Smooth pursuit eye movements provide a model system for studying how visual inputs are transformed into commands for accurate movement. The neural circuit for pursuit eye movements is largely known and has strong parallels to the circuits for many other movements. Here, we outline progress in defining the conceptual operations that are performed by the pursuit circuit and in aligning those functions with neural circuit mechanisms. We discuss how the visual motion that drives pursuit is represented in the visual cortex, and how the visuomotor circuits decode that representation to estimate target direction and speed and to create motor commands. We outline a modulatory influence called gain control that evaluates the reliability and value of visual inputs and programs appropriate motor activity. Future research on pursuit in nonhuman primates holds the potential to reveal, at an unprecedented level of detail, how visuomotor circuits create coordinated actions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anderson JS, Carandini M, Ferster D. 2000. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J. Neurophysiol. 84:909–26 [Google Scholar]
  2. Bair W, Zohary E, Newsome WT. 2001. Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21:1676–97 [Google Scholar]
  3. Baker R, Berthoz A. 1975. Is the prepositus hypoglossi nucleus the source of another vestibulo-ocular pathway?. Brain Res. 86:121–27 [Google Scholar]
  4. Basso MA, Pokorny JJ, Liu P. 2005. Activity of substantia nigra pars reticulata neurons during smooth pursuit eye movements in monkeys. Eur. J. Neurosci. 22:448–64 [Google Scholar]
  5. Bjaalie JG, Brodal P. 1989. Visual pathways to the cerebellum: segregation in the pontine nuclei of terminal fields from different visual cortical areas in the cat. Neuroscience 29:95–107 [Google Scholar]
  6. Born RT, Groh JM, Zhao R, Lukasewycz SJ. 2000. Segregation of object and background motion in visual area MT: effects of microstimulation on eye movements. Neuron 26:725–34 [Google Scholar]
  7. Cao P, Gu Y, Wang SR. 2004. Visual neurons in the pigeon brain encode the acceleration of stimulus motion. J. Neurosci. 24:7690–98 [Google Scholar]
  8. Carandini M, Heeger DJ. 2011. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:51–62 [Google Scholar]
  9. Chaisanguanthum KS, Lisberger SG. 2011. A neurally efficient implementation of sensory population decoding. J. Neurosci. 31:4868–77 [Google Scholar]
  10. Churchland AK, Lisberger SG. 2005. Discharge properties of MST neurons that project to the frontal pursuit area in macaque monkeys. J. Neurophysiol. 94:1084–90 [Google Scholar]
  11. Churchland MM, Lisberger SG. 2001a. Shifts in the population response in the middle temporal visual area parallel perceptual and motor illusions produced by apparent motion. J. Neurosci. 21:9387–402 [Google Scholar]
  12. Churchland MM, Lisberger SG. 2001b. Experimental and computational analysis of monkey smooth pursuit eye movements. J. Neurophysiol. 86:741–59 [Google Scholar]
  13. Churchland MM, Chou IH, Lisberger SG. 2003. Evidence for object permanence in the smooth-pursuit eye movements of monkeys. J. Neurophysiol. 90:2205–18 [Google Scholar]
  14. Cohen B, Matsuo V, Raphan T. 1977. Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J. Physiol. 270:321–44 [Google Scholar]
  15. Cui DM, Yan YJ, Lynch JC. 2003. Pursuit subregion of the frontal eye field projects to the caudate nucleus in monkeys. J. Neurophysiol. 89:2678–84 [Google Scholar]
  16. Dash S, Catz N, Dicke PW, Their P. 2012. Encoding of smooth-pursuit eye movement initiation by a population of vermal Purkinje cells. Cereb. Cortex 22:877–91 [Google Scholar]
  17. De Bruyn B, Orban GA. 1988. Human velocity and direction discrimination measured with random dot patterns. Vis. Res. 28:1323–35 [Google Scholar]
  18. Dubner R, Zeki SM. 1971. Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res. 35:528–32 [Google Scholar]
  19. Dursteler MR, Wurtz RH, Newsome WT. 1987. Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. J. Neurophysiol. 57:1262–87 [Google Scholar]
