1932

Abstract

In studying visual perception, we seek to develop models of processing that accurately predict perceptual judgments. Much of this work is focused on judgments of discrimination, and there is a large literature concerning models of visual discrimination. There are, however, non-threshold visual judgments, such as judgments of the magnitude of differences between visual stimuli, that provide a means to bridge the gap between threshold and appearance. We describe two such models of suprathreshold judgments, maximum likelihood difference scaling and maximum likelihood conjoint measurement, and review recent literature that has exploited them.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-030320-041152
2020-09-15
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/vision/6/1/annurev-vision-030320-041152.html?itemId=/content/journals/10.1146/annurev-vision-030320-041152&mimeType=html&fmt=ahah

Literature Cited

  1. Abbatecola C, Beneyton K, Gerardin P, Kennedy H, Knoblauch K 2020. Voice and face gender perception engages multimodal integration via multiple feedback pathways. bioRxiv 884668. https://doi.org/10.1101/2020.01.07.884668
    [Crossref]
  2. Anderson D, Burnham K. 2004. Model Selection and Multi-Model Inference Berlin: Springer. , 2nd ed..
    [Google Scholar]
  3. Augustin T. 2006. Stevens' direct scaling methods and the uniqueness problem. Psychometrika 71:46981
    [Google Scholar]
  4. Bates D, Mächler M, Bolker B, Walker S 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67:1148
    [Google Scholar]
  5. Bellot E, Coizet V, Warnking J, Knoblauch K, Moro E, Dojat M 2016. Effects of aging on low luminance contrast processing in humans. NeuroImage 139:415–26
    [Google Scholar]
  6. Belsley DA, Kuh E, Welsch R 1980. Identifying Influential Data and Sources of Collinearity New York: Wiley
    [Google Scholar]
  7. Bi W, Jin P, Nienborg H, Xiao B 2018. Estimating mechanical properties of cloth from videos using dense motion trajectories: human psychophysics and machine learning. J. Vis. 18:12
    [Google Scholar]
  8. Brainard DH, Cottaris NP, Radonjić A 2018. The perception of colour and material in naturalistic tasks. Interf. Focus 8:20180012
    [Google Scholar]
  9. Brindley GS. 1970. Physiology of the Retina and Visual Pathway London: Edward Arnold. , 2nd ed..
    [Google Scholar]
  10. Brown AM, Lindsey DT, Guckes KM 2011. Color names, color categories, and color-cued visual search: Sometimes, color perception is not categorical. J. Vis. 11:2
    [Google Scholar]
  11. Chadwick AC, Cox G, Smithson HE, Kentridge RW 2018. Beyond scattering and absorption: perceptual unmixing of translucent liquids. J. Vis. 18:18
    [Google Scholar]
  12. Chammat M, Jouvent R, Dumas G, Knoblauch K, Dubal S 2011. Interactions between luminance contrast and emotionality in visual pleasure and contrast appearance. Percept. ECVP Abstr. 40:22
    [Google Scholar]
  13. Charrier C, Maloney LT, Cherifi H, Knoblauch K 2007. Maximum likelihood difference scaling of image quality in compression-degraded images. J. Opt. Soc. Am. A 24:3418–26
    [Google Scholar]
  14. Devinck F, Gerardin P, Dojat M, Knoblauch K 2014. Spatial selectivity of the watercolor effect. J. Opt. Soc. Am. A 31:1–6
    [Google Scholar]
  15. Devinck F, Knoblauch K. 2012. A common signal detection model accounts for both perception and discrimination of the watercolor effect. J. Vis. 12:19
    [Google Scholar]
  16. Efron B, Tibshirani RJ. 1994. An Introduction to the Bootstrap Boca Raton, FL: CRC Press
    [Google Scholar]
  17. Emrith K, Chantler MJ, Green PR, Maloney LT, Clarke AD 2010. Measuring perceived differences in surface texture due to changes in higher order statistics. J. Opt. Soc. Am. A 27:1232–44
    [Google Scholar]
  18. Ernst MO, Banks MS. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–33
    [Google Scholar]
  19. Faul F. 2017. Toward a perceptually uniform parameter space for filter transparency. ACM Trans. Appl. Percept. 14:13
    [Google Scholar]
  20. Fechner G. 1860. Elemente der Psychophysik Leipzig, Ger: Breitkopf & Härtel
    [Google Scholar]
  21. Fleming RW, Jakel F, Maloney LT 2011. Visual perception of thick transparent materials. Psychol. Sci. 22:812–20
    [Google Scholar]
  22. Fleming RW, Nishida S, Gegenfurtner KR 2015. Perception of material properties. Vis. Res. 115:157–62
    [Google Scholar]
  23. Geisler WS. 1989. Sequential ideal-observer analysis of visual discriminations. Psychol. Rev. 96:267–314
    [Google Scholar]
  24. Gerardin P, Abbatecola C, Devinck F, Kennedy H, Dojat M, Knoblauch K 2018a. Neural circuits for long-range color filling-in. NeuroImage 181:30–43
    [Google Scholar]
  25. Gerardin P, Devinck F, Dojat M, Knoblauch K 2014. Contributions of contour frequency, amplitude, and luminance to the watercolor effect estimated by conjoint measurement. J. Vis. 14:9
    [Google Scholar]
  26. Gerardin P, Dojat M, Knoblauch K, Devinck F 2018b. Effects of background and contour luminance on the hue and brightness of the watercolor effect. Vis. Res. 144:9–19
    [Google Scholar]
