1932

Abstract

This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and by an extensive review of the literature on clinical uses of AO. It then concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye.

Associated Article

There are media items related to this article:
Adaptive Optics Ophthalmoscopy: Figure 9

Associated Article

There are media items related to this article:
Adaptive Optics Ophthalmoscopy: Figure 8
Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-082114-035357
2015-11-24
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/vision/1/1/annurev-vision-082114-035357.html?itemId=/content/journals/10.1146/annurev-vision-082114-035357&mimeType=html&fmt=ahah

Literature Cited

  1. Akagi T, Hangai M, Takayama K, Nonaka A, Ooto S, Yoshimura N. 2012. In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy. Investig. Ophthalmol. Vis. Sci. 53:4111–19 [Google Scholar]
  2. Arathorn DW, Yang Q, Vogel CR, Zhang Y, Tiruveedhula P, Roorda A. 2007. Retinally stabilized cone-targeted stimulus delivery. Opt. Express 15:13731–44 [Google Scholar]
  3. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R. et al. 2008. Effect of gene therapy on visual function in Leber's congenital amaurosis. N. Engl. J. Med. 358:2231–39 [Google Scholar]
  4. Bedggood P, Metha A. 2012a. Direct visualization and characterization of erythrocyte flow in human retinal capillaries. Biomed. Opt. Express 3:3264–77 [Google Scholar]
  5. Bedggood P, Metha A. 2012b. Variability in bleach kinetics and amount of photopigment between individual foveal cones. Investig. Ophthalmol. Vis. Sci. 53:3673–81 [Google Scholar]
  6. Bedggood P, Metha A. 2013. Optical imaging of human cone photoreceptors directly following the capture of light. PLOS ONE 8:e79251 [Google Scholar]
  7. Bizheva K, Pflug R, Hermann B, Povazay B, Sattmann H. et al. 2006. Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. PNAS 103:5066–71 [Google Scholar]
  8. Burns SA, Elsner AE, Chui TY, VanNasdale DA Jr, Clark CA. et al. 2014. In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed. Opt. Express 5:961–74 [Google Scholar]
  9. Chhablani JK, Kim JS, Cheng L, Kozak I, Freeman W. 2012. External limiting membrane as a predictor of visual improvement in diabetic macular edema after pars plana vitrectomy. Graefe's Arch. Clin. Exp. Ophthalmol. 250:1415–20 [Google Scholar]
  10. Chiu SJ, Lokhnygina Y, Dubis AM, Dubra A, Carroll J. et al. 2013. Automatic cone photoreceptor segmentation using graph theory and dynamic programming. Biomed. Opt. Express 4:924–37 [Google Scholar]
  11. Chui TYP, Dubow M, Pinhas A, Shah N, Gan A. et al. 2014. Comparison of adaptive optics scanning light ophthalmoscopic fluorescein angiography and offset pinhole imaging. Biomed. Opt. Express 5:1173–89 [Google Scholar]
  12. Chui TYP, Gast TJ, Burns SA. 2013. Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. Investig. Ophthalmol. Vis. Sci. 54:7115–24 [Google Scholar]
  13. Chui TYP, VanNasdale DA, Burns SA. 2012. The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express 3:2537–49 [Google Scholar]
  14. Cooper RF, Dubis AM, Pavaskar A, Rha J, Dubra A, Carroll J. 2011. Spatial and temporal variation of rod photoreceptor reflectance in the human retina. Biomed. Opt. Express 2:2577–89 [Google Scholar]
  15. Cooper RF, Langlo CS, Dubra A, Carroll J. 2013. Automatic detection of modal spacing (Yellott's ring) in adaptive optics scanning light ophthalmoscope images. Ophthalmic Physiol. Opt. 33:540–49 [Google Scholar]
  16. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. 1990. Human photoreceptor topography. J. Comp. Neurol. 292:497–523 [Google Scholar]
  17. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ. 1995. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Investig. Ophthalmol. Vis. Sci. 36:718–29 [Google Scholar]
