The retina consists of organized layers of photoreceptors, interneurons, glia, epithelial cells, and endothelial cells. The economic model of supply and demand used to appropriately determine cost is highly applicable to the retina, in which the extreme metabolic demands of phototransduction are met by precisely localized and designed vascular networks. Proper development and maintenance of these networks is critical to normal visual function; dysregulation is characteristic of several devastating human diseases, including but not limited to age-related macular degeneration and diabetic retinopathy. In this article, we focus on the lessons learned from the study of retinal vascular development and how these lessons can be used to better maintain adult vascular networks and prevent retinal diseases. We then outline the vasculotrophic contributions from neurons, retinal pigment epithelium (RPE) cells, and glia (specifically microglia) before we shift our focus to pathology to provide molecular contexts for neovascular retinal diseases. Finally, we conclude with a discussion that applies what we have learned about how retinal cells interact with the vasculature to identify and validate therapeutic approaches for neurovascular disease of the retina.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aguilar E, Friedlander M, Gariano RF. 2003. Endothelial proliferation in diabetic retinal microaneurysms. Arch. Ophthalmol. 121:740–41 [Google Scholar]
  2. Al-Kateb H, Mirea L, Xie X, Sun L, Liu M. et al. 2007. Multiple variants in vascular endothelial growth factor (VEGFA) are risk factors for time to severe retinopathy in type 1 diabetes: the DCCT/EDIC genetics study. Diabetes 56:2161–68 [Google Scholar]
  3. Alm A. 1992. Ocular circulation. Adler's Physiology of the Eye WM Hart 198–227 St. Louis, MO: Mosby [Google Scholar]
  4. Alm A, Bill A. 1973. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp. Eye Res. 15:15–29 [Google Scholar]
  5. Anderson DH, Mullins RF, Hageman GS, Johnson LV. 2002. A role for local inflammation in the formation of drusen in the aging eye. Am. J. Ophthalmol. 134:411–31 [Google Scholar]
  6. Arakawa S, Takahashi A, Ashikawa K, Hosono N, Aoi T. et al. 2011. Genome-wide association study identifies two susceptibility loci for exudative age-related macular degeneration in the Japanese population. Nat. Genet. 43:1001–4 [Google Scholar]
  7. Arfken CL, Reno PL, Santiago JV, Klein R. 1998. Development of proliferative diabetic retinopathy in African-Americans and whites with type 1 diabetes. Diabet. Care 21:792–95 [Google Scholar]
  8. Arroba AI, Alvarez-Lindo N, van Rooijen N, de la Rosa EJ. 2014. Microglia-Müller glia crosstalk in the rd10 mouse model of retinitis pigmentosa. Adv. Exp. Med. Biol. 801:373–79 [Google Scholar]
  9. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R. et al. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–67 [Google Scholar]
  10. Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N. 2003. Angiogenesis assays: a critical overview. Clin. Chem. 49:32–40 [Google Scholar]
  11. Avery RL, Pearlman J, Pieramici DJ, Rabena MD, Castellarin AA. et al. 2006. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology 113:1695–705 [Google Scholar]
  12. Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J. et al. 2006. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. PNAS 103:16021–26 [Google Scholar]
  13. Bharti K, Rao M, Hull SC, Stroncek D, Brooks BP. et al. 2014. Developing cellular therapies for retinal degenerative diseases. Investig. Ophthalmol. Vis. Sci. 55:1191–202 [Google Scholar]
  14. Bhutto I, Lutty G. 2012. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol. Aspects Med. 33:295–17 [Google Scholar]
  15. Biju KC, Santacruz RA, Chen C, Zhou Q, Yao J. et al. 2013. Bone marrow-derived microglia-based neurturin delivery protects against dopaminergic neurodegeneration in a mouse model of Parkinson's disease. Neurosci. Lett. 535:24–29 [Google Scholar]
  16. Binder S, Krebs I, Hilgers RD, Abri A, Stolba U. et al. 2004. Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Investig. Ophthalmol. Vis. Sci. 45:4151–60 [Google Scholar]