  27. Green DM, Swets JA. 1966. Signal Detection Theory and Psychophysics New York: Wiley. , 1st ed..
    [Google Scholar]
  28. Haghiri S, Wichmann F, von Luxburg U 2019a. Comparison-based framework for psychophysics: lab versus crowdsourcing. arXiv:1905.07234 [cs.LG]
  29. Haghiri S, Wichmann F, von Luxburg U 2019b. Estimation of perceptual scales using ordinal embedding. arXiv:1908.07962 [cs.LG]
  30. Hansmann-Roth S, Mamassian P. 2017. A glossy simultaneous contrast: conjoint measurements of gloss and lightness. i-Perception 8: https://doi.org/10.1177/2041669516687770
    [Crossref] [Google Scholar]
  31. Hansmann-Roth S, Pont SC, Mamassian P 2018. Contextual effects in human gloss perception. Electron. Imag. 2018:1–7
    [Google Scholar]
  32. Hillis JM, Brainard DH. 2005. Do common mechanisms of adaptation mediate color discrimination and appearance? Uniform backgrounds. J. Opt. Soc. Am. A 22:2090–106
    [Google Scholar]
  33. Hillis JM, Brainard DH. 2007a. Distinct mechanisms mediate visual detection and identification. Curr. Biol. 17:1714–19
    [Google Scholar]
  34. Hillis JM, Brainard DH. 2007b. Do common mechanisms of adaptation mediate color discrimination and appearance? Contrast adaptation. J. Opt. Soc. Am. A 24:2122–33
    [Google Scholar]
  35. Ho YX, Landy MS, Maloney LT 2008. Conjoint measurement of gloss and surface texture. Psychol. Sci. 19:196–204
    [Google Scholar]
  36. Hurvich LM. 1981. Color Vision Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  37. Kaiser PK, Boynton RM. 1996. Human Color Vision Washington, DC: Opt. Soc. Am. , 2nd ed..
    [Google Scholar]
  38. Kingdom FA. 2016. Fixed versus variable internal noise in contrast transduction: the significance of Whittle's data. Vis. Res. 128:1–5
    [Google Scholar]