  18. Doble N, Choi SS, Codona JL, Christou J, Enoch JM, Williams DR. 2011. In vivo imaging of the human rod photoreceptor mosaic. Opt. Lett. 36:31–33 [Google Scholar]
  19. Dubis AM, Cooper RF, Aboshiha J, Langlo CS, Sundaram V. et al. 2014. Genotype-dependent variability in residual cone structure in achromatopsia: toward developing metrics for assessing cone health. Investig. Ophthalmol. Vis. Sci. 55:7303–11 [Google Scholar]
  20. Dubow M, Pinhas A, Shah N, Cooper RF, Gan A. et al. 2014. Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography. Investig. Ophthalmol. Vis. Sci. 55:1299–309 [Google Scholar]
  21. Dubra A, Sulai Y. 2011. Reflective afocal broadband adaptive optics scanning ophthalmoscope. Biomed. Opt. Express 2:1757–68 [Google Scholar]
  22. Dubra A, Sulai Y, Norris JL, Cooper RF, Dubis AM. et al. 2011. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed. Opt. Express 2:1864–76 [Google Scholar]
  23. Duncan JL, Zhang Y, Gandhi J, Nakanishi C, Othman M. et al. 2007. High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. Investig. Ophthalmol. Vis. Sci. 48:3283–91 [Google Scholar]
  24. Felberer F, Kroisamer J-S, Baumann B, Zotter S, Schmidt-Erfurth U. et al. 2014. Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. Biomed. Opt. Express 5:439–56 [Google Scholar]
  25. Fernández EJ, Prieto PM, Artal P. 2009. Binocular adaptive optics visual simulator. Opt. Lett. 34:2628–30 [Google Scholar]
  26. Geller AM, Sieving PA, Green DG. 1992. Effect on grating identification of sampling with degenerate arrays. J. Opt. Soc. Am. A 9:472–77 [Google Scholar]
  27. Genead MA, Fishman GA, Rha J, Dubis AM, Bonci DM. et al. 2011. Photoreceptor structure and function in patients with congenital achromatopsia. Investig. Ophthalmol. Vis. Sci. 52:7298–308 [Google Scholar]
  28. Geng Y, Dubra A, Yin L, Merigan WH, Sharma R. et al. 2012. Adaptive optics retinal imaging in the living mouse eye. Biomed. Opt. Express 3:715–34 [Google Scholar]
  29. Geng Y, Greenberg KP, Wolfe R, Gray DC, Hunter JJ. et al. 2009. In vivo imaging of microscopic structures in the rat retina. Investig. Ophthalmol. Vis. Sci. 50:5872–79 [Google Scholar]
  30. Geng Y, Schery LA, Sharma R, Dubra A, Ahmad K. et al. 2011. Optical properties of the mouse eye. Biomed. Opt. Express 2:717–38 [Google Scholar]
  31. Gocho K, Sarda V, Falah S, Sahel JA, Sennlaub F. et al. 2013. Adaptive optics imaging of geographic atrophy. Investig. Ophthalmol. Vis. Sci. 54:3673–80 [Google Scholar]
  32. Godara P, Siebe C, Rha J, Michaelides M, Carroll J. 2010. Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT. Ophthalmic Surg. Lasers Imaging 41:S104–8 [Google Scholar]
  33. Gray DC, Merigan W, Wolfing JI, Gee BP, Porter J. et al. 2006. In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelium cells. Opt. Express 14:7144–58 [Google Scholar]
  34. Grieve K, Roorda A. 2008. Intrinsic signals from human cone photoreceptors. Investig. Ophthalmol. Vis. Sci. 49:713–19 [Google Scholar]
  35. Guo H, Atchison DA, Birt BJ. 2008. Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations. Vis. Res. 48:1804–11 [Google Scholar]
  36. Harmening WM, Tiruveedhula P, Roorda A, Sincich LC. 2012. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye. Biomed. Opt. Express 3:2066–77 [Google Scholar]
  37. Harmening WM, Tuten WS, Roorda A, Sincich LC. 2014. Mapping the perceptual grain of the human retina. J. Neurosci. 34:5667–77 [Google Scholar]
  38. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB. et al. 2008. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum. Gene Ther. 19:979–90 [Google Scholar]
  39. Hirsch J, Curcio CA. 1989. The spatial resolution capacity of human foveal retina. Vis. Res. 29:1095–101 [Google Scholar]
  40. Hofer H, Carroll J, Neitz J, Neitz M, Williams DR. 2005a. Organization of the human trichromatic cone mosaic. J. Neurosci. 25:9669–79 [Google Scholar]