  17. Bird AC. 2010. Therapeutic targets in age-related macular disease. J. Clin. Investig. 120:3033–41 [Google Scholar]
  18. Branch Vein Occlusion Study Gr 1984. Argon laser photocoagulation for macular edema in branch vein occlusion. Am. J. Ophthalmol. 98:271–82 [Google Scholar]
  19. Brown DM, Heier JS, Clark WL, Boyer DS, Vitti R. et al. 2013. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1-year results from the phase 3 COPERNICUS study. Am. J. Ophthalmol. 155:429–37.e7 [Google Scholar]
  20. Brylla E, Tscheudschilsuren G, Santos AN, Nieber K, Spanel-Borowski K, Aust G. 2003. Differences between retinal and choroidal microvascular endothelial cells (MVECs) under normal and hypoxic conditions. Exp. Eye Res. 77:527–35 [Google Scholar]
  21. Bucher F, Stahl A, Agostini HT, Martin G. 2013. Hyperoxia causes reduced density of retinal astrocytes in the central avascular zone in the mouse model of oxygen-induced retinopathy. Mol. Cell Neurosci. 56:225–33 [Google Scholar]
  22. Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR. et al. 2009. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27:2427–34 [Google Scholar]
  23. Caballero S, Hazra S, Bhatwadekar A, Li Calzi S, Paradiso LJ. et al. 2013. Circulating mononuclear progenitor cells: differential roles for subpopulations in repair of retinal vascular injury. Investig. Ophthalmol. Vis. Sci. 54:3000–9 [Google Scholar]
  24. Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S. et al. 2007. Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes 56:960–67 [Google Scholar]
  25. Campochiaro PA, Brown DM, Awh CC, Lee SY, Gray S. et al. 2011. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology 118:2041–49 [Google Scholar]
  26. Campochiaro PA, Nguyen QD, Shah SM, Klein ML, Holz E. et al. 2006. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum. Gene Ther. 17:167–76 [Google Scholar]
  27. Cao X, Shen D, Patel MM, Tuo J, Johnson TM. et al. 2011. Macrophage polarization in the maculae of age-related macular degeneration: a pilot study. Pathol. Int. 61:528–35 [Google Scholar]
  28. Caprara C, Thiersch M, Lange C, Joly S, Samardzija M, Grimm C. 2011. HIF1A is essential for the development of the intermediate plexus of the retinal vasculature. Investig. Ophthalmol. Vis. Sci. 52:2109–17 [Google Scholar]
  29. Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C. et al. 2009. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLOS ONE 4:e8152 [Google Scholar]
  30. Cent. Vein Occlusion Study Gr 1997. Natural history and clinical management of central retinal vein occlusion. Arch. Ophthalmol. 115:486–91 [Google Scholar]
  31. Chakravarthy U, Harding SP, Rogers CA, Downes SM, Lotery AJ. et al. 2012. Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN randomized trial. Ophthalmology 119:1399–411 [Google Scholar]
  32. Chamberlain M, Baird P, Dirani M, Guymer R. 2006. Unraveling a complex genetic disease: age-related macular degeneration. Surv. Ophthalmol. 51:576–86 [Google Scholar]
  33. Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S. 2006. Potential role of microglia in retinal blood vessel formation. Investig. Ophthalmol. Vis. Sci. 47:3595–602 [Google Scholar]
  34. Chen M, Glenn JV, Dasari S, McVicar C, Ward M. et al. 2014. RAGE regulates immune cell infiltration and angiogenesis in choroidal neovascularization. PLOS ONE 9:e89548 [Google Scholar]
  35. Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH. 2010. Bruch's membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br. J. Ophthalmol. 94:918–25 [Google Scholar]
  36. Chew EY, Ambrosius WT, Davis MD, Danis RP, Gangaputra S. et al. 2010. Effects of medical therapies on retinopathy progression in type 2 diabetes. N. Engl. J. Med. 363:233–44 [Google Scholar]
  37. Churchill AJ, Carter JG, Lovell HC, Ramsden C, Turner SJ. et al. 2006. VEGF polymorphisms are associated with neovascular age-related macular degeneration. Hum. Mol. Genet. 15:2955–61 [Google Scholar]