  39. Kingdom FA, Prins N. 2016. Psychophysics: A Practical Introduction London: Academic. , 2nd ed..
    [Google Scholar]
  40. Knoblauch K, Maloney L. 2008. MLDS: maximum likelihood difference scaling in R. J. Stat. Softw. 25:2126
    [Google Scholar]
  41. Knoblauch K, Maloney LT. 2012. Modeling Psychophysical Data in R Berlin: Springer
    [Google Scholar]
  42. Knoblauch K, Maloney LT, Aguilar G 2019. MLCM: maximum likelihood conjoint measurement. R Package Version 0.4.2 https://CRAN.R-project.org/package=MLCM
    [Google Scholar]
  43. Knoblauch K, Marsh-Armstrong B, Werner JS 2020. Suprathreshold contrast response in normal and anomalous trichromats. J. Opt. Soc. Am. A 37:133–44
    [Google Scholar]
  44. Krantz DH. 1975. Color measurement and color theory: II. Opponent-colors theory. J. Math. Psychol. 12:304–27
    [Google Scholar]
  45. Krantz DH, Luce RD, Suppes P, Tversky A 1971. Foundations of Measurement, Vol. 1: Additive and Polynomial Representations London: Academic
    [Google Scholar]
  46. Krantz DH, Luce RD, Suppes P, Tversky A 1989. Foundations of Measurement, Vol. 2: Geometric, Threshold, and Probabilistic Representations London: Academic
    [Google Scholar]
  47. Laming J, Laming D. 1996. J. Plateau: on the measurement of physical sensations and on the law which links the intensity of these sensations to the intensity of the source. Psychol. Res. 59:134–44
    [Google Scholar]
  48. Landy MS, Maloney LT, Johnston EB, Young M 1995. Measurement and modeling of depth cue combination: in defense of weak fusion. Vis. Res. 35:389–412
    [Google Scholar]
  49. Lindsey DT, Brown AM, Reijnen E, Rich AN, Kuzmova YI, Wolfe JM 2010. Color channels, not color appearance or color categories, guide visual search for desaturated color targets. Psychol. Sci. 21:1208–14
    [Google Scholar]
  50. Liotta A, Mocanu DC, Menkovski V, Cagnetta L, Exarchakos G 2013. Instantaneous video quality assessment for lightweight devices. Proceedings of International Conference on Advances in Mobile Computing & Multimedia525–31 New York: ACM
    [Google Scholar]
  51. Lisi M, Gorea A. 2016. Time constancy in human perception. J. Vis. 16:3
    [Google Scholar]
  52. Logvinenko AD, Maloney LT. 2006. The proximity structure of achromatic surface colors and the impossibility of asymmetric lightness matching. Percept. Psychophys. 68:76–83
    [Google Scholar]
  53. Maloney LT, Yang JN. 2003. Maximum likelihood difference scaling. J. Vis. 3:573–85
    [Google Scholar]
  54. Maloney LT, Zhang H. 2010. Decision-theoretic models of visual perception and action. Vis. Res. 50:2362–74
    [Google Scholar]
  55. Mansour Pour K, Gekas N, Perrinet L, Mamassian P, Montagnini A, Masson G 2018. Speed uncertainty and motion perception with naturalistic random textures. J. Vis. 18:345
    [Google Scholar]
  56. McCourt ME, Blakeslee B. 1994. Contrast-matching analysis of grating induction and suprathreshold contrast perception. J. Opt. Soc. Am. A 11:14–24
    [Google Scholar]
  57. Menkovski V, Exarchakos G, Liotta A 2011a. Adaptive testing for video quality assessment. Proceedings of the 2nd International Workshop on Future Television (EuroITV 2011), June 29ed. MJ Dama'sio, G Cardoso, C Quico, D Geertspp.128–31 Lisbon: Univ. Lusófona Humanid. Tecnol.
    [Google Scholar]
  58. Menkovski V, Exarchakos G, Liotta A 2011b. The value of relative quality in video delivery. J. Mobile Multimed. 7:151–62
    [Google Scholar]
  59. Menkovski V, Exarchakos G, Liotta A 2012. Tackling the sheer scale of subjective QoE. Mobile Multimedia Communicationsed. L Atzori, J Delgado, D Giustopp1–15 Berlin: Springer
    [Google Scholar]
  60. Menkovski V, Liotta A. 2012. Adaptive psychometric scaling for video quality assessment. Image Commun. 27:788–99
    [Google Scholar]
  61. Nichiporuk N, Knoblauch K, Abbatecola C, Shevell S 2017. The lightness distortion effect: Additive conjoint measurement shows race has a larger influence on perceived lightness of upright than inverted faces. J. Vis. 17:245
    [Google Scholar]
  62. Nichiporuk N, Knoblauch K, Abbatecola C, Shevell S 2018. Does observer's ethnicity affect perceived face lightness? A study of the face-lightness distortion effect for African American and Caucasian observers. J. Vis. 18:1099
    [Google Scholar]
  63. Nishida S, Kawabe T, Sawayama M, Fukiage T 2018. Motion perception: from detection to interpretation. Annu. Rev. Vis. Sci. 4:501–23
    [Google Scholar]
  64. Obein G, Knoblauch K, Vienot F 2004. Difference scaling of gloss: nonlinearity, binocularity, and constancy. J. Vis. 4:711–20
    [Google Scholar]
  65. Paulun VC, Kawabe T, Nishida S, Fleming RW 2015. Seeing liquids from static snapshots. Vis. Res. 115:163–74
    [Google Scholar]
  66. Pelli DG, Bex P. 2013. Measuring contrast sensitivity. Vis. Res. 90:10–14
    [Google Scholar]
  67. Pinna B, Brelstaff G, Spillmann L 2001. Surface color from boundaries: a new “watercolor” illusion. Vis. Res. 41:2669–76
    [Google Scholar]
  68. Poynton C. 2012. Digital Video and HD: Algorithms and Interfaces Amsterdam: Elsevier
    [Google Scholar]