  20. Fuchs AF. 1967. Periodic eye tracking in the monkey. J. Physiol. 193:161–71 [Google Scholar]
  21. Fukushima K, Yamanobe T, Shinmei Y, Fukushima J. 2002. Predictive responses of periarcuate pursuit neurons to visual target motion. Exp. Brain Res. 145:104–20 [Google Scholar]
  22. Garbutt S, Lisberger SG. 2006. Directional cuing of target choice in human smooth pursuit eye movements. J. Neurosci. 26:12479–86 [Google Scholar]
  23. Gardner JL, Lisberger SG. 2001. Linked target selection for saccadic and smooth pursuit eye movements. J. Neurosci. 21:2075–84 [Google Scholar]
  24. Gardner JL, Lisberger SG. 2002. Serial linkage of target selection for orienting and tracking eye movements. Nat. Neurosci. 5:892–99 [Google Scholar]
  25. Gardner JL, Tokiyama SN, Lisberger SG. 2004. A population decoding framework for motion aftereffects on smooth pursuit eye movements. J. Neurosci. 24:9035–48 [Google Scholar]
  26. Gegenfurtner KR, Xing D, Scott BH, Hawken MJ. 2003. A comparison of pursuit eye movement and perceptual performance in speed discrimination. J. Vis. 3:865–76 [Google Scholar]
  27. Georgopoulos AP, Schwartz AB, Kettner RE. 1986. Neuronal population coding of movement direction. Science 233:1416–19 [Google Scholar]
  28. Glickstein M, Gerrits N, Krali-Hans I, Mercier B, Stein J, Boogd J. 1994. Visual pontocerebellar projections in the macaque. J. Comp. Neurol. 349:51–72 [Google Scholar]
  29. Goldreich D, Krauzlis RJ, Lisberger SG. 1992. Effect of changing feedback delay on spontaneous oscillations in smooth pursuit eye movements of monkeys. J. Neurophysiol. 67:625–38 [Google Scholar]
  30. Gottlieb J, MacAvoy MG, Bruce CJ. 1994. Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field. J. Neurophysiol. 72:1634–53 [Google Scholar]
  31. Groh JM. 2001. Converting neural signals from place codes to rate codes. Biol. Cybern. 85:159–65 [Google Scholar]
  32. Groh JM, Born RT, Newsome WT. 1997. How is a sensory map read out? Effects of microstimulation in visual area MT on saccades and smooth pursuit eye movements. J. Neurosci. 17:4312–30 [Google Scholar]
  33. Hafed ZM, Krauzlis RJ. 2008. Goal representations dominate superior colliculus activity during extrafoveal tracking. J. Neurosci. 28:9426–39 [Google Scholar]
  34. Highstein SM. 1973. Synaptic linkage in the vestibulo-ocular and cerebello-vestibular pathways to the VIth nucleus in the rabbit. Exp. Brain Res. 17:301–14 [Google Scholar]
  35. Hoffmann KP, Bremmer F, Thiele A, Distler C. 2002. Directional asymmetry of neurons in cortical areas MT and MST projecting to the NOT-DTN in macaques. J. Neurophysiol. 87:2113–23 [Google Scholar]
  36. Hoffmann KP, Bremmer F, Distler C. 2009. Visual response properties of neurons in cortical areas MT and MST projecting to the dorsolateral pontine nucleus or the nucleus of the optic tract in macaque monkeys. Eur. J. Neurosci. 29:411–23 [Google Scholar]
  37. Hohl SS, Chaisanguanthum KS, Lisberger SG. 2013. Sensory population decoding for visually guided movements. Neuron 79:167–79 [Google Scholar]
  38. Huang X, Lisberger SG. 2009. Noise correlations in cortical area MT and their potential impact on trial-by-trial variation in the direction and speed of smooth-pursuit eye movements. J. Neurophysiol. 101:3012–30 [Google Scholar]
  39. Kano MS, Kano M, Maekawa K. 1990. Receptive field organization of climbing fiber afferents responding to optokinetic stimulation in the cerebellar nodulus and flocculus of the pigmented rabbit. Exp. Brain Res. 82:499–512 [Google Scholar]
  40. Kase M, Noda H, Suzuki DA, Miller DC. 1979. Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. Science 205:717–20 [Google Scholar]
  41. Keating G. 1991. Frontal eye field lesions impair predictive and visually-guided pursuit eye movements. Exp. Brain Res. 86:311–23 [Google Scholar]
  42. Komatsu H, Wurtz RH. 1989. Modulation of pursuit eye movements by stimulation of cortical areas MT and MST. J. Neurophysiol. 62:31–47 [Google Scholar]
