1932

Abstract

Inherited retinal diseases (IRDs) are at the forefront of innovative gene-specific treatments because of the causation by single genes, the availability of microsurgical access for treatment delivery, and the relative ease of quantitative imaging and vision measurement. However, it is not always easy to choose a priori, from scores of potential measures, an appropriate subset to evaluate efficacy outcomes considering the wide range of disease stages with different phenotypic features. This article reviews measurements of visual function and retinal structure that our group has used over the past three decades to understand the natural history of IRDs. We include measures of light sensitivity, retinal structure, mapping of natural fluorophores, evaluation of pupillary light reflex, and oculomotor control. We provide historical context and examples of applicability. We also review treatment trial outcomes using these measures of function and structure.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-032321-091738
2021-09-15
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-032321-091738.html?itemId=/content/journals/10.1146/annurev-vision-032321-091738&mimeType=html&fmt=ahah

Literature Cited

  1. Aguirre GK, Butt OH, Datta R, Roman AJ, Sumaroka A et al. 2017. Postretinal structure and function in severe congenital photoreceptor blindness caused by mutations in the GUCY2D gene. Investig. Ophthalmol. Vis. Sci. 58:2959–73
    [Google Scholar]
  2. Aguirre GK, Komáromy AM, Cideciyan AV, Brainard DH, Aleman TS et al. 2007. Canine and human visual cortex intact and responsive despite early retinal blindness from RPE65 mutation. PLOS Med 4:61117–28
    [Google Scholar]
  3. Aleman TS, Jacobson SG, Chico JD, Scott ML, Cheung AY et al. 2004. Impairment of the transient pupillary light reflex in Rpe65˗/˗ mice and humans with Leber congenital amaurosis. Investig. Ophthalmol. Vis. Sci. 45:41259–71
    [Google Scholar]
  4. Beltran WA, Cideciyan AV, Iwabe S, Swider M, Kosyk MS et al. 2015. Successful arrest of photoreceptor and vision loss expands the therapeutic window of retinal gene therapy to later stages of disease. italicPNAS 112:43E5844–53
    [Google Scholar]
  5. Beltran WA, Cideciyan AV, Lewin AS, Iwabe S, Khanna H et al. 2012. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. PNAS 109:62132–37
    [Google Scholar]
  6. Bennett LD, Metz G, Klein M, Locke KG, Khwaja A, Birch DG. 2019. Regional variations and intra-/intersession repeatability for scotopic sensitivity in normal controls and patients with inherited retinal degenerations. Investig. Ophthalmol. Vis. Sci. 60:41122–31
    [Google Scholar]
  7. Bermond K, Wobbe C, Tarau IS, Heintzmann R, Hillenkamp J et al. 2020. Autofluorescent granules of the human retinal pigment epithelium: phenotypes, intracellular distribution, and age-related topography. Investig. Ophthalmol. Vis. Sci. 61:535
    [Google Scholar]
  8. Berson EL. 1980. Light deprivation and retinitis pigmentosa. Vis. Res. 20:1179–84
    [Google Scholar]
  9. Birch DG, Cheng P, Duncan JL, Ayala AR, Maguire MG et al. 2020. The RUSH2A study: best-corrected visual acuity, full-field electroretinography amplitudes, and full-field stimulus thresholds at baseline. Transl. Vis. Sci. Technol. 9:119
    [Google Scholar]
  10. Birch DG, Wen Y, Locke K, Hood DC 2011. Rod sensitivity, cone sensitivity, and photoreceptor layer thickness in retinal degenerative diseases. Investig. Ophthalmol. Vis. Sci. 52:107141–47
    [Google Scholar]
  11. Bizheva K, Pflug R, Hermann B, Považay B, Sattmann H et al. 2006. Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. PNAS 103:135066–71
    [Google Scholar]
  12. Boulton M, Dayhaw-Barker P. 2001. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 15:3384–89
    [Google Scholar]
  13. Calzetti G, Levy RA, Cideciyan AV, Garafalo AV, Roman AJ et al. 2018. Efficacy outcome measures for clinical trials of USH2A caused by the common c.2299delG mutation. Am. J. Ophthalmol. 193:114–29
    [Google Scholar]
  14. Charng J, Cideciyan AV, Jacobson SG, Sumaroka A, Schwartz SB et al. 2016. Variegated yet non-random rod and cone photoreceptor disease patterns in RPGR-ORF15-associated retinal degeneration. Hum. Mol. Genet. 25:245444–59