  38. Clark DD, Sokoloff L. 1999. Circulation and energy metabolism of the brain. Basic Neurochemistry: Molecular, Cellular and Medical Aspects 6 GJ Siegel, BW Agranoff, RW Albers, SK Fisher, MD Uhler 637–70 Philadelphia: Lippincott-Raven [Google Scholar]
  39. Combadiere C, Feumi C, Raoul W, Keller N, Rodero M. et al. 2007. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J. Clin. Investig. 117:2920–28 [Google Scholar]
  40. Coorey NJ, Shen W, Chung SH, Zhu L, Gillies MC. 2012. The role of glia in retinal vascular disease. Clin. Exp. Optom. 95:266–81 [Google Scholar]
  41. Crawford TN, Alfaro DV 3rd, Kerrison JB, Jablon EP. 2009. Diabetic retinopathy and angiogenesis. Curr. Diabet. Rev. 5:8–13 [Google Scholar]
  42. Cross AK, Woodroofe MN. 1999. Chemokine modulation of matrix metalloproteinase and TIMP production in adult rat brain microglia and a human microglial cell line in vitro. Glia 28:183–89 [Google Scholar]
  43. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. 1990. Human photoreceptor topography. J. Comp. Neurol. 292:497–523 [Google Scholar]
  44. Dace DS, Khan AA, Kelly J, Apte RS. 2008. Interleukin-10 promotes pathological angiogenesis by regulating macrophage response to hypoxia during development. PLOS ONE 3:e3381 [Google Scholar]
  45. Dalton HJ, Armaiz-Pena GN, Gonzalez-Villasana V, Lopez-Berestein G, Bar-Eli M, Sood AK. 2014. Monocyte subpopulations in angiogenesis. Cancer Res. 74:1287–93 [Google Scholar]
  46. de Juan E Jr, Loewenstein A, Bressler NM, Alexander J. 1998. Translocation of the retina for management of subfoveal choroidal neovascularization II: a preliminary report in humans. Am. J. Ophthalmol. 125:635–46 [Google Scholar]
  47. Diabet. Retin. Study Res. Gr 1981. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS report number 8. Ophthalmology 88:583–600 [Google Scholar]
  48. Dimov VV, Casale TB. 2010. Immunomodulators for asthma. Allergy Asthma Immunol. Res. 2:228–34 [Google Scholar]
  49. Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y. et al. 2013. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Investig. Ophthalmol. Vis. Sci. 54:5087–96 [Google Scholar]
  50. Do DV, Nguyen QD, Boyer D, Schmidt-Erfurth U, Brown DM. et al. 2012. One-year outcomes of the da Vinci Study of VEGF Trap-Eye in eyes with diabetic macular edema. Ophthalmology 119:1658–65 [Google Scholar]
  51. Do DV, Schmidt-Erfurth U, Gonzalez VH, Gordon CM, Tolentino M. et al. 2011. The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema. Ophthalmology 118:1819–26 [Google Scholar]
  52. Dodson PM. 2009. Management of diabetic retinopathy: could lipid-lowering be a worthwhile treatment modality?. Eye 23:997–1003 [Google Scholar]
  53. Dorrell MI, Aguilar E, Friedlander M. 2002. Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Investig. Ophthalmol. Vis. Sci. 43:3500–10 [Google Scholar]
  54. Dorrell MI, Aguilar E, Jacobson R, Trauger SA, Friedlander J. et al. 2010. Maintaining retinal astrocytes normalizes revascularization and prevents vascular pathology associated with oxygen-induced retinopathy. Glia 58:43–54 [Google Scholar]
  55. Dorrell MI, Aguilar E, Jacobson R, Yanes O, Gariano R. et al. 2009. Antioxidant or neurotrophic factor treatment preserves function in a mouse model of neovascularization-associated oxidative stress. J. Clin. Investig. 119:611–23 [Google Scholar]
  56. Dorrell MI, Friedlander M. 2006. Mechanisms of endothelial cell guidance and vascular patterning in the developing mouse retina. Prog. Retin. Eye Res. 25:277–95 [Google Scholar]
  57. Early Treat. Retin. Prematur. Coop. Gr 2003. Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch. Ophthalmol. 121:1684–94 [Google Scholar]
  58. Ellenbogen RG, Rengachary SS. 2005. Principles of Neurosurgery Edinburgh, UK: Mosby [Google Scholar]
  59. Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW. 2003. Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 44:3586–92 [Google Scholar]
  60. Fagerness JA, Maller JB, Neale BM, Reynolds RC, Daly MJ, Seddon JM. 2009. Variation near complement factor I is associated with risk of advanced AMD. Eur. J. Hum. Genet. 17:100–4 [Google Scholar]