  43. Krauzlis RJ. 2004. Recasting the smooth pursuit eye movement system. J. Neurophysiol. 91:591–603 [Google Scholar]
  44. Krauzlis RJ, Lisberger SG. 1994. A model of visually-guided smooth pursuit eye movements based on behavioral observations. J. Comput. Neurosci. 1:265–83 [Google Scholar]
  45. Krekelberg B, van Wezel RJ, Albright TD. 2006. Interactions between speed and contrast tuning in the middle temporal area: implications for the neural code for speed. J. Neurosci. 26:8988–98 [Google Scholar]
  46. Kurkin S, Akao T, Fukushima J, Shichinohe N, Kaneko CR. et al. 2014. No-go neurons in the cerebellar oculomotor vermis and caudal fastigial nuclei: planning tracking eye movements. Exp. Brain Res. 232:191–210 [Google Scholar]
  47. Lee J, Lisberger SG. 2013. Gamma synchrony predicts neuron-neuron correlations and correlations with motor behavior in extrastriate visual area MT. J. Neurosci. 33:19677–88 [Google Scholar]
  48. Lee J, Yang J, Lisberger SG. 2013. Control of the gain of visual-motor transmission occurs in visual coordinates for smooth pursuit eye movements. J. Neurosci. 33:9420–30 [Google Scholar]
  49. Lisberger SG. 2009. Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience 162:763–76 [Google Scholar]
  50. Lisberger SG. 2010. Visual guidance of smooth-pursuit eye movements: sensation, action, and what happens in between. Neuron 66:471–91 [Google Scholar]
  51. Lisberger SG, Evinger C, Johanson GW, Fuchs AF. 1981. Relationship between eye acceleration and retinal image velocity during foveal smooth pursuit in man and monkey. J. Neurophysiol. 46:229–49 [Google Scholar]
  52. Lisberger SG, Ferrera VP. 1997. Vector averaging for smooth pursuit eye movements initiated by two moving targets in monkeys. J. Neurosci. 17:7490–502 [Google Scholar]
  53. Lisberger SG, Fuchs AF. 1978. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J. Neurophysiol. 41:733–63 [Google Scholar]
  54. Lisberger SG, Medina JF. 2015. How and why neural and motor variation are related. Curr. Opin. Neurobiol 33:110–16 [Google Scholar]
  55. Lisberger SG, Movshon JA. 1999. Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J. Neurosci. 19:2224–46 [Google Scholar]
  56. Lisberger SG, Westbrook LE. 1985. Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys. J. Neurosci. 5:1662–73 [Google Scholar]
  57. Luebke AE, Robinson DA. 1988. Transition dynamics between pursuit and fixation suggest different systems. Vis. Res. 28:941–46 [Google Scholar]
  58. Lynch JC, Tian JR. 2006. Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog. Brain Res. 151:461–501 [Google Scholar]
  59. MacAvoy MG, Gottlieb JP, Bruce CJ. 1991. Smooth-pursuit eye movement representation in the primate frontal eye field. Cereb. Cortex 1:95–102 [Google Scholar]
  60. Maunsell JH, van Essen DC. 1983. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol. 49:1127–47 [Google Scholar]
  61. McCrea RA, Baker R. 1985. Anatomical connections of the nucleus prepositus of the cat. J. Comp. Neurol. 237:377–407 [Google Scholar]
  62. Medina JF, Lisberger SG. 2008. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat. Neurosci. 11:1185–92 [Google Scholar]
  63. Miles FA. 1999. Short-latency visual stabilization mechanisms that help to compensate for translational disturbances of gaze. Ann. N. Y. Acad. Sci. 871:260–71 [Google Scholar]
  64. Miles FA, Fuller JH. 1975. Visual tracking and the primate flocculus. Science 189:1000–2 [Google Scholar]
  65. Miles FA, Kawano K, Optican LM. 1986. Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input. J. Neurophysiol. 56:1321–54 [Google Scholar]
  66. Missal M, Heinen SJ. 2001. Facilitation of smooth pursuit initiation by electrical stimulation in the supplementary eye fields. J. Neurophysiol. 86:2413–25 [Google Scholar]
  67. Morris EJ, Lisberger SG. 1987. Different responses to small visual errors during initiation and maintenance of smooth-pursuit eye movements in monkeys. J. Neurophysiol. 58:1351–69 [Google Scholar]