    [Google Scholar]
  15. Charng J, Jacobson SG, Heon E, Roman AJ, McGuigan DB et al. 2017. Pupillary light reflexes in severe photoreceptor blindness isolate the melanopic component of intrinsically photosensitive retinal ganglion cells. Investig. Ophthalmol. Vis. Sci. 58:73215–24
    [Google Scholar]
  16. Cideciyan AV. 2010. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog. Retin. Eye Res. 29:5398–427
    [Google Scholar]
  17. Cideciyan AV, Aguirre GK, Jacobson SG, Butt OH, Schwartz SB et al. 2015a. Pseudo-fovea formation after gene therapy for RPE65-LCA. Investig. Ophthalmol. Vis. Sci. 56:1526–37
    [Google Scholar]
  18. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S et al. 2008. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. PNAS 105:3915112–17
    [Google Scholar]
  19. Cideciyan AV, Aleman TS, Jacobson SG, Khanna H, Sumaroka A et al. 2007a. Centrosomal-ciliary gene CEP290/NPHP6 mutations result in blindness with unexpected sparing of photoreceptors and visual brain: implications for therapy of Leber congenital amaurosis. Hum. Mutat. 28:111074–83
    [Google Scholar]
  20. Cideciyan AV, Aleman TS, Swider M, Schwartz SB, Steinberg JD et al. 2004. Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum. Mol. Genet. 13:5525–34
    [Google Scholar]
  21. Cideciyan AV, Charng J, Roman AJ, Sheplock R, Garafalo AV et al. 2018a. Progression in X-linked retinitis pigmentosa due to ORF15-RPGR mutations: assessment of localized vision changes over 2 years. Investig. Ophthalmol. Vis. Sci. 59:114558–66
    [Google Scholar]
  22. Cideciyan AV, Charng J, Swider M, Sheplock R, McGuigan DB et al. 2016. Comparative measurements of rod function in retinal degenerations with two-color dark-adapted perimetry. Investig. Ophthalmol. Vis. Sci. 57:12131
    [Google Scholar]
  23. Cideciyan AV, Haeseleer F, Fariss RN, Aleman TS, Jang GF et al. 2000. Rod and cone visual cycle consequences of a null mutation in the 11-cis-retinol dehydrogenase gene in man. Vis. Neurosci. 17:5667–78
    [Google Scholar]
  24. Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB et al. 2009a. Vision 1 year after gene therapy for Leber's congenital amaurosis. N. Engl. J. Med. 361:7725–27
    [Google Scholar]
  25. Cideciyan AV, Hood DC, Huang Y, Banin E, Li ZY et al. 1998. Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man. PNAS 95:127103–8
    [Google Scholar]
  26. Cideciyan AV, Hufnagel RB, Carroll J, Sumaroka A, Luo X et al. 2013a. Human cone visual pigment deletions spare sufficient photoreceptors to warrant gene therapy. Hum. Gene Ther. 24:12993–1006
    [Google Scholar]
  27. Cideciyan AV, Jacobson SG. 2019. Leber congenital amaurosis (LCA): potential for improvement of vision. Investig. Ophthalmol. Vis. Sci. 60:51680–95
    [Google Scholar]
  28. Cideciyan AV, Jacobson SG, Aleman TS, Gu D, Pearce-Kelling SE et al. 2005a. In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa. PNAS 102:145233–38
    [Google Scholar]
  29. Cideciyan AV, Jacobson SG, Beltran WA, Sumaroka A, Swider M et al. 2013b. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. PNAS 110:6E517–25
    [Google Scholar]
  30. Cideciyan AV, Jacobson SG, Drack AV, Ho AC, Charng J et al. 2019. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat. Med. 25:2225–28
    [Google Scholar]
  31. Cideciyan AV, Jacobson SG, Ho AC, Garafalo AV, Roman AJ et al. 2021. Durable vision improvement after a single treatment with antisense oligonucleotide sepofarsen: a case report. Nat. Med. 27:785–89
    [Google Scholar]
  32. Cideciyan AV, Jacobson SG, Roman AJ, Sumaroka A, Wu V et al. 2020. Rod function deficit in retained photoreceptors of patients with class B Rhodopsin mutations. Sci. Rep. 10:112552
    [Google Scholar]
  33. Cideciyan AV, Pugh EN, Lamb TD, Huang Y, Jacobson SG. 1997. Rod plateaux during dark adaptation in Sorsby's fundus dystrophy and vitamin A deficiency. Investig. Ophthalmol. Vis. Sci. 38:91786–94
    [Google Scholar]
  34. Cideciyan AV, Rachel RA, Aleman TS, Swider M, Schwartz SB et al. 2011. Cone photoreceptors are the main targets for gene therapy of NPHP5 (IQCB1) or NPHP6 (CEP290) blindness: generation of an all-cone Nphp6 hypomorph mouse that mimics the human retinal ciliopathy. Hum. Mol. Genet. 20:71411–23