  41. Hofer H, Singer B, Williams DR. 2005b. Different sensations from cones with the same pigment. J. Vis. 5:444–54 [Google Scholar]
  42. Hofer H, Sredar N, Queener H, Li C, Porter J. 2011. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye. Opt. Express 19:14160–71 [Google Scholar]
  43. Huang G, Gast TJ, Burns SA. 2014. In vivo adaptive optics imaging of the temporal raphe and its relationship to the optic disc and fovea in the human retina. Investig. Ophthalmol. Vis. Sci. 55:5952–61 [Google Scholar]
  44. Huang G, Qi X, Chui TYP, Zhong Z, Burns SA. 2012. A clinical planning module for adaptive optics SLO imaging. Optom. Vis. Sci. 89:593–601 [Google Scholar]
  45. Hunter JJ, Masella B, Dubra A, Sharma R, Yin L. et al. 2011. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy. Biomed. Opt. Express 2:139–48 [Google Scholar]
  46. Hunter JJ, Morgan JI, Merigan WH, Sliney DH, Sparrow JR, Williams DR. 2012. The susceptibility of the retina to photochemical damage from visible light. Prog. Retin. Eye Res. 31:28–42 [Google Scholar]
  47. Ivers KM, Li C, Patel N, Sredar N, Luo X. et al. 2011. Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging. Investig. Ophthalmol. Vis. Sci. 52:5473–80 [Google Scholar]
  48. Johnson PT, Lewis GP, Talaga KC, Brown MN, Kappel PJ. et al. 2003. Drusen-associated degeneration in the retina. Investig. Ophthalmol. Vis. Sci. 44:4481–88 [Google Scholar]
  49. Jonnal RS, Besecker JR, Derby JC, Kocaoglu OP, Cense B. et al. 2010. Imaging outer segment renewal in living human cone photoreceptors. Opt. Express 18:5257–70 [Google Scholar]
  50. Jonnal RS, Kocaoglu OP, Wang Q, Lee S, Miller DT. 2012. Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics. Biomed. Opt. Express 3:104–24 [Google Scholar]
  51. Jonnal RS, Kocaoglu OP, Zawadzki RJ, Lee SH, Werner JS, Miller DT. 2014. The cellular origins of the outer retinal bands in optical coherence tomography images. Investig. Ophthalmol. Vis. Sci. 55:7904–18 [Google Scholar]
  52. Kohl S, Varsanyi B, Antunes GA, Baumann B, Hoyng CB. et al. 2005. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur. J. Hum. Genet. 13:302–8 [Google Scholar]
  53. Landa G, Gentile RC, Garcia PM, Muldoon TO, Rosen RB. 2012. External limiting membrane and visual outcome in macular hole repair: spectral domain OCT analysis. Eye 26:61–69 [Google Scholar]
  54. Larocca F, Dhalla AH, Kelly MP, Farsiu S, Izatt JA. 2013. Optimization of confocal scanning laser ophthalmoscope design. J. Biomed. Opt. 18:076015 [Google Scholar]
  55. Li KY, Mishra S, Tiruveedhula P, Roorda A. 2009. Comparison of control algorithms for a MEMS-based adaptive optics scanning laser ophthalmoscope. Proc. Am. Control Conf., June 10–12, St. Louis, Mo.3848–53 Piscataway, NJ: IEEE [Google Scholar]
  56. Li KY, Roorda A. 2007. Automated identification of cone photoreceptors in adaptive optics retinal images. J. Opt. Soc. Am. A 24:1358–63 [Google Scholar]
  57. Liang J, Grimm B, Goelz S, Bille JF. 1994. Objective measurement of wave aberrations of the human eye with use of a Hartmann–Shack wave-front sensor. J. Opt. Soc. Am. A 11:1949–57 [Google Scholar]
  58. Liang J, Williams DR. 1997. Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. A 14:2873–83 [Google Scholar]
  59. Liang J, Williams DR, Miller D. 1997. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A 14:2884–92 [Google Scholar]
  60. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. 2012. Age-related macular degeneration. Lancet 379:1728–38 [Google Scholar]
  61. Lujan BJ, Roorda A, Knighton RW, Carroll J. 2011. Revealing Henle's fiber layer using spectral domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 52:1486–92 [Google Scholar]
  62. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F. et al. 2008. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N. Engl. J. Med. 358:2240–48 [Google Scholar]