  69. R Core Team 2019. R: A Language and Environment for Statistical Computing Vienna: R Found. Stat. Comput.
    [Google Scholar]
  70. Radonjić A, Brainard DH. 2016. The nature of instructional effects in color constancy. J. Exp. Psychol. Hum. Percept. Perform. 42:847–65
    [Google Scholar]
  71. Radonjić A, Cottaris NP, Brainard DH 2015a. Color constancy in a naturalistic, goal-directed task. J. Vis. 15:3
    [Google Scholar]
  72. Radonjić A, Cottaris NP, Brainard DH 2015b. Color constancy supports cross-illumination color selection. J. Vis. 15:13
    [Google Scholar]
  73. Radonjić A, Cottaris NP, Brainard DH 2019. The relative contribution of color and material in object selection. PLOS Comput. Biol. 15:e1006950
    [Google Scholar]
  74. Rhodes G, Maloney LT, Turner J, Ewing L 2007. Adaptive face coding and discrimination around the average face. Vis. Res. 47:974–89
    [Google Scholar]
  75. Roberts FS. 1985. Measurement Theory Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  76. Rogers M, Franklin A, Knoblauch K 2018. A novel method to investigate how dimensions interact to inform perceptual salience in infancy. Infancy 23:833–56
    [Google Scholar]
  77. Rogers M, Knoblauch K, Franklin A 2016. Maximum likelihood conjoint measurement of lightness and chroma. J. Opt. Soc. Am. A 33:A184–93
    [Google Scholar]
  78. Sawayama M, Nishida S, Shinya M 2017. Human perception of subresolution fineness of dense textures based on image intensity statistics. J. Vis. 17:8
    [Google Scholar]
  79. Schneider B. 1980a. Individual loudness functions determined from direct comparisons of loudness intervals. Percept. Psychophys. 28:493–503
    [Google Scholar]
  80. Schneider B. 1980b. A technique for the nonmetric analysis of paired comparisons of psychological intervals. Psychometrika 45:357–72
    [Google Scholar]
  81. Schneider B, Parker S, Stein D 1974. The measurement of loudness using direct comparisons of sensory intervals. J. Math. Psychol. 11:259–73
    [Google Scholar]
  82. Stevens S. 1946. On the theory of scales of measurement. Science 103:677–80
    [Google Scholar]
  83. Stevens SS. 1961. To honor Fechner and repeal his law. Science 133:80–86
    [Google Scholar]
  84. Suppes P, Krantz DH, Luce RD, Tversky A 1990. Foundations of Measurement, Vol. 3: Representation, Axiomatization, and Invariance London: Academic
    [Google Scholar]
  85. Takasaki H. 1966. Lightness change of grays induced by change in reflectance of gray background. J. Opt. Soc. Am. 56:504–9
    [Google Scholar]
  86. Teller DY. 1979. The forced-choice preferential looking procedure: a psychophysical technique for use with human infants. Infant Behav. Dev. 2:135–53
    [Google Scholar]
  87. Thurstone LL. 1927. A law of comparative judgment. Psychol. Rev. 34:273–86
    [Google Scholar]
  88. Ward F, Boynton RM. 1974. Scaling of large chromatic differences. Vis. Res. 14:943–49
    [Google Scholar]
  89. Whittle P. 1992. Brightness, discriminability and the “crispening effect.”. Vis. Res. 32:1493–507
    [Google Scholar]
  90. Wichmann FA, Hill NJ. 2001. The psychometric function: I. Fitting, sampling, and goodness of fit. Percept. Psychophys. 63:1293–313
    [Google Scholar]
  91. Wiebel CB, Aguilar G, Maertens M 2017. Maximum likelihood difference scales represent perceptual magnitudes and predict appearance matches. J. Vis. 17:1
    [Google Scholar]
  92. Wood SN. 2017. Generalized Additive Models: An Introduction with R Boca Raton, FL: CRC Press
    [Google Scholar]
  93. Yang JN, Szeverenyi NM, Ts'o D 2007. Neural resources associated with perceptual judgment across sensory modalities. Cereb. Cortex 18:38–45
    [Google Scholar]
/content/journals/10.1146/annurev-vision-030320-041152
Loading
/content/journals/10.1146/annurev-vision-030320-041152
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error