–62
    [Google Scholar]
  89. Saunders RC, Weiskrantz L. 1989. The effects of fornix transection and combined fornix transection, mammillary body lesions and hippocampal ablations on object-pair association memory in the rhesus monkey. Behav. Brain Res. 35:285–94
    [Google Scholar]
  90. Schiller D, Eichenbaum H, Buffalo EA, Davachi L, Foster DJ et al. 2015. Memory and space: towards an understanding of the cognitive map. J. Neurosci. 35:4113904–11
    [Google Scholar]
  91. Schröder TN, Haak KV, Jimenez NIZ, Beckmann CF, Doeller CF 2015. Functional topography of the human entorhinal cortex. eLife 4:e06738
    [Google Scholar]
  92. Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P 2010. Dynamics of active sensing and perceptual selection. Curr. Opin. Neurobiol. 20:2172–76
    [Google Scholar]
  93. Setogawa T, Mizuhiki T, Matsumoto N, Akizawa F, Kuboki R et al. 2019. Neurons in the monkey orbitofrontal cortex mediate reward value computation and decision-making. Commun. Biol. 2:126
    [Google Scholar]
  94. Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI 2008. Representation of geometric borders in the entorhinal cortex. Science 322:59091865–68
    [Google Scholar]
  95. Squire LR, Zola-Morgan S. 1991. The medial temporal lobe memory system. Science 253:50261380–86
    [Google Scholar]
  96. Strange BA, Witter MP, Lein ES, Moser EI 2014. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15:10655–69
    [Google Scholar]
  97. Suthana N, Haneef Z, Stern J, Mukamel R, Behnke E et al. 2012. Memory enhancement and deep-brain stimulation of the entorhinal area. N. Engl. J. Med. 366:6502–10
    [Google Scholar]
  98. Suzuki WA, Amaral DG. 1994. Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J. Neurosci. 14:31856–77
    [Google Scholar]
  99. Suzuki WA, Miller EK, Desimone R 1997. Object and place memory in the macaque entorhinal cortex. J. Neurophysiol. 78:21062–81
    [Google Scholar]
  100. Talakoub O, Sayegh PF, Womelsdorf T, Zinke W, Fries P et al. 2019. Hippocampal and neocortical oscillations are tuned to behavioral state in freely-behaving macaques. bioRxiv 552877. https://doi.org/10.1101/552877
    [Crossref]
  101. Tamura K, Takeda M, Setsuie R, Tsubota T, Hirabayashi T et al. 2017. Conversion of object identity to object-general semantic value in the primate temporal cortex. Science 357:6352687–92
    [Google Scholar]
  102. Tsao A, Moser MB, Moser EI 2013. Traces of experience in the lateral entorhinal cortex. Curr. Biol. 23:5399–405
    [Google Scholar]
  103. Tsao A, Sugar J, Lu L, Wang C, Knierim JJ et al. 2018. Integrating time from experience in the lateral entorhinal cortex. Nature 561:772157–62
    [Google Scholar]
  104. Ulanovsky N, Moss CF. 2007. Hippocampal cellular and network activity in freely moving echolocating bats. Nat. Neurosci. 10:2224–33
    [Google Scholar]
  105. Van Hoesen GW, Pandya DN 1975a. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:11–24
    [Google Scholar]
  106. Van Hoesen GW, Pandya DN 1975b. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res 95:139–59
    [Google Scholar]
  107. Vanderwolf C. 1969. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr. Clin. Neurophysiol. 26:4407–18
    [Google Scholar]
  108. Vertes RP, Kocsis B. 1997. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:4893–926
    [Google Scholar]
  109. Walton ME, Mars RB. 2007. Probing human and monkey anterior cingulate cortex in variable environments. Cogn. Affect. Behav. Neurosci. 7:4413–22
    [Google Scholar]
  110. Wilming N, König P, König S, Buffalo EA 2018. Entorhinal cortex receptive fields are modulated by spatial attention, even without movement. eLife 7:e31745
    [Google Scholar]
  111. Witter MP. 2007. The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog. Brain Res. 163:43–61
    [Google Scholar]
  112. Witter MP, Amaral DG. 1991. Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J. Comp. Neurol. 307:3437–59
    [Google Scholar]
  113. Witter MP, Doan TP, Jacobsen B, Nilssen ES, Ohara S 2017. Architecture of the entorhinal cortex a review of entorhinal anatomy in rodents with some comparative notes. Front. Syst. Neurosci. 11:46
    [Google Scholar]
  114. Witter MP, Van Hoesen GW, Amaral DG 1989. Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J. Neurosci. 9:1216–28
    [Google Scholar]
  115. Yartsev MM, Ulanovsky N. 2013. Representation of three-dimensional space in the hippocampus of flying bats. Science 340:6130367–72
    [Google Scholar]
  116. Yartsev MM, Witter MP, Ulanovsky N 2011. Grid cells without theta oscillations in the entorhinal cortex of bats. Nature 479:7371103–7
    [Google Scholar]
  117. Zola-Morgan S, Squire LR. 1985. Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia. Behav. Neurosci. 99:122–34
    [Google Scholar]
  118. Zola SM, Squire LR, Teng E, Stefanacci L, Buffalo EA, Clark RE 2000. Impaired recognition memory in monkeys after damage limited to the hippocampal region. J. Neurosci. 20:1451–63
    [Google Scholar]
/content/journals/10.1146/annurev-vision-030320-041115
Loading
/content/journals/10.1146/annurev-vision-030320-041115
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error