  61. Falkner-Radler CI, Krebs I, Glittenberg C, Povazay B, Drexler W. et al. 2011. Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. Br. J. Ophthalmol. 95:370–75 [Google Scholar]
  62. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q. et al. 2010. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–40 [Google Scholar]
  63. Ferguson TA, Apte RS. 2008. Angiogenesis in eye disease: immunity gained or immunity lost?. Semin. Immunopathol. 30:111–19 [Google Scholar]
  64. Ferrara N, Damico L, Shams N, Lowman H, Kim R. 2006. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26:859–70 [Google Scholar]
  65. Ferrara N, Hillan KJ, Gerber HP, Novotny W. 2004. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3:391–400 [Google Scholar]
  66. Friedlander M, Dorrell MI, Ritter MR, Marchetti V, Moreno SK. et al. 2007. Progenitor cells and retinal angiogenesis. Angiogenesis 10:89–101 [Google Scholar]
  67. Gariano RF, Iruela-Arispe ML, Hendrickson AE. 1994. Vascular development in primate retina: comparison of laminar plexus formation in monkey and human. Investig. Ophthalmol. Vis. Sci. 35:3442–55 [Google Scholar]
  68. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P. et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–45 [Google Scholar]
  69. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. 2013. Origin and differentiation of microglia. Front. Cell Neurosci. 7:45 [Google Scholar]
  70. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR. 2004. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351:2805–16 [Google Scholar]
  71. Grimm C, Hermann DM, Bogdanova A, Hotop S, Kilic U. et al. 2005. Neuroprotection by hypoxic preconditioning: HIF-1 and erythropoietin protect from retinal degeneration. Semin. Cell Dev. Biol. 16:531–38 [Google Scholar]
  72. Gumkowski F, Kaminska G, Kaminski M, Morrissey LW, Auerbach R. 1987. Heterogeneity of mouse vascular endothelium. In vitro studies of lymphatic, large blood vessel and microvascular endothelial cells. Blood Vessels 24:11–23 [Google Scholar]
  73. Haruta M, Sasai Y, Kawasaki H, Amemiya K, Ooto S. et al. 2004. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Investig. Ophthalmol. Vis. Sci. 45:1020–25 [Google Scholar]
  74. Hayashi K, de Laey JJ. 1985. Indocyanine green angiography of choroidal neovascular membranes. Ophthalmologica 190:30–39 [Google Scholar]
  75. Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK. et al. 2012. Intravitreal aflibercept (VEGF Trap-Eye) in wet age-related macular degeneration. Ophthalmology 119:2537–48 [Google Scholar]
  76. Heller JP, Martin KR. 2014. Enhancing RPE cell-based therapy outcomes for AMD: the role of Bruch's membrane. Transl. Vis. Sci. Technol. 3:11 [Google Scholar]
  77. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L. et al. 2002. VEGF-Trap: a VEGF blocker with potent antitumor effects. PNAS 99:11393–98 [Google Scholar]
  78. Horie S, Robbie SJ, Liu J, Wu WK, Ali RR. et al. 2013. CD200R signaling inhibits pro-angiogenic gene expression by macrophages and suppresses choroidal neovascularization. Sci. Rep. 3:3072 [Google Scholar]
  79. Hynes SR, Lavik EB. 2010. A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefe's Arch. Clin. Exp. Ophthalmol. 248:763–78 [Google Scholar]
  80. Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I. et al. 2009. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396–408 [Google Scholar]
  81. Invernici G, Ponti D, Corsini E, Cristini S, Frigerio S. et al. 2005. Human microvascular endothelial cells from different fetal organs demonstrate organ-specific CAM expression. Exp. Cell Res. 308:273–82 [Google Scholar]
  82. Joussen AM, Heussen FM, Joeres S, Llacer H, Prinz B. et al. 2006. Autologous translocation of the choroid and retinal pigment epithelium in age-related macular degeneration. Am. J. Ophthalmol. 142:17–30 [Google Scholar]
  83. Kakehashi A, Inoda S, Mameuda C, Kuroki M, Jono T. et al. 2008. Relationship among VEGF, VEGF receptor, AGEs, and macrophages in proliferative diabetic retinopathy. Diabet. Res. Clin. Pract. 79:438–45 [Google Scholar]