    [Google Scholar]
  35. Cideciyan AV, Sudharsan R, Dufour VL, Massengill MT, Iwabe S et al. 2018b. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. PNAS 115:36E8547–56
    [Google Scholar]
  36. Cideciyan AV, Swider M, Aleman TS, Roman MI, Sumaroka A et al. 2007b. Reduced-illuminance autofluorescence imaging in ABCA4-associated retinal degenerations. J. Opt. Soc. Am. A. 24:51457–67
    [Google Scholar]
  37. Cideciyan AV, Swider M, Aleman TS, Sumaroka A, Schwartz SB et al. 2005b. ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina. Investig. Ophthalmol. Vis. Sci. 46:124739–46
    [Google Scholar]
  38. Cideciyan AV, Swider M, Aleman TS, Tsybovsky Y, Schwartz SB et al. 2009b. ABCA4 disease progression and a proposed strategy for gene therapy. Hum. Mol. Genet. 18:5931–41
    [Google Scholar]
  39. Cideciyan AV, Swider M, Jacobson SG. 2015b. Autofluorescence imaging with near-infrared excitation: normalization by reflectance to reduce signal from choroidal fluorophores. Investig. Ophthalmol. Vis. Sci. 56:53393–406
    [Google Scholar]
  40. Cideciyan AV, Swider M, Schwartz SB, Stone EM, Jacobson SG. 2015c. Predicting progression of ABCA4-associated retinal degenerations based on longitudinal measurements of the leading disease front. Investig. Ophthalmol. Vis. Sci. 56:105946–55
    [Google Scholar]
  41. Clarke G, Collins RA, Leavitt BR, Andrews DF, Hayden MR et al. 2000. A one-hit model of cell death in inherited neuronal degenerations. Nature 406:6792195–99
    [Google Scholar]
  42. Crossland MD, Luong VA, Rubin GS, Fitzke FW. 2011. Retinal specific measurement of dark-adapted visual function: validation of a modified microperimeter. BMC Ophthalmol 11:5
    [Google Scholar]
  43. Delori FC. 1994. Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus. Appl. Opt. 33:317439–52
    [Google Scholar]
  44. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ. 1995. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Investig. Ophthalmol. Vis. Sci. 36:3718–29
    [Google Scholar]
  45. Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG. 2001. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med. 7:4502–6
    [Google Scholar]
  46. Ernst W, Faulkner DJ, Hogg CR, Powell DJ, Arden GBVaegan 1983. An automated static perimeter/adaptometer using light emitting diodes. Br. J. Ophthalmol. 67:7431–42
    [Google Scholar]
  47. Feeney L. 1978. Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Investig. Ophthalmol. Vis. Sci. 17:7583–600
    [Google Scholar]
  48. Gamlin PDR, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. 2007. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis. Res. 47:7946–54
    [Google Scholar]
  49. Garafalo AV, Cideciyan AV, Héon E, Sheplock R, Pearson A et al. 2020. Progress in treating inherited retinal diseases: early subretinal gene therapy clinical trials and candidates for future initiatives. Prog. Retin. Eye Res. 77:100827
    [Google Scholar]
  50. Gardiner KL, Cideciyan AV, Swider M, Dufour VL, Sumaroka A et al. 2019. Long-term structural outcomes of late-stage RPE65 gene therapy. Mol. Ther. 28:1266–78
    [Google Scholar]
  51. Gibbs D, Cideciyan AV, Jacobson SG, Williams DS. 2009. Retinal pigment epithelium defects in humans and mice with mutations in MYO7A: imaging melanosome-specific autofluorescence. Investig. Ophthalmol. Vis. Sci. 50:94386–93
    [Google Scholar]
  52. Gunkel RD. 1967. Retinal profiles: a psychophysical test of rod and cone sensitivity. Arch. Ophthalmol. 77:122–25
    [Google Scholar]
  53. Guziewicz KE, Cideciyan AV, Beltran WA, Komáromy AM, Dufour VL et al. 2018. BEST1 gene therapy corrects a diffuse retina-wide microdetachment modulated by light exposure. PNAS 115:12E2839–48
    [Google Scholar]
  54. Haider NB, Jacobson SG, Cideciyan AV, Swiderski R, Streb LM et al. 2000. Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat. Genet. 24:2127–31
    [Google Scholar]
  55. Hanany M, Rivolta C, Sharon D 2020. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. PNAS 117:52710–16
    [Google Scholar]
  56. Hee MR, Baumal CR, Puliafito CA, Duker JS, Reichel E et al. 1996. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103:81260–70
    [Google Scholar]