  68. Müller J. 1840. Handbuch der Physiologie des Menschen für Vorlesungen. Coblenz, Ger: Hölscher, 2nd ed..
  69. Newsome WT, Paré EB. 1988. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8:2201–11 [Google Scholar]
  70. Newsome WT, Wurtz RH, Dürsteler MR, Mikami A. 1985. Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J. Neurosci. 5:825–40 [Google Scholar]
  71. Newsome WT, Wurtz RH, Komatsu H. 1988. Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J. Neurophysiol. 60:604–20 [Google Scholar]
  72. Niu YQ, Lisberger SG. 2011. Sensory versus motor loci for integration of multiple motion signals in smooth pursuit eye movements and human motion perception. J. Neurophysiol. 106:741–53 [Google Scholar]
  73. O’Driscoll GA, Wolff AL, Benkelfat C, Florencia PS, Lal S, Evans AC. 2000. Functional neuroanatomy of smooth pursuit and predictive saccades. Neuroreport 11:1335–40 [Google Scholar]
  74. Ono S, Mustari MJ. 2006. Extraretinal signals in MSTd neurons related to volitional smooth pursuit. J. Neurophysiol. 96:2819–25 [Google Scholar]
  75. Ono S, Mustari MJ. 2009. Smooth pursuit–related information processing in frontal eye field neurons that project to NRTP. Cereb. Cortex 19:1186–97 [Google Scholar]
  76. Osborne LC, Lisberger SG, Bialek W. 2005. A sensory source for motor variation. Nature 437:412–16 [Google Scholar]
  77. Posner MI. 1980. Orienting of attention. Q. J. Exp. Psychol. 32:3–25 [Google Scholar]
  78. Priebe NJ, Lisberger SG. 2004. Estimating target speed from the population response in visual area MT. J. Neurosci. 24:1907–16 [Google Scholar]
  79. Purushothaman G, Bradley DC. 2004. Neural population code for fine perceptual decisions in area MT. Nat. Neurosci. 8:99–106 [Google Scholar]
  80. Rashbass C. 1961. The relationship between saccadic and smooth tracking eye movements. J. Physiol. 159:326–38 [Google Scholar]
  81. Ringach DL. 1995. A ‘tachometer’ feedback model of smooth pursuit eye movements. Biol. Cybern. 73:561–68 [Google Scholar]
  82. Robinson DA. 1965. The mechanics of human smooth pursuit eye movement. J. Physiol. 180:3569–91 [Google Scholar]
  83. Robinson DA, Gordon JL, Gordon SE. 1986. A model of the smooth pursuit eye movement system. Biol. Cybern. 55:43–57 [Google Scholar]
  84. Salzman D, Britten KH, Newsome WT. 1990. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–77 [Google Scholar]
  85. Schoppik D, Lisberger SG. 2006. Saccades exert spatial control of motion processing for smooth pursuit eye movements. J. Neurosci. 26:7607–18 [Google Scholar]
  86. Schwartz JD, Lisberger SG. 1994. Initial tracking conditions modulate the gain of visuo-motor transmission for smooth pursuit eye movements in monkeys. Vis. Neurosci. 11:411–24 [Google Scholar]
  87. Shadlen MN, Britten KH, Newsome WT, Movshon JA. 1996. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16:1486–510 [Google Scholar]
  88. Stanton GB, Friedman HR, Dias EC, Bruce CJ. 2005. Cortical afferents to the smooth pursuit region of the monkey's frontal eye field. Exp. Brain Res. 165:179–92 [Google Scholar]
  89. Stone LS, Lisberger SG. 1990a. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. J. Neurophysiol. 63:1241–61 [Google Scholar]
  90. Stone LS, Lisberger SG. 1990b. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II. Complex spikes. J. Neurophysiol. 63:1262–75 [Google Scholar]
  91. Tanaka M, Lisberger SG. 2001. Regulation of the gain of visually guided smooth-pursuit eye movements by frontal cortex. Nature 409:191–94 [Google Scholar]
  92. Tanaka M, Lisberger SG. 2002a. Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements. I. Basic response properties to retinal image motion and position. J. Neurophysiol. 87:2684–99 [Google Scholar]
  93. Tanaka M, Lisberger SG. 2002b. Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements. II. Relation to vector averaging pursuit. J. Neurophysiol. 87:2700–14 [Google Scholar]
  94. Weiss Y, Simoncelli EP, Adelson ED. 2002. Motion illusions as optimal percepts. Nat. Neurosci. 5:598–604 [Google Scholar]
  95. Winterson BJ, Steinman RM. 1978. The effect of luminance on human smooth pursuit of perifoveal and foveal targets. Vis. Res. 18:1165–72 [Google Scholar]
  96. Yang J, Lee J, Lisberger SG. 2012. The interaction of Bayesian priors and sensory data and its neural circuit implementation in visually guided movement. J. Neurosci. 32:17632–45 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error