  63. Makous W, Carroll J, Wolfing JI, Lin J, Christie N, Williams DR. 2006. Retinal microscotomas revealed with adaptive-optics microflashes. Investig. Ophthalmol. Vis. Sci. 47:4160–67 [Google Scholar]
  64. Martin JA, Roorda A. 2009. Pulsatility of parafoveal capillary leukocytes. Exp. Eye Res. 88:356–60 [Google Scholar]
  65. Masella BD, Hunter JJ, Williams DR. 2014a. New wrinkles in retinal densitometry. Investig. Ophthalmol. Vis. Sci. 55:7525–34 [Google Scholar]
  66. Masella BD, Hunter JJ, Williams DR. 2014b. Rod photopigment kinetics after photodisruption of the retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 55:7535–44 [Google Scholar]
  67. Meadway A, Wang X, Curcio CA, Zhang Y. 2014. Microstructure of subretinal drusenoid deposits revealed by adaptive optics imaging. Biomed. Opt. Express 5:713–27 [Google Scholar]
  68. Milam AH, Li Z-Y, Fariss RN. 1998. Histopathology of the human retina in retinitis pigmentosa. Prog. Retinal Eye Res. 17:175–205 [Google Scholar]
  69. Miller DT, Roorda A. 2009. Adaptive optics in retinal microscopy and vision. Handbook of Optics III M Bass Rochester, NY: Opt. Soc. Am. [Google Scholar]
  70. Morgan JI, Dubra A, Wolfe R, Merigan WH, Williams DR. 2009. In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. Investig. Ophthalmol. Vis. Sci. 50:1350–59 [Google Scholar]
  71. Morgan JI, Hunter JJ, Masella B, Wolfe R, Gray DC. et al. 2008. Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 49:3715–29 [Google Scholar]
  72. Nadler Z, Wang B, Schuman JS, Ferguson RD, Patel A. et al. 2014. In vivo three-dimensional characterization of the healthy human lamina cribrosa with adaptive optics spectral-domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 55:6459–66 [Google Scholar]
  73. Ooto S, Hangai M, Takayama K, Ueda-Arakawa N, Hanebuchi M, Yoshimura N. 2012. Photoreceptor damage and foveal sensitivity in surgically closed macular holes: an adaptive optics scanning laser ophthalmoscopy study. Am. J. Ophthalmol. 154:174–86 [Google Scholar]
  74. Ooto S, Hangai M, Takayama K, Ueda-Arakawa N, Tsujikawa A. et al. 2013. Comparison of cone pathologic changes in idiopathic macular telangiectasia types 1 and 2 using adaptive optics scanning laser ophthalmoscopy. Am. J. Ophthalmol. 155:1045–57 [Google Scholar]
  75. Ooto S, Hangai M, Yoshimura N. 2011. Photoreceptor restoration in unilateral acute idiopathic maculopathy on adaptive optics scanning laser ophthalmoscopy. Arch. Ophthalmol. 129:1633–35 [Google Scholar]
  76. Pinhas A, Dubow M, Shah N, Chui TY, Scoles D. et al. 2013. In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography. Biomed. Opt. Express 4:1305–17 [Google Scholar]
  77. Popovic Z, Knutsson P, Thaung J, Owner-Petersen M, Sjostrand J. 2011. Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics. Investig. Ophthalmol. Vis. Sci. 52:2649–55 [Google Scholar]
  78. Porter J. 2006. Adaptive Optics for Vision Science Hoboken, NJ: Wiley-Interscience [Google Scholar]
  79. Putnam NM, Hammer DX, Zhang Y, Merino D, Roorda A. 2010. Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy. Opt. Express 18:24902–16 [Google Scholar]
  80. Putnam NM, Hofer H, Doble N, Chen L, Carroll J, Williams DR. 2005. The locus of fixation and the foveal cone mosaic. J. Vis. 5:632–39 [Google Scholar]
  81. Ramaswamy G, Lombardo M, Devaney N. 2014. Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images. Biomed. Opt. Express 5:1941–51 [Google Scholar]
  82. Rha J, Jonnal RS, Thorn KE, Qu J, Zhang Y, Miller DT. 2006. Adaptive optics flood-illumination camera for high speed retinal imaging. Opt. Express 14:4552–69 [Google Scholar]
  83. Rha J, Schroeder B, Godara P, Carroll J. 2009. Variable optical activation of human cone photoreceptors visualized using a short coherence light source. Opt. Lett. 34:3782–84 [Google Scholar]