  57. Hee MR, Puliafito CA, Wong C, Reichel E, Duker JS et al. 1995. Optical coherence tomography of central serous chorioretinopathy. Am. J. Ophthalmol. 120:165–74
    [Google Scholar]
  58. Herrera W, Aleman TS, Cideciyan AV, Roman AJ, Banin E et al. 2008. Retinal disease in Usher syndrome III caused by mutations in the clarin-1 gene. Investig. Ophthalmol. Vis. Sci. 49:62651–60
    [Google Scholar]
  59. Hood DC, Finkelstein MA 1986. Sensitivity to light. Handbook of Perception and Performance, Vol. 1 K Boff, L Kaufman, J Thomas, ch. 5 New York: Wiley
    [Google Scholar]
  60. Hood DC, Zhang X, Ramachandran R, Talamini CL, Raza A et al. 2011. The inner segment/outer segment border seen on optical coherence tomography is less intense in patients with diminished cone function. Investig. Ophthalmol. Vis. Sci. 52:139703–9
    [Google Scholar]
  61. Huang D, Swanson E, Lin C, Schuman J, Stinson W et al. 1991. Optical coherence tomography. Science 254:50351178–81
    [Google Scholar]
  62. Huang Y, Cideciyan AV, Alemán TS, Banin E, Huang J et al. 2000. Optical coherence tomography (OCT) abnormalities in rhodopsin mutant transgenic swine with retinal degeneration. Exp. Eye Res. 70:2247–51
    [Google Scholar]
  63. Huang Y, Cideciyan AV, Papastergiou GI, Banin E, Semple-Rowland SL et al. 1998. Relation of optical coherence tomography to microanatomy in normal and rd chickens. Investig. Ophthalmol. Vis. Sci. 39:122405–16
    [Google Scholar]
  64. Jacobson SG, Aleman TS, Cideciyan AV, Heon E, Golczak M et al. 2007. Human cone photoreceptor dependence on RPE65 isomerase. PNAS 104:3815123–28
    [Google Scholar]
  65. Jacobson SG, Aleman TS, Cideciyan AV, Roman AJ, Sumaroka A et al. 2009a. Defining the residual vision in Leber congenital amaurosis caused by RPE65 mutations. Investig. Ophthalmol. Vis. Sci. 50:52368–75
    [Google Scholar]
  66. Jacobson SG, Aleman TS, Cideciyan AV, Sumaroka A, Schwartz SB et al. 2005. Identifying photoreceptors in blind eyes caused by RPE65 mutations: prerequisite for human gene therapy success. PNAS 102:176177–82
    [Google Scholar]
  67. Jacobson SG, Aleman TS, Cideciyan AV, Sumaroka A, Schwartz SB et al. 2009b. Leber congenital amaurosis caused by Lebercilin (LCA5) mutation: retained photoreceptors adjacent to retinal disorganization. Mol. Vis. 15:1098–106
    [Google Scholar]
  68. Jacobson SG, Aleman TS, Sumaroka A, Cideciyan AV, Roman AJ et al. 2009c. Disease boundaries in the retina of patients with usher syndrome caused by MYO7A gene mutations. Investig. Ophthalmol. Vis. Sci. 50:41886–94
    [Google Scholar]
  69. Jacobson SG, Borruat FX, Apathy PP. 1990. Patterns of rod and cone dysfunction in Bardet-Biedl syndrome. Am. J. Ophthalmol. 109:6676–88
    [Google Scholar]
  70. Jacobson SG, Cideciyan AV. 2010. Treatment possibilities for retinitis pigmentosa. N. Engl. J. Med. 363:171669–71
    [Google Scholar]
  71. Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Roman AJ et al. 2008a. Usher syndromes due to MYO7A, PCDH15, USH2A or GPR98 mutations share retinal disease mechanism. Hum. Mol. Genet. 17:152405–15
    [Google Scholar]
  72. Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Roman AJ et al. 2011a. Human retinal disease from AIPL1 gene mutations: foveal cone loss with minimal macular photoreceptors and rod function remaining. Investig. Ophthalmol. Vis. Sci. 52:170–79
    [Google Scholar]
  73. Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Windsor EAM et al. 2008b. Photoreceptor layer topography in children with Leber congenital amaurosis caused by RPE65 mutations. Investig. Ophthalmol. Vis. Sci. 49:104573–77
    [Google Scholar]
  74. Jacobson SG, Cideciyan AV, Gibbs D, Sumaroka A, Roman AJ et al. 2011b. Retinal disease course in Usher syndrome 1B due to MYO7A mutations. Investig. Ophthalmol. Vis. Sci. 52:117924–36
    [Google Scholar]
  75. Jacobson SG, Cideciyan AV, Iannaccone A, Weleber RG, Fishman GA et al. 2000. Disease expression of RP1 mutations causing autosomal dominant retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 41:71898–908
    [Google Scholar]
  76. Jacobson SG, Cideciyan AV, Peshenko IV, Sumaroka A, Olshevskaya EV et al. 2013a. Determining consequences of retinal membrane guanylyl cyclase (RetGC1) deficiency in human Leber congenital amaurosis en route to therapy: residual cone-photoreceptor vision correlates with biochemical properties of the mutants. Hum. Mol. Genet. 22:1168–83