  84. Kandel Schwartz ER JH, Jessell TM. 2000. Principles of Neural Science New York: McGraw Hill [Google Scholar]
  85. Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F. et al. 2002. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. PNAS 99:1580–85 [Google Scholar]
  86. Kaylor JJ, Yuan Q, Cook J, Sarfare S, Makshanoff J. et al. 2013. Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat. Chem. Biol. 9:30–36 [Google Scholar]
  87. Kierdorf K, Prinz M. 2013. Factors regulating microglia activation. Front. Cell Neurosci. 7:44 [Google Scholar]
  88. Kimelberg HK. 2010. Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79–106 [Google Scholar]
  89. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. 2004. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 6:217–45 [Google Scholar]
  90. Knighton DR, Hunt TK, Scheuenstuhl H, Halliday BJ, Werb Z, Banda MJ. 1983. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 221:1283–85 [Google Scholar]
  91. Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA. 2013. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog. Retin. Eye Res. 36:172–98 [Google Scholar]
  92. Krohne TU, Westenskow PD, Kurihara T, Friedlander DF, Lehmann M. et al. 2012. Generation of retinal pigment epithelial cells from small molecules and OCT4 reprogrammed human induced pluripotent stem cells. Stem Cells Transl. Med. 1:96–109 [Google Scholar]
  93. Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K. et al. 2009. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J. Exp. Med. 206:1089–102 [Google Scholar]
  94. Kurihara T, Kubota Y, Ozawa Y, Takubo K, Noda K. et al. 2010. von Hippel-Lindau protein regulates transition from the fetal to the adult circulatory system in retina. Development 137:1563–71 [Google Scholar]
  95. Kurihara T, Westenskow PD, Bravo S, Aguilar E, Friedlander M. 2012. Targeted deletion of Vegfa in adult mice induces vision loss. J. Clin. Investig. 122:4213–17 [Google Scholar]
  96. Kurihara T, Westenskow PD, Krohne TU, Aguilar E, Johnson RS, Friedlander M. 2011. Astrocyte pVHL and HIF-α isoforms are required for embryonic-to-adult vascular transition in the eye. J. Cell Biol. 195:689–701 [Google Scholar]
  97. Lai JC, Lapolice DJ, Stinnett SS, Meyer CH, Arieu LM. et al. 2002. Visual outcomes following macular translocation with 360-degree peripheral retinectomy. Arch. Ophthalmol. 120:1317–24 [Google Scholar]
  98. Lange CA, Luhmann UF, Mowat FM, Georgiadis A, West EL. et al. 2012. Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development. Development 139:2340–50 [Google Scholar]
  99. Laughlin SB, de Ruyter van Steveninck RR, Anderson JC. 1998. The metabolic cost of neural information. Nat. Neurosci. 1:36–41 [Google Scholar]
  100. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J. et al. 2007. Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703 [Google Scholar]
  101. Li Y, Tsai YT, Hsu CW, Erol D, Yang J. et al. 2012. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol. Med. 18:1312–19 [Google Scholar]
  102. Liao JL, Yu J, Huang K, Hu J, Diemer T. et al. 2010. Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells. Hum. Mol. Genet. 19:4229–38 [Google Scholar]
  103. Lingen MW. 2001. Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch. Pathol. Lab. Med. 125:67–71 [Google Scholar]
  104. Liu J, Copland DA, Horie S, Wu WK, Chen M. et al. 2013a. Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice. PLOS ONE 8:e72935 [Google Scholar]
  105. Liu K, Chen LJ, Tam PO, Shi Y, Lai TY. et al. 2013b. Associations of the C2-CFB-RDBP-SKIV2L locus with age-related macular degeneration and polypoidal choroidal vasculopathy. Ophthalmology 120:837–43 [Google Scholar]
  106. Liu X, Mashour GA, Webster HF, Kurtz A. 1998. Basic FGF and FGF receptor 1 are expressed in microglia during experimental autoimmune encephalomyelitis: temporally distinct expression of midkine and pleiotrophin. Glia 24:390–97 [Google Scholar]
  107. Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M. et al. 2005. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437:417–21 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error