  84. Rodieck RW. 1998. The First Steps in Seeing Sunderland, MA: Sinauer Associates [Google Scholar]
  85. Roorda A. 2011. Adaptive optics for studying visual function: a comprehensive review. J. Vis. 11:56 [Google Scholar]
  86. Roorda A, Romero-Borja F, Donnelly WJ, Queener H, Hebert TJ, Campbell MCW. 2002. Adaptive optics scanning laser ophthalmoscopy. Opt. Express 10:405–12 [Google Scholar]
  87. Roorda A, Williams DR. 1999. The arrangement of the three cone classes in the living human eye. Nature 397:520–22 [Google Scholar]
  88. Roorda A, Williams DR. 2002. Optical fiber properties of individual human cones. J. Vis. 2:404–12 [Google Scholar]
  89. Roorda A, Zhang Y, Duncan JL. 2007. High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Investig. Ophthalmol. Vis. Sci. 48:2297–303 [Google Scholar]
  90. Rossi EA, Rangel-Fonseca P, Parkins K, Fischer W, Latchney LR. et al. 2013. In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. Biomed. Opt. Express 4:2527–39 [Google Scholar]
  91. Rossi EA, Roorda A. 2010. The relationship between visual resolution and cone spacing in the human fovea. Nat. Neurosci. 13:156–57 [Google Scholar]
  92. Sawides L, Gambra E, Pascual D, Dorronsoro C, Marcos S. 2010. Visual performance with real-life tasks under adaptive-optics ocular aberration correction. J. Vis. 10:519 [Google Scholar]
  93. Schallek J, Geng Y, Nguyen H, Williams DR. 2013. Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization. Investig. Ophthalmol. Vis. Sci. 54:8237–50 [Google Scholar]
  94. Schwartz SD, Hubschman J-P, Heilwell G, Franco-Cardenas V, Pan CK. et al. 2012. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–20 [Google Scholar]
  95. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ. et al. 2015. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–16 [Google Scholar]
  96. Schwarz C, Manzanera S, Artal P. 2014. Binocular visual performance with aberration correction as a function of light level. J. Vis. 14:146 [Google Scholar]
  97. Scoles D, Higgins BP, Cooper RF, Dubis AM, Summerfelt P. et al. 2014a. Microscopic inner retinal hyper-reflective phenotypes in retinal and neurologic disease. Investig. Ophthalmol. Vis. Sci. 55:4015–29 [Google Scholar]
  98. Scoles D, Sulai YN, Dubra A. 2013. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. Biomed. Opt. Express 4:1710–23 [Google Scholar]
  99. Scoles D, Sulai YN, Langlo CS, Fishman GA, Curcio CA. et al. 2014b. In vivo imaging of human cone photoreceptor inner segments. Investig. Ophthalmol. Vis. Sci. 55:4244–51 [Google Scholar]
  100. Sharma R, Yin L, Geng Y, Merigan WH, Palczewska G. et al. 2013. In vivo two-photon imaging of the mouse retina. Biomed. Opt. Express 4:1285–93 [Google Scholar]
  101. Sredar N, Ivers KM, Queener HM, Zouridakis G, Porter J. 2013. 3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes. Biomed. Opt. Express 4:1153–65 [Google Scholar]
  102. Stevenson SB, Roorda A. 2005. Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy. Ophthalmic Technologies XI F Manns, P Soderberg, A Ho 145–51 Bellingham, WA: SPIE [Google Scholar]
  103. Sulai YN, Dubra A. 2014. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope. Biomed. Opt. Express 5:3059–73 [Google Scholar]
  104. Sulai YN, Scoles D, Harvey Z, Dubra A. 2014. Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope. J. Opt. Soc. Am. A 31:569–79 [Google Scholar]
  105. Sundaram V, Wilde C, Aboshiha J, Cowing J, Han C. et al. 2014. Retinal structure and function in achromatopsia: implications for gene therapy. Ophthalmology 121:234–45 [Google Scholar]
  106. Takayama K, Ooto S, Hangai M, Arakawa N, Oshima S. et al. 2012. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy. PLOS ONE 7:e33158 [Google Scholar]
  107. Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ. et al. 2011. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Investig. Ophthalmol. Vis. Sci. 52:2219–26 [Google Scholar]