    [Google Scholar]
  77. Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB et al. 2012. Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch. Ophthalmol. 130:19–24
    [Google Scholar]
  78. Jacobson SG, Cideciyan AV, Regunath G, Rodriguez FJ, Vandenburgh K et al. 1995. Night blindness in Sorsby's fundus dystrophy reversed by vitamin A. Nat. Genet. 11:127–32
    [Google Scholar]
  79. Jacobson SG, Cideciyan AV, Roman AJ, Sumaroka A, Schwartz SB et al. 2015. Improvement and decline in vision with gene therapy in childhood blindness. N. Engl. J. Med. 372:201920–26
    [Google Scholar]
  80. Jacobson SG, Cideciyan AV, Sumaroka A, Aleman TS, Schwartz SB et al. 2006. Remodeling of the human retina in choroideremia: Rab escort protein 1 (REP-1) mutations. Investig. Ophthalmol. Vis. Sci. 47:94113–20
    [Google Scholar]
  81. Jacobson SG, Cideciyan AV, Sumaroka A, Roman AJ, Charng J et al. 2017a. Defining outcomes for clinical trials of Leber congenital amaurosis caused by GUCY2D mutations. Am. J. Ophthalmol. 177:44–57
    [Google Scholar]
  82. Jacobson SG, Cideciyan AV, Sumaroka A, Roman AJ, Charng J et al. 2017b. Outcome measures for clinical trials of Leber congenital amaurosis caused by the intronic mutation in the CEP290 gene. Investig. Ophthalmol. Vis. Sci. 58:52609–22
    [Google Scholar]
  83. Jacobson SG, McGuigan DB, Sumaroka A, Roman AJ, Gruzensky ML et al. 2016. Complexity of the class B phenotype in autosomal dominant retinitis pigmentosa due to rhodopsin mutations. Investig. Ophthalmol. Vis. Sci. 57:114847–58
    [Google Scholar]
  84. Jacobson SG, Roman AJ, Aleman TS, Sumaroka A, Herrera W et al. 2010. Normal central retinal function and structure preserved in retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 51:21079–85
    [Google Scholar]
  85. Jacobson SG, Sumaroka A, Aleman TS, Cideciyan AV, Schwartz SB et al. 2004. Nuclear receptor NR2E3 gene mutations distort human retinal laminar architecture and cause an unusual degeneration. Hum. Mol. Genet. 13:171893–902
    [Google Scholar]
  86. Jacobson SG, Sumaroka A, Luo X, Cideciyan AV. 2013b. Retinal optogenetic therapies: clinical criteria for candidacy. Clin. Genet. 84:2175–82
    [Google Scholar]
  87. Jacobson SG, Voigt WJ, Parel JM, Apathy PP, Nghiem-Phu L et al. 1986. Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa. Ophthalmology 93:121604–11
    [Google Scholar]
  88. Johnson CA. 2013. Psychophysical factors that have been applied to clinical perimetry. Vis. Res. 90:25–31
    [Google Scholar]
  89. Jonnal RS, Gorczynska I, Migacz JV, Azimipour M, Zawadzki RJ, Werner JS. 2017. The properties of outer retinal band three investigated with adaptive-optics optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 58:114559–68
    [Google Scholar]
  90. Jonnal RS, Kocaoglu OP, Zawadzki RJ, Lee S-H, Werner JS, Miller DT. 2014. The cellular origins of the outer retinal bands in optical coherence tomography images. Investig. Ophthalmol. Vis. Sci. 55:127904–18
    [Google Scholar]
  91. Kardon R, Anderson SC, Damarjian TG, Grace EM, Stone E, Kawasaki A. 2011. Chromatic pupillometry in patients with retinitis pigmentosa. Ophthalmology 118:2376–81
    [Google Scholar]
  92. Keilhauer CN, Delori FC. 2006. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Investig. Ophthalmol. Vis. Sci. 47:83556–64
    [Google Scholar]
  93. Kitagawa K, Nishida S, Ogura Y. 1989. In vivo quantitation of autofluorescence in human retinal pigment epithelium. Ophthalmologica 199:2–3116–21
    [Google Scholar]
  94. Klein M, Birch DG. 2009. Psychophysical assessment of low visual function in patients with retinal degenerative diseases (RDDs) with the Diagnosys full-field stimulus threshold (D-FST). Doc. Ophthalmol. 119:3217–24
    [Google Scholar]
  95. Kömpf D, Piper HF. 1987. Eye movements and vestibulo-ocular reflex in the blind. J. Neurol. 234:5337–41
    [Google Scholar]
  96. Kowler E. 2011. Eye movements: the past 25 years. Vis. Res. 51:131457–83
    [Google Scholar]