  108. Tam J, Dhamdhere KP, Tiruveedhula P, Manzanera S, Barez S. et al. 2011a. Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 52:9257–66 [Google Scholar]
  109. Tam J, Tiruveedhula P, Roorda A. 2011b. Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express 2:781–93 [Google Scholar]
  110. Tuten WS, Tiruveedhula P, Roorda A. 2012. Adaptive optics scanning laser ophthalmoscope-based microperimetry. Optom. Vis. Sci. 89:563–74 [Google Scholar]
  111. Vienola KV, Braaf B, Sheehy CK, Yang Q, Tiruveedhula P. et al. 2012. Real-time eye motion compensation for OCT imaging with tracking SLO. Biomed. Opt. Express 3:2950–63 [Google Scholar]
  112. Vilupuru AS, Rangaswamy NV, Frishman LJ, Smith EL III, Harwerth RS, Roorda A. 2007. Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa. J. Opt. Soc. Am. A 24:1417–25 [Google Scholar]
  113. Wang Q, Tuten WS, Lujan BJ, Holland J, Bernstein PS. et al. 2015. Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. Investig. Ophthalmol. Vis. Sci. 56:778–86 [Google Scholar]
  114. Webb RH, Hughes GW, Pomerantzeff O. 1980. Flying spot TV ophthalmoscope. Appl. Opt. 19:2991–97 [Google Scholar]
  115. Weiland JD, Cho AK, Humayun MS. 2011. Retinal prostheses: current clinical results and future needs. Ophthalmology 118:2227–37 [Google Scholar]
  116. Williams DR. 2011. Imaging single cells in the living retina. Vis. Res. 51:1379–96 [Google Scholar]
  117. Xue B, Choi SS, Doble N, Werner JS. 2007. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera. J. Opt. Soc. Am. A 24:1364–72 [Google Scholar]
  118. Yang Q, Arathorn DW, Tiruveedhula P, Vogel CR, Roorda A. 2010. Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery. Opt. Express 18:17841–58 [Google Scholar]
  119. Yannuzzi LA, Bardal AM, Freund KB, Chen K-J, Eandi CM, Blodi B. 2006. Idiopathic macular telangiectasia. Arch. Ophthalmol. 124:450–60 [Google Scholar]
  120. Yin L, Geng Y, Osakada F, Sharma R, Cetin AH. et al. 2013. Imaging light responses of retinal ganglion cells in the living mouse eye. J. Neurophysiol. 109:2415–21 [Google Scholar]
  121. Yin L, Masella B, Dalkara D, Zhang J, Flannery JG. et al. 2014. Imaging light responses of foveal ganglion cells in the living macaque eye. J. Neurosci. 34:6596–605 [Google Scholar]
  122. Yoon GY, Williams DR. 2002. Visual performance after correcting the monochromatic and chromatic aberrations of the eye. J. Opt. Soc. Am. A 19:266–75 [Google Scholar]
  123. Zawadzki RJ, Capps AG, Kim DY, Panorgias A, Stevenson SB. et al. 2014. Progress on developing adaptive optics–optical coherence tomography for retinal imaging: monitoring and correction of eye motion artifacts. IEEE J. Sel.Top. Quantum Electron. 20:7100912 [Google Scholar]
  124. Zawadzki RJ, Choi SS, Fuller AR, Evans JW, Hamann B, Werner JS. 2009. Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography. Opt. Express 17:4084–94 [Google Scholar]
  125. Zayit-Soudry S, Duncan JL, Syed R, Menghini M, Roorda AJ. 2013. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 54:7498–509 [Google Scholar]
  126. Zhang Y, Poonja S, Roorda A. 2006. MEMS-based adaptive optics scanning laser ophthalmoscope. Opt. Lett. 31:1268–70 [Google Scholar]
  127. Zhang Y, Wang X, Rivero EB, Clark ME, Witherspoon CD. et al. 2014. Photoreceptor perturbation around subretinal drusenoid deposits as revealed by adaptive optics scanning laser ophthalmoscopy. Am. J. Ophthalmol. 158:584–96 [Google Scholar]
  128. Zhong Z, Song H, Chui TYP, Petrig BL, Burns SA. 2011. Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels. Investig. Ophthalmol. Vis. Sci. 52:4151–57 [Google Scholar]
/content/journals/10.1146/annurev-vision-082114-035357
Loading
/content/journals/10.1146/annurev-vision-082114-035357
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error