  97. Krishnan AK, Jacobson SG, Roman AJ, Iyer BS, Garafalo AV et al. 2020. Transient pupillary light reflex in CEP290- or NPHP5-associated Leber congenital amaurosis: latency as a potential outcome measure of cone function. Vis. Res. 168:53–63
    [Google Scholar]
  98. LaVail MM. 1981. Analysis of neurological mutants with inherited retinal degeneration. Friedenwald lecture. Investig. Ophthalmol. Vis. Sci. 21:5638–57
    [Google Scholar]
  99. Leigh RJ, Zee DS. 1980. Eye movements of the blind. Investig. Ophthalmol. Vis. Sci. 19:3328–31
    [Google Scholar]
  100. Lisowska J, Lisowski L, Kelbsch C, Maeda F, Richter P et al. 2017. Development of a chromatic pupillography protocol for the first gene therapy trial in patients with CNGA3-linked achromatopsia. Investig. Ophthalmol. Vis. Sci. 58:21274–82
    [Google Scholar]
  101. Litts KM, Zhang Y, Freund KB, Curcio CA. 2018. Optical coherence tomography and histology of age-related macular degeneration support mitochondria as reflectivity sources. Retina 38:3445–61
    [Google Scholar]
  102. Liu Z, Kocaoglu OP, Miller DT. 2016. 3D imaging of retinal pigment epithelial cells in the living human retina. Investig. Ophthalmol. Vis. Sci. 57:9OCT533–43
    [Google Scholar]
  103. Liu Z, Kurokawa K, Hammer DX, Miller DT. 2019. In vivo measurement of organelle motility in human retinal pigment epithelial cells. Biomed. Opt. Express. 10:84142–58
    [Google Scholar]
  104. Loewenfeld IE, Lowenstein O. 1999. The Pupil: Anatomy, Physiology, and Clinical Applications Boston: Butterworth-Heinemann
    [Google Scholar]
  105. Lowenstein O, Loewenfeld IE. 1959. Influence of retinal adaptation upon the pupillary reflex to light in normal man: part I. Effect of adaptation to bright light on the pupillary threshold. Am. J. Ophthalmol. 48:5536–50
    [Google Scholar]
  106. Lu CD, Lee B, Schottenhamml J, Maier A, Pugh EN, Fujimoto JG. 2017. Photoreceptor layer thickness changes during dark adaptation observed with ultrahigh-resolution optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 58:114632–43
    [Google Scholar]
  107. Luo X, Cideciyan AV, Iannaccone A, Roman AJ, Ditta LC et al. 2015. Blue cone monochromacy: visual function and efficacy outcome measures for clinical trials. PLOS ONE 10:4e0125700
    [Google Scholar]
  108. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA et al. 2009. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374:97011597–605
    [Google Scholar]
  109. Margrain TH, Atkinson D, Binns AM, Fergusson J, Gaffney A et al. 2020. Functional imaging of the outer retinal complex using high fidelity imaging retinal densitometry. Sci. Rep. 10:4494
    [Google Scholar]
  110. Massof RW, Finkelstein D. 1979. Rod sensitivity relative to cone sensitivity in retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 18:3263–72
    [Google Scholar]
  111. Matsui R, McGuigan DB, Gruzensky ML, Aleman TS, Schwartz SB et al. 2016. SPATA7: evolving phenotype from cone-rod dystrophy to retinitis pigmentosa. Ophthalmic Genet 37:3333–38
    [Google Scholar]
  112. McDougal DH, Gamlin PD. 2010. The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vis. Res. 50:172–87
    [Google Scholar]
  113. McGuigan DB, Heon E, Cideciyan AV, Ratnapriya R, Lu M et al. 2017. EYS mutations causing autosomal recessive retinitis pigmentosa: changes of retinal structure and function with disease progression. Genes 8:7178
    [Google Scholar]
  114. McGuigan DB, Roman AJ, Cideciyan AV, Matsui R, Gruzensky ML et al. 2016. Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa: filling a need to accommodate multicenter clinical trials. Investig. Ophthalmol. Vis. Sci. 57:73118–28
    [Google Scholar]
  115. Milam A, Li Z, Fariss R. 1998. Histopathology of the human retina in retinitis pigmentosa. Prog. Retin. Eye Res. 17:2175–205
    [Google Scholar]
  116. Miller D, Kurokawa K. 2020. Cellular scale imaging of transparent retinal structures and processes using adaptive optics optical coherence tomography. Annu. Rev. Vis. Sci. 6:115–48
    [Google Scholar]
  117. Paskowitz DM, LaVail MM, Duncan JL. 2006. Light and inherited retinal degeneration. Br. J. Ophthalmol. 90:81060–66
    [Google Scholar]
  118. Peters S, Kayatz P, Heimann K, Schraermeyer U. 2000. Subretinal injection of rod outer segments leads to an increase in the number of early-stage melanosomes in retinal pigment epithelial cells. Ophthalmic Res 32:52–56
    [Google Scholar]
  119. Pfau M, Lindner M, Müller PL, Birtel J, Finger RP et al. 2017. Effective dynamic range and retest reliability of dark-adapted two-color fundus-controlled perimetry in patients with macular diseases. Investig. Ophthalmol. Vis. Sci. 58:BIO158–67
    [Google Scholar]
  120. Piccolino FC, Borgia L, Zinicola E, Iester M, Torrielli S et al. 1996. Pre-injection fluorescence in indocyanine green angiography. Ophthalmology 103:111837–45
    [Google Scholar]
  121. Poliakov E, Strunnikova NV, Jiang J-k, Martinez B, Parikh T et al. 2014. Multiple A2E treatments lead to melanization of rod outer segment–challenged ARPE-19 cells. Mol. Vis. 20:285–300
    [Google Scholar]
  122. Pollreisz A, Neschi M, Sloan KR, Pircher M, Mittermueller T et al. 2020. Atlas of human retinal pigment epithelium organelles significant for clinical imaging. Investig. Ophthalmol. Vis. Sci. 61:813
    [Google Scholar]
  123. Pontikos N, Arno G, Jurkute N, Schiff E, Ba-Abbad R et al. 2020. Genetic basis of inherited retinal disease in a molecularly characterized cohort of more than 3000 families from the United Kingdom. Ophthalmology 127:101384–94
    [Google Scholar]
  124. Roman AJ, Cideciyan AV, Aleman TS, Jacobson SG. 2007. Full-field stimulus testing (FST) to quantify visual perception in severely blind candidates for treatment trials. Physiol. Meas. 28:8N51–56
    [Google Scholar]
  125. Roman AJ, Powers CA, Semenov EP, Sheplock R, Aksianiuk V et al. 2019. Short-wavelength sensitive cone (S-cone) testing as an outcome measure for NR2E3 clinical treatment trials. Int. J. Mol. Sci. 20:102497
    [Google Scholar]
  126. Roman AJ, Schwartz SB, Aleman TS, Cideciyan AV, Chico JD et al. 2005. Quantifying rod photoreceptor-mediated vision in retinal degenerations: dark-adapted thresholds as outcome measures. Exp. Eye Res. 80:2259–72
    [Google Scholar]
  127. Roorda A, Duncan JL. 2015. Adaptive optics ophthalmoscopy. Annu. Rev. Vis. Sci. 1:19–50
    [Google Scholar]
  128. Sadigh S, Cideciyan AV, Sumaroka A, Huang WC, Luo X et al. 2013. Abnormal thickening as well as thinning of the photoreceptor layer in intermediate age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 54:31603–12
    [Google Scholar]
  129. Sajdak BS, Bell BA, Lewis TR, Luna G, Cornwell GS et al. 2018. Assessment of outer retinal remodeling in the hibernating 13-lined ground squirrel. Investig. Ophthalmol. Vis. Sci. 59:62538–47
    [Google Scholar]
  130. Sakami S, Maeda T, Bereta G, Okano K, Golczak M et al. 2011. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J. Biol. Chem. 286:1210551–67
    [Google Scholar]
  131. Scholl HPN, Strauss RW, Singh MS, Dalkara D, Roska B et al. 2016. Emerging therapies for inherited retinal degeneration. Sci. Transl. Med. 8:368368rv6
    [Google Scholar]
  132. Schraermeyer U, Heimann K. 1999. Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res 12:4219–36
    [Google Scholar]
  133. Schweitzer NMJ. 1956. Threshold measurements on the light reflex of the pupil in the dark adapted eye. Doc. Ophthalmol. 10:1–78
    [Google Scholar]
  134. Simunovic MP, Hess K, Avery N, Mammo Z 2020. Threshold versus intensity functions in two-colour automated perimetry. Ophthalmic Physiol. Opt. 41:1157–64
    [Google Scholar]
  135. Spaide RF, Curcio CA. 2011. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31:81609–19
    [Google Scholar]
  136. Sparrow JR, Duncker T, Schuerch K, Paavo M, de Carvalho JRL. 2020. Lessons learned from quantitative fundus autofluorescence. Prog. Retin. Eye Res. 74:100774
    [Google Scholar]
  137. Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK et al. 2012. The bisretinoids of retinal pigment epithelium. Prog. Retin. Eye Res. 31:2121–35
    [Google Scholar]
  138. Srinivasan VJ, Adler DC, Chen Y, Gorczynska I, Huber R et al. 2008. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Investig. Ophthalmol. Vis. Sci. 49:115103–10
    [Google Scholar]
  139. Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. 2014. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. Ophthalmology 121:81572–78
    [Google Scholar]
  140. Stone EM, Andorf JL, Whitmore SS, DeLuca AP, Giacalone JC et al. 2017. Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmology 124:91314–31
    [Google Scholar]
  141. Strauss RW, Ho A, Muñoz B, Cideciyan AV, Sahel JA et al. 2016a. The natural history of the progression of atrophy secondary to Stargardt disease (ProgStar) studies: design and baseline characteristics: Progstar Report No. 1. Ophthalmology 123:4817–28
    [Google Scholar]
  142. Strauss RW, Kong X, Bittencourt MG, Ho A, Jha A et al. 2019. Scotopic microperimetric assessment of rod function in Stargardt disease (SMART) study: design and baseline characteristics (Report No. 1). Ophthalmic Res 61:136–43
    [Google Scholar]
  143. Strauss RW, Muñoz B, Jha A, Ho A, Cideciyan AV et al. 2016b. Comparison of short-wavelength reduced-illuminance and conventional autofluorescence imaging in Stargardt macular dystrophy. Am. J. Ophthalmol. 168:269–78
    [Google Scholar]
  144. Sumaroka A, Cideciyan AV, Charng J, Wu V, Powers CA et al. 2019a. Autosomal dominant retinitis pigmentosa due to class B Rhodopsin mutations: an objective outcome for future treatment trials. Int. J. Mol. Sci. 20:215344
    [Google Scholar]
  145. Sumaroka A, Garafalo AV, Semenov EP, Sheplock R, Krishnan AK et al. 2019b. Treatment potential for macular cone vision in Leber congenital amaurosis due to CEP290 or NPHP5 mutations: predictions from artificial intelligence. Investig. Ophthalmol. Vis. Sci. 60:72551–62
    [Google Scholar]
  146. Taubitz T, Fang Y, Biesemeier A, Julien-Schraermeyer S, Schraermeyer U 2019. Age, lipofuscin and melanin oxidation affect fundus near-infrared autofluorescence. EBioMedicine 48:592–604
    [Google Scholar]
  147. Thompson DA, Iannaccone A, Ali RR, Arshavsky VY, Audo I et al. 2020. Advancing clinical trials for inherited retinal diseases: recommendations from the second Monaciano symposium. Transl. Vis. Sci. Technol. 9:72
    [Google Scholar]
  148. Tikidji-Hamburyan A, Reinhard K, Storchi R, Dietter J, Seitter H et al. 2017. Rods progressively escape saturation to drive visual responses in daylight conditions. Nat. Commun. 8:1813
    [Google Scholar]
  149. von Rückmann A, Fitzke FW, Bird AC. 1995. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br. J. Ophthalmol. 79:5407–12
    [Google Scholar]
  150. Weinberger AWA, Lappas A, Kirschkamp T, Mazinani BAE, Huth JK et al. 2006. Fundus near infrared fluorescence correlates with fundus near infrared reflectance. Investig. Ophthalmol. Vis. Sci. 47:73098–108
    [Google Scholar]
  151. Weiter JJ, Delori FC, Wing GL, Fitch KA. 1986. Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Investig. Ophthalmol. Vis. Sci. 27:2145–52
    [Google Scholar]
  152. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH. 1999. Insights into the function of rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in ABCR knockout mice. Cell 98:113–23
    [Google Scholar]
  153. Wojno AP, Pierce EA, Bennett J. 2013. Seeing the light. Sci. Transl. Med. 5:175175fs8
    [Google Scholar]
  154. Wright AF, Jacobson SG, Cideciyan AV, Roman AJ, Shu X et al. 2004. Lifespan and mitochondrial control of neurodegeneration. Nat. Genet. 36:111153–58
    [Google Scholar]
  155. Zawadzki RJ, Jones SM, Olivier SS, Zhao M, Bower BA et al. 2005. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt. Express 13:218532–46
    [Google Scholar]
  156. Zeavin BH, Wald G 1956. Rod and cone vision in retinitis pigmentosa. Am. J. Ophthalmol. 42:4253–69
    [Google Scholar]
  157. Zelinger L, Cideciyan AV, Kohl S, Schwartz SB, Rosenmann A et al. 2015. Genetics and disease expression in the CNGA3 form of achromatopsia: steps on the path to gene therapy. Ophthalmology 122:5997–1007
    [Google Scholar]
  158. Zhang N, Tsybovsky Y, Kolesnikov AV, Rozanowska M, Swider M et al. 2015. Protein misfolding and the pathogenesis of ABCA4-associated retinal degenerations. Hum. Mol. Genet. 24:113220–37
    [Google Scholar]
  159. Zhang T, Kho AM, Yiu G, Srinivasan VJ. 2021. Visible light optical coherence tomography (OCT) quantifies subcellular contributions to outer retinal band 4. Transl. Vis. Sci. Technol. 10:30
    [Google Scholar]
/content/journals/10.1146/annurev-vision-032321-091738
Loading
/content/journals/10.1146/annurev-vision-032321-091738
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error